Research Article
BibTex RIS Cite

Van Gölü Havzası Yerel Fasulye Genotiplerinde Rhizoctonia Kök Çürüklüğünün Kontrolünde Arbusküler Mikorizal Fungus (AMF) un Rolü

Year 2025, Volume: 28 Issue: 4, 996 - 1010
https://doi.org/10.18016/ksutarimdoga.vi.1656707

Abstract

Van Gölü Havzası'nda yaygın olan ana sebzelerden biri olan fasulye (Phaseolus vulgaris L.), bölgede yerel genotiplerle sıklıkla yetiştirilmektedir. Özellikle bu bölgede fasulyeyi olumsuz etkileyen toprak kökenli önemli bir hastalık olan Rhizoctonia solani kök çürüklüğü, ülkemizde ve dünya genelinde ekonomik kayıplara neden olmaktadır. Bu nedenle, bu tür önemli toprak kaynaklı bitki hastalıklarının tedavisinde kimyasal kontrole uygun ve çevre dostu bir alternatif, Arbusküler Mikorizal Fungusların (AMF) uygulanmasıdır. Bu çalışmada, Van-Gevaş'tan temin edilen V29 ve TR 50763 (T71) fasulye genotiplerinde R.solani (Rs) kök çürüklüğü hastalığına karşı ticari AMF (ERS) ve Funneliformis mosseae (Fm)'nin etkilerinin araştırılması amaçlanmıştır. Bu amaçla, bazı bitki büyüme parametreleri, toplam fenol, toplam antioksidan kapasite, kök kolonizasyonu ve hastalık şiddeti parametreleri araştırılmıştır. Fm ve ERS, R.solani ile inokule patojene rağmen her iki fasulye genotipinde (V29 ve T71) bitki morfolojik parametrelerini önemli ölçüde artırmış ve hastalık şiddetini azaltmıştır. Ayrıca, Fm'nin AMF uygulamaları arasında bitki büyümesinde en etkili olduğu gösterilmiştir. ERS, toplam fenol konsantrasyonu, antioksidan aktivite ve AMF kök kolonizasyonunda en etkili uygulama olmuştur. Genel olarak, T71 genotipinin bitki büyüme parametreleri ve toplam antioksidan aktivitesi üzerinde V29'dan farklı bir etkiye sahip olduğu gözlemlenmiştir. Çalışmanın bulguları, sürdürülebilir bir tarım tekniği olan AMF'nin bitki büyümesini artırdığını ve genotip çeşitliliğinden bağımsız olarak fasulyede önemli Rhizoctonia kök çürüklüğü hastalığının neden olduğu zararı azalttığını göstermektedir. Bu çalışma, sahada bu hastalığa karşı sürdürülebilir tarımsal önlemlerin araştırılması bağlamında olumlu olarak değerlendirilebilir.

References

  • Abdel-Fattah, G.M., El-Haddad, S.A., Hafez, E.E., & Rashad, Y.M. (2011). Induction of defense responses incommon bean plants by arbuscular mycorrhizal fungi. Microbiological Research, 166(4), 268–281. https://doi.org/10.1016/j.micres.2010.04.004
  • Akköprü, A. & Demir, S. (2005). Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. Journal of Phytopathology,153(9), 544-550. https://doi.org/10.1111/j.1439-0434.2005.01018.x
  • Alabouvette, C., Olivain, C., & Steinberg, C. (2006). Biological control of plant diseases: the European situation. European Journal of Plant Pathology,114, 329-341. https://doi.org/10.1007/s10658-005-0233-0
  • Aljawasim, B.D., Khaeim, H.M., & Manshood, M.A. (2020). Assessment of arbuscular mycorrhizal fungi (Glomus spp.) as potential biocontrol agents against damping-off disease Rhizoctonia solani on cucumber. Crop Protection, 9(1), 141–147. http://jcp.modares.ac.ir/article-3-33473-en.html
  • Amer, M.A. & Abou-El-Seoud, II. (2008). Mycorrhizal fungi and Trichoderma harzianum as biocontrol agents for suppression of Rhizoctonia solani damping-off disease of tomato. Communications in Agricultural and Applied Biological Sciences,73(2), 217-32.
  • Bagy, H.M.K., Hassan, E.A., Nafady, N.A., & Dawood, M.F. (2019). Efficacy of arbuscular mycorrhizal fungi and endophytic strain Epicoccum nigrum ASU11 as biocontrol agents against blackleg disease of potato caused by bacterial strain Pectobacterium carotovora subsp. atrosepticum PHY7. Biological Control,,134, 103-113. https://doi.org/10.1016/j.biocontrol.2019.03.005
  • Benzie, I.E.F. & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: the FRAP assay. Analytical Biochemistry,239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
  • Berger, F. & Gutjahr, C. (2021). Factors affecting plant responsiveness to arbuscular mycorrhiza. Current Opinion in Plant Biology, 59, 101994. https://doi.org/10.1016/j.pbi.2020.101994
  • Botha, A., Denman, S, Lamprecht, S.C., Mazzola, M, & Crous, P.W. (2003). Characterisation and pathogenicity of Rhizoctonia isolates associated with black root rot of strawberries in the Western Cape Province, South Africa. Australasian plant pathology,32, 195-201. https://doi.org/10.1071/AP02067
  • Costa-Coelho, G.R., Café Filho, A.C., & Lobo Jr, M. (2014). A comparison of web blight epidemics on common bean cultivars with different growth habits. Crop Protection, 55, 16-20. https://doi.org/10.1016/j.cropro.2013.10.006
  • Dalpé, Y. (2005). Mycorrhizae: a potential tool for plant protection but not a panacea. Phytoprotection, 86, 53-59.
  • Durak, E.D., Erdinç, Ç., & Ekincialp, A. (2024). Rhizoctonia species, anastomosis groups, and pathogenicity isolated from common bean in Lake Van Basin, Turkiye. International Journal of Agriculture Environment and Food Sciences,8(2), 359-368. https://doi.org/10.31015/jaefs.2024.2.11
  • Eke, P., Chatue, G.C., Wakam, L.N., Kouipou, R.M.T., Fokou, P.V.T., & Boyom, F.F. (2016). Mycorrhiza consortia suppress the fusarium root rot (Fusarium solani f. sp. phaseoli) in common bean (Phaseolus vulgaris L.). Biological Control, 103, 240-250. https://doi.org/10.1016/j.biocontrol.2016.10.001
  • Ekincialp, A., & Şensoy, S. (2018). Phenotypic and molecular determination of anthracnose disease resistance in Lake Van Basin's bean genotypes (Phaseolus vulgaris L.). Legume Research-An International Journal, 41(1), 135-142.
  • Erdinc, Ç., Durak, E.D., Ekincialp, A., Şensoy, S., & Demir, S. (2017). Variations in response of determinate common bean (Phaseolus vulgaris L.) genotypes to arbuscular mycorrhizal fungi (AMF) inoculation. Turkish Journal of Agriculture and Forestry, 41, 1-9. https://doi.org/10.3906/tar-1609-68
  • Erper, I., Ozkoc, I., & Karaca, G.H. (2011). Identification and pathogenicity of Rhizoctonia species isolated from bean and soybean plants in Samsun, Turkey. Archives of Phytopathology and Plant Protection,44(1), 78-84. https://doi.org/10.1080/03235400903395427
  • Felföldi, Z., Vidican, R., Stoian, V., Roman, I.A., Sestras, A.F., Rusu, T., & Sestras, R.E. (2022). Arbuscular mycorrhizal fungi and fertilization influence yield, growth and root colonization of different tomato genotype. Plants, 11(13), 1743. https://doi.org/10.3390/plants11131743
  • Food and Agriculture Organization of the United Nations (2022). Statistic database. Website http://faostat.fao.org/. Accessed: 22.08.2024.
  • Gavilanes, F.Z., Andrade, D.S., Figueiredo, A., Cedeño-García, G., Zucareli, C., & Fátima Guimarães, M.D. (2020). Effect of Physic Nut Seed Cake on Common Bean Development and Clay Dispersion of Soil. Polish Journal of Environmental Studies, 29(3), 2177-2184. https://doi.org/10.15244/pjoes/109726
  • Gianinazzi, S., Gollotte, A., Binet, M.N., van Tuinen, D., Redecker, D., & Wipf, D. (2010). Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 20(8), 519-530. https://doi.org/10.1007/s00572-010-0333-3
  • Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New phytologist,84(3), 489-500. https://www.jstor.org/stable/2432123 groups of Rhizoctonia spp. isolated from soils in Israel. Phytoparasitica, 13, 103-112.
  • Güneş, H., Demir, S., & Erdinç, Ç. (2025). How do AMF and Biochar Affect Pepper Growth and Nutrient Content under Biotic and Abiotic Stress?. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 28(2), 459-479. https://doi.org/10.18016/ksutarimdoga.vi.1587723
  • Gunes, H., Demir, S., Erdinc, C., & Furan, M.A. (2023). Effects of Arbuscular Mycorrhizal Fungi (AMF) and Biochar on the Growth of Pepper (Capsicum annuum L.) Under Salt Stress. Gesunde Pflanzen, 75(6), 2669-2681. https://doi.org/10.1007/s10343-023-00897-2
  • Hafez, E.E., Abdel-Fattah, G.M., El-Haddad, S.A., & Rashad, Y.M. (2013). Molecular defense response of mycorrhizal bean plants infected with Rhizoctonia solani. Annals of Microbiology,63, 1195-1203. https://doi.org/10.1007/s13213-012-0578-5
  • Ichielevich-Auster, M., Sneh, B., Barash, I., & Koltin, Y. (1985). Pathogenicity, host specificity and anastomosis Kacar, B. (1984). Plant nutrition application guide. Ank. Univ. Agric. Fac. Pub. No: 900, Application Guides No: 214, pp. 47-79.
  • Kareem, T.A. & Hassan, M.S. (2014). Evaluation of Glomus mosseae as biocontrol agents against Rhizoctonia solani on tomato. Evaluation, 4(2), 15-19.
  • Liu, J., Liu, J, Liu, J., Cui, M., Huang, Y, Tian, Y., & Xu, G. (2019). The potassium transporter SlHAK10 is involved in mycorrhizal potassium uptake. Plant Physiology,,180(1), 465-479. https://doi.org/10.1104/pp.18.01533
  • Martins, S.A., Schurt, D.A., Seabra, S.S., Martins, S.J., Ramalho, M.A.P., de Souza Moreira, F.M., & de Medeiros, F.H.V. (2018). Common bean (Phaseolus vulgaris L.) growth promotion and biocontrol by rhizobacteria under Rhizoctonia solani suppressive and conducive soils. Applied Soil Ecology,127, 129-135. https://doi.org/10.1016/j.apsoil.2018.03.007
  • Metsalu, T. & Vilo, J. (2015). ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(1), 566-570. https://doi.org/10.1093/nar/gkv468
  • Meziadi, C., Richard, M.M.S., Derquennes, A., Thareau, V., Blanchet, S., Gratias, A., Pflieger, S., Geffroy, V. (2016). Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence. Plant Science, 242, 351–357. https://doi.org/10.1016/j.plantsci.2015.09.006
  • Moarrefzadeh, N., Khateri, H., & Abbasi, S. (2023). Alleviation of Rhizoctonia root rot damage in common bean by some arbuscular mycorrhizal fungi. Journal of Applied Research in Plant Protection, 12(1), 13-24. 10.22108/bjm.2021.130031.1410
  • Moarrefzadeh, N., Khateri, H., & Sharifi, R. (2022). The effects of some arbuscular mycorrhizal fungi on plant growth and biocontrol of Ascochyta blight in two chickpea varieties. Journal of Microbial Biology,11(44), 23-39. https://doi.org/ 10.22108/bjm.2021.130031.1410
  • Muyolo, N.G., Lipps, P.E., & Schmitthenner, A.F. (1993). Reactions of dry bean, lima bean, and soybean cultivars to Rhizoctonia root and hypocotyl rot and web blight. Plant Disease 77(3), 234-238. 10.1094/PD-77-0234
  • Nasir Hussein, A., Abbasi, S., Sharifi, R., & Jamali, S. (2018). The effect of biocontrol agents consortia against Rhizoctonia root rot of common bean Phaseolus vulgaris. Journal of Crop Protection,7(1), 73-85.
  • Otten, W., Hall, D., Harris, K., Ritz, K., Young, I.M., & Gilligan, C.A. (2001). Soil physics, fungal epidemiology and the spread of Rhizoctonia solani. New Phytologist,151(2), 459-468. https://doi.org/10.1046/j.0028- 646x.2001.00190.x
  • Palacıoglu, G., Cankara, B., Bayraktar, H., & Ozer, G. (2019). Fasulyede Rhizoctonia solani’nin Neden Olduğu Kök Çürüklüğüne Karşı Tohuma Bazı Fungisit Uygulamalarının Etkinliği.International Journal of Agriculture and Wildlife Science,5(1), 96-102. https://doi.org/10.24180/ijaws.533240
  • Saldajeno, M.G.B., Chandanie, W.A., Kubota, M., & Hyakumachi, M. (2008). Effects of interactions of arbuscular mycorrhizal fungi and beneficial saprophytic mycoflora on plant growth and disease protection. Mycorrhizae: sustainable agriculture and forestry, 211-226. https://doi.org/10.1007/978-1-4020-8770-7_9
  • Schüßler, A., & Walker, C. (2010). The Glomeromycota: a species list with new families and new genera. Published in December 2010 in libraries at The Royal Botanic Garden Edinburgh; The Royal Botanic Garden Kew; Botanische Staatssammlung Munich, and Oregon State University.
  • Sensoy, S., Demir, S., Turkmen, O., Erdinc, C., & Savur, O.B. (2007). Responses of some different pepper (Capsicum annuum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi. Scientia horticulturae, 113(1), 92-95. https://doi.org/10.1016/j.scienta.2007.01.023
  • Sharifi, R. & Ryu, C.M. (2017). Chatting with a tiny belowground member of the holobiome: communication between plants and growth-promoting rhizobacteria. In Advances in Botanical Research, 82, 135-160. https://doi.org/10.1016/bs.abr.2016.09.002
  • Sharon, M., Freeman, S., Kuninaga, S., & Sneh, B. (2007). Genetic diversity, anastomosis groups and virulence of Rhizoctonia spp. from strawberry. European Journal of Plant Pathology,117, 247-265. https://doi.org/10.1007/s10658-006-9091-7
  • Singh, M. (2015). Interactions among arbuscular mycorrhizal fungi, Trichoderma harzianum, Aspergillus niger and biocontrol of wilt of tomato. Archives of Phytopathology and Plant Protection,, 48(3), 205-211. https://doi.org/10.1080/03235408.2014.884825
  • Sohrabi, M., Mohammadi, H., & Mohammadi, A.H. (2015). Influence of AM fungi, Glomus mosseae and Glomus intraradices on chickpea growth and root-rot disease caused by Fusarium solani f. sp. pisi under greenhouse conditions. Journal of Agricultural Science and Technology,17(7), 1919-1929. 20.1001.1.16807073.2015.17.7.2.5
  • Soylu, E.M., Soylu, S., Kara, M., & Kurt, Ş. (2020). Sebzelerde sorun olan önemli bitki fungal hastalık etmenlerine karşı vermikomposttan izole edilen mikrobiyomların in vitro antagonistik etkilerinin belirlenmesi. KSU Tarım ve Doğa Dergisi, 23, 7-18. https://doi.org/10.18016/ksutarimdoga.vi.601936
  • Soylu, S., Kara, M., Uysal, A., Kurt, Ş., & Soylu, E.M., (2021). Determination of antagonistic potential of endophytic bacteria isolated from lettuce against lettuce white mould disease caused by Sclerotinia sclerotiorum. Zemdirbyste-Agriculture, 108, 303-312. https://doi.org/10.13080/z-a.2021.108.039
  • Soylu, S., Soylu, E.M., Kurt, Ş., & Ekici, Ö.K. (2005). Antagonistic potentials of rhizosphere-associated bacterial isolates against soil-borne diseases of tomato and pepper caused by Sclerotinia sclerotiorum and Rhizoctonia solani. Pakistan Journal of Biological Sciences, 8, 43-48.
  • Swain, T. & Hillis, W.E. (1959). The phenolic constituents of Prunus domestica. I.-The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture,10(1), 63-68. https://doi.org/10.1002/jsfa.2740100110
  • Townsend, G.R. & Heuberger, J.W. (1943). Methods for estimating losses caused by diseases in fungicide experiments. Plant Diseases Report, 27, 340-343.
  • Valentín Torres, S., Vargas, M.M., Godoy-Lutz, G., Porch, T.G., & Beaver, J.S. (2016). Isolates of Rhizoctonia solani can produce both web blight and root rot symptoms in common bean (Phaseolus vulgaris L.). Plant Disease, 100(7), 1351-1357. https://doi.org/10.1094/PDIS-11-15-1270-RE
  • Vidal, N.P., Manful, C.F., Pham, T.H., Stewart, P., Keough, D., & Thomas, R. (2020). The use of XLSTAT in conducting principal component analysis (PCA) when evaluating the relationships between sensory and quality attributes in grilled foods. MethodsX, 7, 100835. https://doi.org/10.1016/j.mex.2020.100835
  • Yao, M., Tweddell, R., & Desilets, H. (2002). Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani. Mycorrhiza, 12, 235-242. https://doi.org/10.1007/s00572-002-0176-7
  • Zhao, G., Ablett, G.R., Anderson, T.R., Rajcan, I., & Schaafsma, A.W. (2005). Inheritance and genetic mapping of resistance to Rhizoctonia root and hypocotyl rot in soybean. Crop Science, 45(4), 1441-1447. https://doi.org/10.2135/cropsci2004.0560

The Role of Arbuscular Mycorrhizal Fungi (AMF) in the Control of Rhizoctonia Root Rot in Local Bean Genotypes of the Van Lake Basin

Year 2025, Volume: 28 Issue: 4, 996 - 1010
https://doi.org/10.18016/ksutarimdoga.vi.1656707

Abstract

Beans (Phaseolus vulgaris L.), one of the main vegetables common in the Van Lake Basin, are frequently grown in the region with local genotypes. Rhizoctonia solani root rot, an important soil-borne disease that negatively affects beans, especially in this region, causes economic losses in our country and worldwide. Therefore, a viable and eco-friendly alternative to chemical control in the treatment of such significant soil-borne plant diseases is the application of Arbuscular Mycorrhizal Fungi (AMF). This study aimed to investigate the effects of commercial AMF (ERS) and Funneliformis mosseae (Fm) against R.solani (Rs) root rot disease in V29 and TR 50763 (T71) bean genotypes obtained from Van-Gevaş. For this purpose, some plant growth parameters, total phenol, total antioxidant capacity, root colonization, and disease severity parameters were investigated. Fm and ERS significantly increased plant morphological parameters and reduced disease severity in both bean genotypes (V29 and T71) despite the R.solani inoculated pathogen. Furthermore, Fm was shown to be the most effective in plant growth among AMF treatments. ERS was the most effective treatment in total phenol concentration, antioxidant activity, and AMF root colonization. In general, it was observed that genotype T71 had a different effect on plant growth parameters and total antioxidant activity than V29. The study's results show that AMF, a sustainable agricultural technique, enhanced plant growth and reduced the damage caused by the important Rhizoctonia root rot disease in beans, regardless of genotype diversity. This study can be positively evaluated in the context of investigating sustainable agricultural measures against this disease in the field.

References

  • Abdel-Fattah, G.M., El-Haddad, S.A., Hafez, E.E., & Rashad, Y.M. (2011). Induction of defense responses incommon bean plants by arbuscular mycorrhizal fungi. Microbiological Research, 166(4), 268–281. https://doi.org/10.1016/j.micres.2010.04.004
  • Akköprü, A. & Demir, S. (2005). Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. Journal of Phytopathology,153(9), 544-550. https://doi.org/10.1111/j.1439-0434.2005.01018.x
  • Alabouvette, C., Olivain, C., & Steinberg, C. (2006). Biological control of plant diseases: the European situation. European Journal of Plant Pathology,114, 329-341. https://doi.org/10.1007/s10658-005-0233-0
  • Aljawasim, B.D., Khaeim, H.M., & Manshood, M.A. (2020). Assessment of arbuscular mycorrhizal fungi (Glomus spp.) as potential biocontrol agents against damping-off disease Rhizoctonia solani on cucumber. Crop Protection, 9(1), 141–147. http://jcp.modares.ac.ir/article-3-33473-en.html
  • Amer, M.A. & Abou-El-Seoud, II. (2008). Mycorrhizal fungi and Trichoderma harzianum as biocontrol agents for suppression of Rhizoctonia solani damping-off disease of tomato. Communications in Agricultural and Applied Biological Sciences,73(2), 217-32.
  • Bagy, H.M.K., Hassan, E.A., Nafady, N.A., & Dawood, M.F. (2019). Efficacy of arbuscular mycorrhizal fungi and endophytic strain Epicoccum nigrum ASU11 as biocontrol agents against blackleg disease of potato caused by bacterial strain Pectobacterium carotovora subsp. atrosepticum PHY7. Biological Control,,134, 103-113. https://doi.org/10.1016/j.biocontrol.2019.03.005
  • Benzie, I.E.F. & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: the FRAP assay. Analytical Biochemistry,239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
  • Berger, F. & Gutjahr, C. (2021). Factors affecting plant responsiveness to arbuscular mycorrhiza. Current Opinion in Plant Biology, 59, 101994. https://doi.org/10.1016/j.pbi.2020.101994
  • Botha, A., Denman, S, Lamprecht, S.C., Mazzola, M, & Crous, P.W. (2003). Characterisation and pathogenicity of Rhizoctonia isolates associated with black root rot of strawberries in the Western Cape Province, South Africa. Australasian plant pathology,32, 195-201. https://doi.org/10.1071/AP02067
  • Costa-Coelho, G.R., Café Filho, A.C., & Lobo Jr, M. (2014). A comparison of web blight epidemics on common bean cultivars with different growth habits. Crop Protection, 55, 16-20. https://doi.org/10.1016/j.cropro.2013.10.006
  • Dalpé, Y. (2005). Mycorrhizae: a potential tool for plant protection but not a panacea. Phytoprotection, 86, 53-59.
  • Durak, E.D., Erdinç, Ç., & Ekincialp, A. (2024). Rhizoctonia species, anastomosis groups, and pathogenicity isolated from common bean in Lake Van Basin, Turkiye. International Journal of Agriculture Environment and Food Sciences,8(2), 359-368. https://doi.org/10.31015/jaefs.2024.2.11
  • Eke, P., Chatue, G.C., Wakam, L.N., Kouipou, R.M.T., Fokou, P.V.T., & Boyom, F.F. (2016). Mycorrhiza consortia suppress the fusarium root rot (Fusarium solani f. sp. phaseoli) in common bean (Phaseolus vulgaris L.). Biological Control, 103, 240-250. https://doi.org/10.1016/j.biocontrol.2016.10.001
  • Ekincialp, A., & Şensoy, S. (2018). Phenotypic and molecular determination of anthracnose disease resistance in Lake Van Basin's bean genotypes (Phaseolus vulgaris L.). Legume Research-An International Journal, 41(1), 135-142.
  • Erdinc, Ç., Durak, E.D., Ekincialp, A., Şensoy, S., & Demir, S. (2017). Variations in response of determinate common bean (Phaseolus vulgaris L.) genotypes to arbuscular mycorrhizal fungi (AMF) inoculation. Turkish Journal of Agriculture and Forestry, 41, 1-9. https://doi.org/10.3906/tar-1609-68
  • Erper, I., Ozkoc, I., & Karaca, G.H. (2011). Identification and pathogenicity of Rhizoctonia species isolated from bean and soybean plants in Samsun, Turkey. Archives of Phytopathology and Plant Protection,44(1), 78-84. https://doi.org/10.1080/03235400903395427
  • Felföldi, Z., Vidican, R., Stoian, V., Roman, I.A., Sestras, A.F., Rusu, T., & Sestras, R.E. (2022). Arbuscular mycorrhizal fungi and fertilization influence yield, growth and root colonization of different tomato genotype. Plants, 11(13), 1743. https://doi.org/10.3390/plants11131743
  • Food and Agriculture Organization of the United Nations (2022). Statistic database. Website http://faostat.fao.org/. Accessed: 22.08.2024.
  • Gavilanes, F.Z., Andrade, D.S., Figueiredo, A., Cedeño-García, G., Zucareli, C., & Fátima Guimarães, M.D. (2020). Effect of Physic Nut Seed Cake on Common Bean Development and Clay Dispersion of Soil. Polish Journal of Environmental Studies, 29(3), 2177-2184. https://doi.org/10.15244/pjoes/109726
  • Gianinazzi, S., Gollotte, A., Binet, M.N., van Tuinen, D., Redecker, D., & Wipf, D. (2010). Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 20(8), 519-530. https://doi.org/10.1007/s00572-010-0333-3
  • Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New phytologist,84(3), 489-500. https://www.jstor.org/stable/2432123 groups of Rhizoctonia spp. isolated from soils in Israel. Phytoparasitica, 13, 103-112.
  • Güneş, H., Demir, S., & Erdinç, Ç. (2025). How do AMF and Biochar Affect Pepper Growth and Nutrient Content under Biotic and Abiotic Stress?. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 28(2), 459-479. https://doi.org/10.18016/ksutarimdoga.vi.1587723
  • Gunes, H., Demir, S., Erdinc, C., & Furan, M.A. (2023). Effects of Arbuscular Mycorrhizal Fungi (AMF) and Biochar on the Growth of Pepper (Capsicum annuum L.) Under Salt Stress. Gesunde Pflanzen, 75(6), 2669-2681. https://doi.org/10.1007/s10343-023-00897-2
  • Hafez, E.E., Abdel-Fattah, G.M., El-Haddad, S.A., & Rashad, Y.M. (2013). Molecular defense response of mycorrhizal bean plants infected with Rhizoctonia solani. Annals of Microbiology,63, 1195-1203. https://doi.org/10.1007/s13213-012-0578-5
  • Ichielevich-Auster, M., Sneh, B., Barash, I., & Koltin, Y. (1985). Pathogenicity, host specificity and anastomosis Kacar, B. (1984). Plant nutrition application guide. Ank. Univ. Agric. Fac. Pub. No: 900, Application Guides No: 214, pp. 47-79.
  • Kareem, T.A. & Hassan, M.S. (2014). Evaluation of Glomus mosseae as biocontrol agents against Rhizoctonia solani on tomato. Evaluation, 4(2), 15-19.
  • Liu, J., Liu, J, Liu, J., Cui, M., Huang, Y, Tian, Y., & Xu, G. (2019). The potassium transporter SlHAK10 is involved in mycorrhizal potassium uptake. Plant Physiology,,180(1), 465-479. https://doi.org/10.1104/pp.18.01533
  • Martins, S.A., Schurt, D.A., Seabra, S.S., Martins, S.J., Ramalho, M.A.P., de Souza Moreira, F.M., & de Medeiros, F.H.V. (2018). Common bean (Phaseolus vulgaris L.) growth promotion and biocontrol by rhizobacteria under Rhizoctonia solani suppressive and conducive soils. Applied Soil Ecology,127, 129-135. https://doi.org/10.1016/j.apsoil.2018.03.007
  • Metsalu, T. & Vilo, J. (2015). ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(1), 566-570. https://doi.org/10.1093/nar/gkv468
  • Meziadi, C., Richard, M.M.S., Derquennes, A., Thareau, V., Blanchet, S., Gratias, A., Pflieger, S., Geffroy, V. (2016). Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence. Plant Science, 242, 351–357. https://doi.org/10.1016/j.plantsci.2015.09.006
  • Moarrefzadeh, N., Khateri, H., & Abbasi, S. (2023). Alleviation of Rhizoctonia root rot damage in common bean by some arbuscular mycorrhizal fungi. Journal of Applied Research in Plant Protection, 12(1), 13-24. 10.22108/bjm.2021.130031.1410
  • Moarrefzadeh, N., Khateri, H., & Sharifi, R. (2022). The effects of some arbuscular mycorrhizal fungi on plant growth and biocontrol of Ascochyta blight in two chickpea varieties. Journal of Microbial Biology,11(44), 23-39. https://doi.org/ 10.22108/bjm.2021.130031.1410
  • Muyolo, N.G., Lipps, P.E., & Schmitthenner, A.F. (1993). Reactions of dry bean, lima bean, and soybean cultivars to Rhizoctonia root and hypocotyl rot and web blight. Plant Disease 77(3), 234-238. 10.1094/PD-77-0234
  • Nasir Hussein, A., Abbasi, S., Sharifi, R., & Jamali, S. (2018). The effect of biocontrol agents consortia against Rhizoctonia root rot of common bean Phaseolus vulgaris. Journal of Crop Protection,7(1), 73-85.
  • Otten, W., Hall, D., Harris, K., Ritz, K., Young, I.M., & Gilligan, C.A. (2001). Soil physics, fungal epidemiology and the spread of Rhizoctonia solani. New Phytologist,151(2), 459-468. https://doi.org/10.1046/j.0028- 646x.2001.00190.x
  • Palacıoglu, G., Cankara, B., Bayraktar, H., & Ozer, G. (2019). Fasulyede Rhizoctonia solani’nin Neden Olduğu Kök Çürüklüğüne Karşı Tohuma Bazı Fungisit Uygulamalarının Etkinliği.International Journal of Agriculture and Wildlife Science,5(1), 96-102. https://doi.org/10.24180/ijaws.533240
  • Saldajeno, M.G.B., Chandanie, W.A., Kubota, M., & Hyakumachi, M. (2008). Effects of interactions of arbuscular mycorrhizal fungi and beneficial saprophytic mycoflora on plant growth and disease protection. Mycorrhizae: sustainable agriculture and forestry, 211-226. https://doi.org/10.1007/978-1-4020-8770-7_9
  • Schüßler, A., & Walker, C. (2010). The Glomeromycota: a species list with new families and new genera. Published in December 2010 in libraries at The Royal Botanic Garden Edinburgh; The Royal Botanic Garden Kew; Botanische Staatssammlung Munich, and Oregon State University.
  • Sensoy, S., Demir, S., Turkmen, O., Erdinc, C., & Savur, O.B. (2007). Responses of some different pepper (Capsicum annuum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi. Scientia horticulturae, 113(1), 92-95. https://doi.org/10.1016/j.scienta.2007.01.023
  • Sharifi, R. & Ryu, C.M. (2017). Chatting with a tiny belowground member of the holobiome: communication between plants and growth-promoting rhizobacteria. In Advances in Botanical Research, 82, 135-160. https://doi.org/10.1016/bs.abr.2016.09.002
  • Sharon, M., Freeman, S., Kuninaga, S., & Sneh, B. (2007). Genetic diversity, anastomosis groups and virulence of Rhizoctonia spp. from strawberry. European Journal of Plant Pathology,117, 247-265. https://doi.org/10.1007/s10658-006-9091-7
  • Singh, M. (2015). Interactions among arbuscular mycorrhizal fungi, Trichoderma harzianum, Aspergillus niger and biocontrol of wilt of tomato. Archives of Phytopathology and Plant Protection,, 48(3), 205-211. https://doi.org/10.1080/03235408.2014.884825
  • Sohrabi, M., Mohammadi, H., & Mohammadi, A.H. (2015). Influence of AM fungi, Glomus mosseae and Glomus intraradices on chickpea growth and root-rot disease caused by Fusarium solani f. sp. pisi under greenhouse conditions. Journal of Agricultural Science and Technology,17(7), 1919-1929. 20.1001.1.16807073.2015.17.7.2.5
  • Soylu, E.M., Soylu, S., Kara, M., & Kurt, Ş. (2020). Sebzelerde sorun olan önemli bitki fungal hastalık etmenlerine karşı vermikomposttan izole edilen mikrobiyomların in vitro antagonistik etkilerinin belirlenmesi. KSU Tarım ve Doğa Dergisi, 23, 7-18. https://doi.org/10.18016/ksutarimdoga.vi.601936
  • Soylu, S., Kara, M., Uysal, A., Kurt, Ş., & Soylu, E.M., (2021). Determination of antagonistic potential of endophytic bacteria isolated from lettuce against lettuce white mould disease caused by Sclerotinia sclerotiorum. Zemdirbyste-Agriculture, 108, 303-312. https://doi.org/10.13080/z-a.2021.108.039
  • Soylu, S., Soylu, E.M., Kurt, Ş., & Ekici, Ö.K. (2005). Antagonistic potentials of rhizosphere-associated bacterial isolates against soil-borne diseases of tomato and pepper caused by Sclerotinia sclerotiorum and Rhizoctonia solani. Pakistan Journal of Biological Sciences, 8, 43-48.
  • Swain, T. & Hillis, W.E. (1959). The phenolic constituents of Prunus domestica. I.-The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture,10(1), 63-68. https://doi.org/10.1002/jsfa.2740100110
  • Townsend, G.R. & Heuberger, J.W. (1943). Methods for estimating losses caused by diseases in fungicide experiments. Plant Diseases Report, 27, 340-343.
  • Valentín Torres, S., Vargas, M.M., Godoy-Lutz, G., Porch, T.G., & Beaver, J.S. (2016). Isolates of Rhizoctonia solani can produce both web blight and root rot symptoms in common bean (Phaseolus vulgaris L.). Plant Disease, 100(7), 1351-1357. https://doi.org/10.1094/PDIS-11-15-1270-RE
  • Vidal, N.P., Manful, C.F., Pham, T.H., Stewart, P., Keough, D., & Thomas, R. (2020). The use of XLSTAT in conducting principal component analysis (PCA) when evaluating the relationships between sensory and quality attributes in grilled foods. MethodsX, 7, 100835. https://doi.org/10.1016/j.mex.2020.100835
  • Yao, M., Tweddell, R., & Desilets, H. (2002). Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani. Mycorrhiza, 12, 235-242. https://doi.org/10.1007/s00572-002-0176-7
  • Zhao, G., Ablett, G.R., Anderson, T.R., Rajcan, I., & Schaafsma, A.W. (2005). Inheritance and genetic mapping of resistance to Rhizoctonia root and hypocotyl rot in soybean. Crop Science, 45(4), 1441-1447. https://doi.org/10.2135/cropsci2004.0560
There are 52 citations in total.

Details

Primary Language English
Subjects Phytopathology
Journal Section RESEARCH ARTICLE
Authors

Emre Demirer Durak 0000-0001-5757-6332

Aytekin Ekincialp 0000-0003-1500-3215

Hasret Güneş 0000-0003-3155-2695

Çeknas Erdinç 0000-0003-1208-032X

Early Pub Date June 10, 2025
Publication Date
Submission Date March 14, 2025
Acceptance Date May 14, 2025
Published in Issue Year 2025Volume: 28 Issue: 4

Cite

APA Demirer Durak, E., Ekincialp, A., Güneş, H., Erdinç, Ç. (2025). The Role of Arbuscular Mycorrhizal Fungi (AMF) in the Control of Rhizoctonia Root Rot in Local Bean Genotypes of the Van Lake Basin. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(4), 996-1010. https://doi.org/10.18016/ksutarimdoga.vi.1656707


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149