Research Article
BibTex RIS Cite

Enzymatic Regulation in the Balance Between Lifespan and Reproduction: The Case of Cistus criticus

Year 2025, Volume: 28 Issue: 5, 1214 - 1228
https://doi.org/10.18016/ksutarimdoga.vi.1666340

Abstract

This study examined the effects of Cistus creticus L. plant extract on lifespan and egg production in Drosophila melanogaster Meigen. The effects of the extract, rich in polyphenols and terpenoids, on maximum/average lifespan, egg yield, antioxidant enzyme activities; superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and foxo gene expression were investigated. The Oregon-R strain was raised under controlled conditions; C. creticus extract was added to the standard diet at concentrations of 0, 1, 10, 50, and 100 mg/mL. Each group included 50 male and 50 female flies; lifespan was analyzed using Kaplan-Meier and Log-rank tests, while other data were evaluated with one-way ANOVA. In the control group, average lifespan was 62.5±3.1 days (males) and 58.2±2.9 days (females), with maximum lifespans of 67 and 63 days. At 1 mg/mL, average lifespan increased by 12% in males (70.0±3.4 days) and 10% in females (64.0±3.0 days); maximum lifespan reached 75 and 69 days; egg yield rose from 48.5±3.0 to 55.8±3.3; and SOD, CAT, GSH, and foxo expression increased by 1.8±0.2-fold (males) and 1.6±0.2-fold (females) (p<0.01). At 100 mg/mL, average lifespan decreased by 28% in males (45.0±2.2 days) and 33% in females (39.0±2.0 days); maximum lifespan dropped to 49 and 43 days; egg yield fell 38% to 30.0±2.3; and antioxidant activities and foxo expression were suppressed (p<0.001). A negative correlation (r=-0.58, p<0.05) between lifespan and egg yield supports the reproduction-lifespan trade-off hypothesis. Low doses enhanced lifespan and reproduction, while high doses suppressed both via toxicity. In future studies, isolation of active compounds of C. creticus that affect aging processes and elucidation of their mechanisms of action on the foxo signaling pathway are recommended.

References

  • Arsenijević, J., Sisto, F., Drobac, M., Šoštarić, I., Maksimović, Z., & Kovačević, N. (2024). In vitro anti-Helicobacter pylori activity of extracts and essential oil of Thymus pannonicus All.(Lamiaceae)(conference paper). International Congress on Natural Products Research held in Krakow in 2024. https://hdl.handle.net/2434/1099548.
  • Attaguile, G., Russo, A., Campisi, A., Savoca, F., Acquaviva, R., & Vanella, A. (2000). Antioxidant activity and protective effect on DNA cleavage of extracts from Cistus species. Cell Biology and Toxicology, 16(2), 83-90. https://doi.org/10.1023/A:1007649011338.
  • Barrajón-Catalán, E., Fernández-Arroyo, S., Saura, D., Guillén, E., Fernández-Gutiérrez, A., Segura-Carretero, A., & Micol, V. (2010). Cistaceae aqueous extracts containing ellagitannins show antioxidant and antimicrobial capacity, and cytotoxic activity against human cancer cells. Food and Chemical Toxicology, 48(8-9), 2273-2282. https://doi.org/10.1016/j.fct.2010.05.060.
  • Barardo, D., Thornton, D., Thoppil, H., Walsh, M., Sharifi, S., Ferreira, S.,Anžič, A., Fernandes, M., Monteiro, P., Grum, T., Cordeiro, R., De-Souza, E. A., Budovsky, A., Araujo, N., Gruber, J., Petrascheck, M.,Fraifeld, V. E., Zhavoronkov, A., Moskalev, A., & de Magalhães, J. P.(2017). The DrugAge database of aging-related drugs. Aging Cell, 16(3), 594-597. https://doi.org/10.1111/acel.12585.
  • Birnbaum, A., Wu, X., Tatar, M., Liu, N., & Bai, H. (2019). Age-dependent changes in transcription factor FOXO targeting in female Drosophila. Frontiers in genetics, 10, 312. https://doi.org/10.3389/fgene.2019.00312 Bradford, S. C. (1976). Classic paper: Sources of information on specific subjects. Collection Management, 1(3-4), 95-104. https://doi.org/10.1300/J105v01n03_06.
  • Borchardt, L. A., Olufs, Z. P., Morgan, P. G., Wassarman, D. A., & Perouansky, M. (2024). Expansion of Electron Transport Chain Mutants That Cause Anesthetic-Induced Toxicity in Drosophila melanogaster. Oxygen, 4(1), 108-116. https://doi.org/10.3390/oxygen4010006.
  • Catanzaro, D., Rancan, S., Orso, G., Dall'Acqua, S., Brun, P., Giron, M. C., Carrara, M., Castagliuolo, I., Ragazzi, E., Caparrotta, L., & Montopoli, M. (2015). Beneficial effects of Cistus incanus L. extract on gut microbiota and metabolic parameters in metabolic syndrome. Frontiers in Pharmacology, 6, 323. https://doi.org/10.3389/ fphar.2015.00323.
  • Chen, J., Liu, Y., & Zhang, X. (2021). Antioxidant enzymes and their role in reproductive fitness of Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 138, 103645. https://doi.org/10.1016/ j.ibmb.2021.103645.
  • Flatt, T. (2011). Survival costs of reproduction in Drosophila. Experimental Gerontology, 46(5), 369-375. https://doi.org/10.1016/j.exger.2010.10.008.
  • Fidan, M., & Ayar, A. (2021). Modulatory effects of White Tea (Camellia sinensis L.) on genotoxicity in Streptozotocin and Cyclophosphamide treated Drosophila melanogaster Modulatory effects of White Tea on genotoxicity. Progress in Nutrition, 23(3), e2021112. https://doi.org/10.23751/pn.v23i3.10571.
  • Güneş, E. (2020). Alteration in the oxidative status of Drosophila melanogaster Meigen (Diptera: Drosophilidae) fed with a diet containing Centaurea depressa M. Bieb.(Asteraceae). Animal Biology, 70(2), 227-237. https://doi.org/10.1163/15707563-20191153
  • Güneş, E., & Nizamlıoğlu, H. F. (2023). The antioxidant effect of chitosan on virgin and mated Drosophila females. Carbohydrate Polymer Technologies and Applications, 5, 100297. https://doi.org/10.1016/ j.carpta.2023.100297
  • Güneş, E., & Yildiz, H. K. (2024). Determination of The Effect of Tea Obtained from Hypericum Perforatum on Model Organisms. Letters in Applied NanoBioScience, 13 (3), 37 https://doi.org/10.33263/LIANBS133.137 Harman, H. H. (1976). Modern factor analysis. University of Chicago press.
  • He, Y., & Jasper, H. (2014). Studying aging in Drosophila. Methods, 68(1), 129-133. https://doi.org/10.1016/ j.ymeth.2014.04.008.
  • Hwangbo, D. S., Gershman, B., Tu, M.-P., Palmer, M., & Tatar, M. (2004). Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature, 429(6994), 562-566. https://doi.org/10.1038/nature02549
  • Júnior, F. E., Macedo, G. E., Zemolin, A. P., Silva, G. F. D., Cruz, L. C. D., Boligon, A. A., ... & Posser, T. (2016). Oxidant effects and toxicity of Croton campestris in Drosophila melanogaster. Pharmaceutical biology, 54(12), 3068-3077. https://doi.org/10.1080/13880209.2016.1207089.
  • Kalus, U., Grigorov, A., Kadecki, O., Jansen, J. P., Kiesewetter, H., & Radtke, H. (2009). Cistus incanus (CYSTUS052) for treating patients with infection of the upper respiratory tract: A prospective, randomised, placebo-controlled clinical study. Antiviral Research, 84(3), 267-271. https://doi.org/10.1016/ j.antiviral.2009.10.001.
  • Kilic, D. D., Siriken, B., Erturk, O., Tanrikulu, G., Gül, M., & Başkan, C. (2019). Antibacterial, antioxidant and DNA interaction properties of Cistus creticus L. extracts. Journal of International Environmental Application and Science, 14(3), 110-115.
  • Klichko, V. I., Radyuk, S. N., & Orr, W. C. (2004). Profiling catalase gene expression in Drosophila melanogaster during development and aging. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America, 56(1), 34-50. https://doi.org/10.1002/arch.10142.
  • Li, X., Zhang, H., & Wang, Q. (2021). Plant-derived polyphenols and aging: Insights from Drosophila models. Antioxidants, 10(8),1234. https://doi.org/10.3390/antiox10081234.
  • Libert, S., Zwiener, J., Chu, X., VanVoorhies, W., Roman, G., & Pletcher, S. D. (2007). Regulation of Drosophila life span by olfaction and food-derived odors. Science, 315(5815), 1133-1137. https://doi.org/10.1126/ science.1136610.
  • Linford, N. J., Bilgir, C., Ro, J., & Pletcher, S. D. (2013). Measurement of lifespan in Drosophila melanogaster. Journal of visualized experiments( JoVE), (71),50068. https://doi.org/10.3791/50068.
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262.
  • Le Bourg, É. (2001). Oxidative stress, aging and longevity in Drosophila melanogaster. FEBS letters, 498(2-3), 183-186. https://doi.org/10.1016/S0014-5793(01)02457-7.
  • Leech, T., Sait, S.M., & Bretman, A. (2017). Sex-specific effects of social isolation on ageing in Drosophila melanogaster. Journal of Insect Physiology, 102, 12-17. https://doi.org/10.1016/j.jinsphys.2017.08.008.
  • Loizzo, M. R., Ben Jemia, M., Senatore, F., Bruno, M., Menichini, F., & Tundis, R. (2013). Chemistry and functional properties in prevention of neurodegenerative disorders of five Cistus species essential oils. Food and Chemical Toxicology, 59, 586-594. https://doi.org/10.1016/j.fct.2013.06.040.
  • Lokumcu, Ş., & Uysal, H. (2021). Datura stramonıum L. tohumlarına ait metanol ve su ekstraktlarının Drosophila melanogaster’de in vivo toksik ve genotoksik etkileri. TÜBAV Bilim Dergisi, 14(1), 1-13.
  • Longo, V. D., Mitteldorf, J., & Skulachev, V. P. (2009). Programmed and altruistic ageing. Nature Reviews Genetics, 10(11), 757-765. https://doi.org/10.1038/nrg2672.
  • Lopez-Otın, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217.
  • Maggi, F., Ferretti, G., Pocceschi, N., Menghini, L., & Ricciutelli, M. (2009). Morphological, histochemical and phytochemical investigation of the genus Cistus L. from central Italy. Fitoterapia, 80(8), 449-457. https://doi.org/10.1016/j.fitote.2009.06.015.
  • Magwere, T., West, M., Riyahi, K., Murphy, M. P., Smith, R. A., & Partridge, L. (2006). The effects of exogenous antioxidants on lifespan and oxidative stress resistance in Drosophila melanogaster. Mechanisms of ageing and development, 127(4), 356-370. https://doi.org/10.1016/j.mad.2005.12.009.
  • Maisetta, G., Batoni, G., Caboni, P., Esin, S., Rinaldi, A. C., & Zucca, P. (2019). Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC Complementary and Alternative Medicine, 19(1), 82. https://doi.org/10.1186/s12906-019-2487-7.
  • Martins, R., Lithgow, G. J., & Link, W. (2016). Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging cell, 15(2), 196-207. https://doi.org/10.1111/acel.12427.
  • Orr, W. C., & Sohal, R. S. (1994). Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science, 263(5151), 1128-1130. https://doi.org/10.1126/science.8108730.
  • Pacifico, S., Gallicchio, M., Lorenz, P., Potenza, N., Galasso, S., Marciano, S., Fiorentino, A., Stintzing, F. C., & Monaco, P. (2018). Apolar Cistus incanus extracts exhibit potent anti-inflammatory effects in vitro and in vivo. Oxidative Medicine and Cellular Longevity, 2018, 9089016. https://doi.org/10.1155/2018/9089016.
  • Papaefthimiou, D., Papanikolaou, A., Falara, V., Givanoudi, S., Kostas, S., & Kanellis, A. K. (2014). Genus Cistus: A model for exploring labdane-type diterpenes' biosynthesis and a natural source of high value products with biological, aromatic, and pharmacological properties. Frontiers in Chemistry, 2, 35. https://doi.org/10.3389/ fchem.2014.00035.
  • Partridge, L., Green, A., & Fowler, K. (1987). Effects of egg-production and of exposure to males on female survival in Drosophila melanogaster. Journal of Insect Physiology, 33(10), 745-749. https://doi.org/10.1016/0022-1910(87)90022-9.
  • Partridge, L., Alic, N., Bjedov, I., & Piper, M. D. (2011). Ageing in Drosophila: the role of the insulin/Igf and TOR signalling network. Experimental gerontology, 46(5), 376-381. https://doi.org/10.1016/j.exger.2010.09.003.
  • Peng, C., Chan, H. Y. E., Huang, Y., Yu, H., & Chen, Z. Y. (2009). Apple polyphenols extend the mean lifespan of Drosophila melanogaster. Journal of Agricultural and Food Chemistry, 57(5), 2097-2103. https://doi.org/10.1021/jf803193g.
  • Peng, C., Wang, X., Chen, J., Jiao, R., Wang, L., Li, Y. M., ... & Chen, Z. Y. (2014). Biology of ageing and role of dietary antioxidants. BioMed research international, 2014(1), 831841. https://doi.org/10.1155/2014/831841.
  • Peng, C., Zhang, L., & Chen, Z. Y. (2022). Polyphenol-mediated lifespan extension in Drosophila: Mechanisms and implications. Journal of Agricultural and Food Chemistry, 70(15), 4567-4578. https://doi.org/10.1021/ acs.jafc.2c00543.
  • Pepper, I. (2023). Determination of moisture content in soil. Journal of visualized experiments (JoVE), e10011. Piper, M. D. (2017). Using artificial diets to understand the nutritional physiology of Drosophila melanogaster. Current Opinion in Insect Science, 23, 104-111. https://doi.org/10.1016/j.cois.2017.07.014.
  • Piper, M. D. W., & Partridge, L. (2018). Drosophila as a model for ageing. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1864(9), 2707-2717. https://doi.org/10.1016/j.bbadis.2017.09.016.
  • Sies, H., Berndt, C., & Jones, D. P. (2017). Oxidative stress. Annual review of biochemistry, 86(1), 715-748. https://doi.org/10.1146/annurev-biochem-061516-045037.
  • Skorić, M., Gligorijević, N., Čavić, M., Todorović, S., Janković, R., & Ristić, M. (2022). Cytotoxic activity of Cistus creticus extracts on human cancer cell lines. Frontiers in Pharmacology, 13, 985940. https://doi.org/10.3389/ fphar.2022.985940.
  • Stefi, A. L., Kalouda, G., Skouroliakou, A. S., Vassilacopoulou, D., & Christodoulakis, N. S. (2022). The counteraction of cultivated Cistus creticus L.(rock rose) plants to the strain imposed by a long-term exposure to non-ionizing radiation and the role of DDC. Biophysica, 2(3), 248-265. https://doi.org/10.3390/ biophysica2030024.
  • Süntar, I., Tumen, I., Ustün, O., Keleş, H., & Akkol, E. K. (2012). Appraisal on the wound healing and anti-inflammatory activities of the essential oils obtained from the cones and needles of Pinus species by in vivo and in vitro experimental models. Journal of Ethnopharmacology, 139(2), 533-540. https://doi.org/10.1016/ j.jep.2011.11.045.
  • Tatar, M., Kopelman, A., Epstein, D., Tu, M.P., Yin, C.M., & Garofalo, R. S. (2001). A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science, 292(5516), 107-110. https://doi.org/10.1126/science.1057987.
  • Tatar, M., Bartke, A., & Antebi, A. (2020). The endocrine regulation of aging by insulin-like signals in Drosophila. Science Advances, 6(12), eaaz6722. https://doi.org/10.1126/sciadv.aaz6722.
  • Uysal, H., Aksakal, Ö., & Askın, H. (2012). Developmental disorders caused by Verbascum speciosum Schrad. Extracts in Drosophila melanogaster (Diptera: Drosophilidae). Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(2), 7-11.
  • Uysal, H., & Çelik, H. (2023). Skualen triterpeninin somatik mutasyonlar üzerine etkisinin Drosophila melanogaster’de in vivo kanat benek testi ile araştırılması. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26 (3), 477-486. https://doi.org/10.18016/ksutarimdoga.vi.1103555.
  • Valéria Soares de Araújo Pinho, F., Felipe da Silva, G., Echeverria Macedo, G., Raquel Muller, K., Kemmerich Martins, I., Lausmann Ternes, A. P., ... & Posser, T. (2014). Phytochemical constituents and toxicity of Duguetia furfuracea hydroalcoholic extract in Drosophila melanogaster. Evidence‐Based Complementary and Alternative Medicine, 2014(1), 838101. https://doi.org/10.1155/2014/838101.
  • Van Heerwaarden, B., Kellermann, V., Schiffer, M., Blacket, M., Sgro, C. M., & Hoffmann, A. A. (2009). Testing evolutionary hypotheses about species borders: patterns of genetic variation towards the southern borders of two rainforest Drosophila and a related habitat generalist. Proceedings of the Royal Society B: Biological Sciences, 276(1661), 1517-1526. https://doi.org/10.1098/rspb.2008.1288.
  • Zhang, Y., Shen, T., Liu, S. W., Zhao, J., Chen, W., & Wang, H. (2014). Effect of hawthorn on Drosophila melanogaster antioxidant-related gene expression. Tropical Journal of Pharmaceutical Research, 13(3), 353-357. http://dx.doi.org/10.4314/tjpr.v13i3.6.
  • Wang, Y., Li, Z., & Xu, S. (2023). Oxidative stress and reproductive trade-offs in aging Drosophila melanogaster. Aging Cell, 22(4), e13789. https://doi.org/10.1111/acel.13789.
  • Williams, D. A. (1971). A test for differences between treatment means when several dose levels are compared with a zero dose control. Biometrics, 103-117. https://doi.org/10.2307/2528930.
  • Wongchum, N., Dechakhamphu, A., Ma-ding, A., Khamphaeng, T., Pinlaor, S., Pinmongkhonkul, S., & Tanomtong, A. (2022). The effects of Cyperus rotundus L. extracts on the longevity of Drosophila melanogaster. South African Journal of Botany, 148, 218-227. https://doi.org/10.1016/j.sajb.2022.04.037.

Yaşam Süresi ve Üreme Arasındaki Dengede Fitokimyasal Modülasyon: Cistus creticus Örneği

Year 2025, Volume: 28 Issue: 5, 1214 - 1228
https://doi.org/10.18016/ksutarimdoga.vi.1666340

Abstract

Bu çalışma, Cistus creticus L. bitkisi ekstraktının Drosophila melanogaster Meigen’de yaşam süresi ve yumurta verimine etkilerini incelemiştir. Polifenol ve terpenoid açısından zengin ekstraktın, maksimum/ortalama ömür, yumurta verimi, antioksidan enzim aktiviteleri süperoksit dismutaz (SOD) katalaz (CAT), glutatyon (GSH) ve foxo gen ekspresyonu üzerindeki etkileri araştırılmıştır. Oregon-R suşu, kontrollü koşullarda yetiştirilmiş; standart besine 0, 1, 10, 50, 100 mg/mL oranlarında C. creticus ekstraktı eklenmiştir. Her grupta 50 erkek ve 50 dişi sinek kullanılmış; yaşam süresi Kaplan-Meier ve Log-rank testiyle, diğer veriler tek yönlü ANOVA ile analiz edilmiştir. Kontrol grubunda ortalama ömür erkeklerde 62,5±3,1, dişilerde 58,2±2,9 gün; maksimum ömür 67 ve 63 gün olarak ölçülmüştür. 1 mg/mL dozda ortalama ömür erkeklerde %12 (70,0±3,4 gün), dişilerde %10 (64,0±3,0 gün) artmış; maksimum ömür 75 ve 69 güne çıkmış; yumurta verimi 48,5±3,0’dan 55,8±3,3’e yükselmiş; SOD, CAT, GSH ve foxo ekspresyonu erkeklerde 1,8±0,2, dişilerde 1,6±0,2 kat artmıştır (p<0,01). 100 mg/mL dozda ise ortalama ömür erkeklerde %28 (45,0±2,2 gün), dişilerde %33 (39,0±2,0 gün) azalmış; maksimum ömür 49 ve 43 güne düşmüş; yumurta verimi %38 gerileyerek 30,0±2,3 olmuş; antioksidan aktiviteler ve foxo ekspresyonu baskılanmıştır (p<0,001). Yaşam süresi ve yumurta verimi arasında negatif korelasyon (r=-0,58, p<0,05) bulunmuş, bu da üreme-ömür dengesi hipotezini desteklemiştir. Düşük dozlar ömür ve üremeyi artırmış, yüksek dozlar ise toksisiteyle her ikisini baskılamıştır. Gelecek çalışmalarda, C. creticus'un yaşlanma süreçlerini etkileyen aktif bileşenlerinin izolasyonu ve foxo sinyal yolağı üzerindeki etki mekanizmalarının aydınlatılması önerilmektedir.

References

  • Arsenijević, J., Sisto, F., Drobac, M., Šoštarić, I., Maksimović, Z., & Kovačević, N. (2024). In vitro anti-Helicobacter pylori activity of extracts and essential oil of Thymus pannonicus All.(Lamiaceae)(conference paper). International Congress on Natural Products Research held in Krakow in 2024. https://hdl.handle.net/2434/1099548.
  • Attaguile, G., Russo, A., Campisi, A., Savoca, F., Acquaviva, R., & Vanella, A. (2000). Antioxidant activity and protective effect on DNA cleavage of extracts from Cistus species. Cell Biology and Toxicology, 16(2), 83-90. https://doi.org/10.1023/A:1007649011338.
  • Barrajón-Catalán, E., Fernández-Arroyo, S., Saura, D., Guillén, E., Fernández-Gutiérrez, A., Segura-Carretero, A., & Micol, V. (2010). Cistaceae aqueous extracts containing ellagitannins show antioxidant and antimicrobial capacity, and cytotoxic activity against human cancer cells. Food and Chemical Toxicology, 48(8-9), 2273-2282. https://doi.org/10.1016/j.fct.2010.05.060.
  • Barardo, D., Thornton, D., Thoppil, H., Walsh, M., Sharifi, S., Ferreira, S.,Anžič, A., Fernandes, M., Monteiro, P., Grum, T., Cordeiro, R., De-Souza, E. A., Budovsky, A., Araujo, N., Gruber, J., Petrascheck, M.,Fraifeld, V. E., Zhavoronkov, A., Moskalev, A., & de Magalhães, J. P.(2017). The DrugAge database of aging-related drugs. Aging Cell, 16(3), 594-597. https://doi.org/10.1111/acel.12585.
  • Birnbaum, A., Wu, X., Tatar, M., Liu, N., & Bai, H. (2019). Age-dependent changes in transcription factor FOXO targeting in female Drosophila. Frontiers in genetics, 10, 312. https://doi.org/10.3389/fgene.2019.00312 Bradford, S. C. (1976). Classic paper: Sources of information on specific subjects. Collection Management, 1(3-4), 95-104. https://doi.org/10.1300/J105v01n03_06.
  • Borchardt, L. A., Olufs, Z. P., Morgan, P. G., Wassarman, D. A., & Perouansky, M. (2024). Expansion of Electron Transport Chain Mutants That Cause Anesthetic-Induced Toxicity in Drosophila melanogaster. Oxygen, 4(1), 108-116. https://doi.org/10.3390/oxygen4010006.
  • Catanzaro, D., Rancan, S., Orso, G., Dall'Acqua, S., Brun, P., Giron, M. C., Carrara, M., Castagliuolo, I., Ragazzi, E., Caparrotta, L., & Montopoli, M. (2015). Beneficial effects of Cistus incanus L. extract on gut microbiota and metabolic parameters in metabolic syndrome. Frontiers in Pharmacology, 6, 323. https://doi.org/10.3389/ fphar.2015.00323.
  • Chen, J., Liu, Y., & Zhang, X. (2021). Antioxidant enzymes and their role in reproductive fitness of Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 138, 103645. https://doi.org/10.1016/ j.ibmb.2021.103645.
  • Flatt, T. (2011). Survival costs of reproduction in Drosophila. Experimental Gerontology, 46(5), 369-375. https://doi.org/10.1016/j.exger.2010.10.008.
  • Fidan, M., & Ayar, A. (2021). Modulatory effects of White Tea (Camellia sinensis L.) on genotoxicity in Streptozotocin and Cyclophosphamide treated Drosophila melanogaster Modulatory effects of White Tea on genotoxicity. Progress in Nutrition, 23(3), e2021112. https://doi.org/10.23751/pn.v23i3.10571.
  • Güneş, E. (2020). Alteration in the oxidative status of Drosophila melanogaster Meigen (Diptera: Drosophilidae) fed with a diet containing Centaurea depressa M. Bieb.(Asteraceae). Animal Biology, 70(2), 227-237. https://doi.org/10.1163/15707563-20191153
  • Güneş, E., & Nizamlıoğlu, H. F. (2023). The antioxidant effect of chitosan on virgin and mated Drosophila females. Carbohydrate Polymer Technologies and Applications, 5, 100297. https://doi.org/10.1016/ j.carpta.2023.100297
  • Güneş, E., & Yildiz, H. K. (2024). Determination of The Effect of Tea Obtained from Hypericum Perforatum on Model Organisms. Letters in Applied NanoBioScience, 13 (3), 37 https://doi.org/10.33263/LIANBS133.137 Harman, H. H. (1976). Modern factor analysis. University of Chicago press.
  • He, Y., & Jasper, H. (2014). Studying aging in Drosophila. Methods, 68(1), 129-133. https://doi.org/10.1016/ j.ymeth.2014.04.008.
  • Hwangbo, D. S., Gershman, B., Tu, M.-P., Palmer, M., & Tatar, M. (2004). Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature, 429(6994), 562-566. https://doi.org/10.1038/nature02549
  • Júnior, F. E., Macedo, G. E., Zemolin, A. P., Silva, G. F. D., Cruz, L. C. D., Boligon, A. A., ... & Posser, T. (2016). Oxidant effects and toxicity of Croton campestris in Drosophila melanogaster. Pharmaceutical biology, 54(12), 3068-3077. https://doi.org/10.1080/13880209.2016.1207089.
  • Kalus, U., Grigorov, A., Kadecki, O., Jansen, J. P., Kiesewetter, H., & Radtke, H. (2009). Cistus incanus (CYSTUS052) for treating patients with infection of the upper respiratory tract: A prospective, randomised, placebo-controlled clinical study. Antiviral Research, 84(3), 267-271. https://doi.org/10.1016/ j.antiviral.2009.10.001.
  • Kilic, D. D., Siriken, B., Erturk, O., Tanrikulu, G., Gül, M., & Başkan, C. (2019). Antibacterial, antioxidant and DNA interaction properties of Cistus creticus L. extracts. Journal of International Environmental Application and Science, 14(3), 110-115.
  • Klichko, V. I., Radyuk, S. N., & Orr, W. C. (2004). Profiling catalase gene expression in Drosophila melanogaster during development and aging. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America, 56(1), 34-50. https://doi.org/10.1002/arch.10142.
  • Li, X., Zhang, H., & Wang, Q. (2021). Plant-derived polyphenols and aging: Insights from Drosophila models. Antioxidants, 10(8),1234. https://doi.org/10.3390/antiox10081234.
  • Libert, S., Zwiener, J., Chu, X., VanVoorhies, W., Roman, G., & Pletcher, S. D. (2007). Regulation of Drosophila life span by olfaction and food-derived odors. Science, 315(5815), 1133-1137. https://doi.org/10.1126/ science.1136610.
  • Linford, N. J., Bilgir, C., Ro, J., & Pletcher, S. D. (2013). Measurement of lifespan in Drosophila melanogaster. Journal of visualized experiments( JoVE), (71),50068. https://doi.org/10.3791/50068.
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262.
  • Le Bourg, É. (2001). Oxidative stress, aging and longevity in Drosophila melanogaster. FEBS letters, 498(2-3), 183-186. https://doi.org/10.1016/S0014-5793(01)02457-7.
  • Leech, T., Sait, S.M., & Bretman, A. (2017). Sex-specific effects of social isolation on ageing in Drosophila melanogaster. Journal of Insect Physiology, 102, 12-17. https://doi.org/10.1016/j.jinsphys.2017.08.008.
  • Loizzo, M. R., Ben Jemia, M., Senatore, F., Bruno, M., Menichini, F., & Tundis, R. (2013). Chemistry and functional properties in prevention of neurodegenerative disorders of five Cistus species essential oils. Food and Chemical Toxicology, 59, 586-594. https://doi.org/10.1016/j.fct.2013.06.040.
  • Lokumcu, Ş., & Uysal, H. (2021). Datura stramonıum L. tohumlarına ait metanol ve su ekstraktlarının Drosophila melanogaster’de in vivo toksik ve genotoksik etkileri. TÜBAV Bilim Dergisi, 14(1), 1-13.
  • Longo, V. D., Mitteldorf, J., & Skulachev, V. P. (2009). Programmed and altruistic ageing. Nature Reviews Genetics, 10(11), 757-765. https://doi.org/10.1038/nrg2672.
  • Lopez-Otın, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217.
  • Maggi, F., Ferretti, G., Pocceschi, N., Menghini, L., & Ricciutelli, M. (2009). Morphological, histochemical and phytochemical investigation of the genus Cistus L. from central Italy. Fitoterapia, 80(8), 449-457. https://doi.org/10.1016/j.fitote.2009.06.015.
  • Magwere, T., West, M., Riyahi, K., Murphy, M. P., Smith, R. A., & Partridge, L. (2006). The effects of exogenous antioxidants on lifespan and oxidative stress resistance in Drosophila melanogaster. Mechanisms of ageing and development, 127(4), 356-370. https://doi.org/10.1016/j.mad.2005.12.009.
  • Maisetta, G., Batoni, G., Caboni, P., Esin, S., Rinaldi, A. C., & Zucca, P. (2019). Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC Complementary and Alternative Medicine, 19(1), 82. https://doi.org/10.1186/s12906-019-2487-7.
  • Martins, R., Lithgow, G. J., & Link, W. (2016). Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging cell, 15(2), 196-207. https://doi.org/10.1111/acel.12427.
  • Orr, W. C., & Sohal, R. S. (1994). Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science, 263(5151), 1128-1130. https://doi.org/10.1126/science.8108730.
  • Pacifico, S., Gallicchio, M., Lorenz, P., Potenza, N., Galasso, S., Marciano, S., Fiorentino, A., Stintzing, F. C., & Monaco, P. (2018). Apolar Cistus incanus extracts exhibit potent anti-inflammatory effects in vitro and in vivo. Oxidative Medicine and Cellular Longevity, 2018, 9089016. https://doi.org/10.1155/2018/9089016.
  • Papaefthimiou, D., Papanikolaou, A., Falara, V., Givanoudi, S., Kostas, S., & Kanellis, A. K. (2014). Genus Cistus: A model for exploring labdane-type diterpenes' biosynthesis and a natural source of high value products with biological, aromatic, and pharmacological properties. Frontiers in Chemistry, 2, 35. https://doi.org/10.3389/ fchem.2014.00035.
  • Partridge, L., Green, A., & Fowler, K. (1987). Effects of egg-production and of exposure to males on female survival in Drosophila melanogaster. Journal of Insect Physiology, 33(10), 745-749. https://doi.org/10.1016/0022-1910(87)90022-9.
  • Partridge, L., Alic, N., Bjedov, I., & Piper, M. D. (2011). Ageing in Drosophila: the role of the insulin/Igf and TOR signalling network. Experimental gerontology, 46(5), 376-381. https://doi.org/10.1016/j.exger.2010.09.003.
  • Peng, C., Chan, H. Y. E., Huang, Y., Yu, H., & Chen, Z. Y. (2009). Apple polyphenols extend the mean lifespan of Drosophila melanogaster. Journal of Agricultural and Food Chemistry, 57(5), 2097-2103. https://doi.org/10.1021/jf803193g.
  • Peng, C., Wang, X., Chen, J., Jiao, R., Wang, L., Li, Y. M., ... & Chen, Z. Y. (2014). Biology of ageing and role of dietary antioxidants. BioMed research international, 2014(1), 831841. https://doi.org/10.1155/2014/831841.
  • Peng, C., Zhang, L., & Chen, Z. Y. (2022). Polyphenol-mediated lifespan extension in Drosophila: Mechanisms and implications. Journal of Agricultural and Food Chemistry, 70(15), 4567-4578. https://doi.org/10.1021/ acs.jafc.2c00543.
  • Pepper, I. (2023). Determination of moisture content in soil. Journal of visualized experiments (JoVE), e10011. Piper, M. D. (2017). Using artificial diets to understand the nutritional physiology of Drosophila melanogaster. Current Opinion in Insect Science, 23, 104-111. https://doi.org/10.1016/j.cois.2017.07.014.
  • Piper, M. D. W., & Partridge, L. (2018). Drosophila as a model for ageing. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1864(9), 2707-2717. https://doi.org/10.1016/j.bbadis.2017.09.016.
  • Sies, H., Berndt, C., & Jones, D. P. (2017). Oxidative stress. Annual review of biochemistry, 86(1), 715-748. https://doi.org/10.1146/annurev-biochem-061516-045037.
  • Skorić, M., Gligorijević, N., Čavić, M., Todorović, S., Janković, R., & Ristić, M. (2022). Cytotoxic activity of Cistus creticus extracts on human cancer cell lines. Frontiers in Pharmacology, 13, 985940. https://doi.org/10.3389/ fphar.2022.985940.
  • Stefi, A. L., Kalouda, G., Skouroliakou, A. S., Vassilacopoulou, D., & Christodoulakis, N. S. (2022). The counteraction of cultivated Cistus creticus L.(rock rose) plants to the strain imposed by a long-term exposure to non-ionizing radiation and the role of DDC. Biophysica, 2(3), 248-265. https://doi.org/10.3390/ biophysica2030024.
  • Süntar, I., Tumen, I., Ustün, O., Keleş, H., & Akkol, E. K. (2012). Appraisal on the wound healing and anti-inflammatory activities of the essential oils obtained from the cones and needles of Pinus species by in vivo and in vitro experimental models. Journal of Ethnopharmacology, 139(2), 533-540. https://doi.org/10.1016/ j.jep.2011.11.045.
  • Tatar, M., Kopelman, A., Epstein, D., Tu, M.P., Yin, C.M., & Garofalo, R. S. (2001). A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science, 292(5516), 107-110. https://doi.org/10.1126/science.1057987.
  • Tatar, M., Bartke, A., & Antebi, A. (2020). The endocrine regulation of aging by insulin-like signals in Drosophila. Science Advances, 6(12), eaaz6722. https://doi.org/10.1126/sciadv.aaz6722.
  • Uysal, H., Aksakal, Ö., & Askın, H. (2012). Developmental disorders caused by Verbascum speciosum Schrad. Extracts in Drosophila melanogaster (Diptera: Drosophilidae). Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(2), 7-11.
  • Uysal, H., & Çelik, H. (2023). Skualen triterpeninin somatik mutasyonlar üzerine etkisinin Drosophila melanogaster’de in vivo kanat benek testi ile araştırılması. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26 (3), 477-486. https://doi.org/10.18016/ksutarimdoga.vi.1103555.
  • Valéria Soares de Araújo Pinho, F., Felipe da Silva, G., Echeverria Macedo, G., Raquel Muller, K., Kemmerich Martins, I., Lausmann Ternes, A. P., ... & Posser, T. (2014). Phytochemical constituents and toxicity of Duguetia furfuracea hydroalcoholic extract in Drosophila melanogaster. Evidence‐Based Complementary and Alternative Medicine, 2014(1), 838101. https://doi.org/10.1155/2014/838101.
  • Van Heerwaarden, B., Kellermann, V., Schiffer, M., Blacket, M., Sgro, C. M., & Hoffmann, A. A. (2009). Testing evolutionary hypotheses about species borders: patterns of genetic variation towards the southern borders of two rainforest Drosophila and a related habitat generalist. Proceedings of the Royal Society B: Biological Sciences, 276(1661), 1517-1526. https://doi.org/10.1098/rspb.2008.1288.
  • Zhang, Y., Shen, T., Liu, S. W., Zhao, J., Chen, W., & Wang, H. (2014). Effect of hawthorn on Drosophila melanogaster antioxidant-related gene expression. Tropical Journal of Pharmaceutical Research, 13(3), 353-357. http://dx.doi.org/10.4314/tjpr.v13i3.6.
  • Wang, Y., Li, Z., & Xu, S. (2023). Oxidative stress and reproductive trade-offs in aging Drosophila melanogaster. Aging Cell, 22(4), e13789. https://doi.org/10.1111/acel.13789.
  • Williams, D. A. (1971). A test for differences between treatment means when several dose levels are compared with a zero dose control. Biometrics, 103-117. https://doi.org/10.2307/2528930.
  • Wongchum, N., Dechakhamphu, A., Ma-ding, A., Khamphaeng, T., Pinlaor, S., Pinmongkhonkul, S., & Tanomtong, A. (2022). The effects of Cyperus rotundus L. extracts on the longevity of Drosophila melanogaster. South African Journal of Botany, 148, 218-227. https://doi.org/10.1016/j.sajb.2022.04.037.
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Botany (Other)
Journal Section RESEARCH ARTICLE
Authors

Mehmet Fidan 0000-0001-9016-6730

Early Pub Date July 25, 2025
Publication Date
Submission Date March 26, 2025
Acceptance Date June 14, 2025
Published in Issue Year 2025Volume: 28 Issue: 5

Cite

APA Fidan, M. (2025). Yaşam Süresi ve Üreme Arasındaki Dengede Fitokimyasal Modülasyon: Cistus creticus Örneği. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(5), 1214-1228. https://doi.org/10.18016/ksutarimdoga.vi.1666340


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149