Research Article
BibTex RIS Cite

Kanatlı Hayvan Yemlerinde Yem Hammaddesi Olarak Kullanılabilecek İpekböceği (Bombyx mori L.) Pupa Tozunun Besin Maddeleri Kompozisyonu, Amino Asit ve Yağ Asitleri Profili ve Mineral Maddeler İçeriği

Year 2025, Volume: 28 Issue: 5, 1391 - 1400
https://doi.org/10.18016/ksutarimdoga.vi.1676565

Abstract

Bu çalışmanın amacı, kanatlı kümes hayvanları karma yemlerinde yem hammaddesi olarak kullanılabilecek ipekböceği (Bombyx mori l.) pupa tozunun (İPT) besin maddeleri kompozisyonu, amino asit ve yağ asitleri profili ve mineral maddeler içeriğinin belirlenmesidir. Bu çalışmada sabit ağırlığa ulaşıncaya kadar 130°C'de 12 saat kurutulmuş İPT’nin kuru madde, organik maddeler, ham protein (HP), eter ekstrakt (EE), crude fiber ve kül içerikleri, amino asit ve yağ asidi profilleri ve bazı mineral maddeler içerikleri belirlenmiştir. Ayrıca, renk özellikleri (L*, a* ve b* değerleri) de belirlenmiştir. İPT’nin kuru maddede %58.8±0.39, %20.8±0.93 ve 5.9±0.04 düzeylerinde HP, EE ve kül içerdiği belirlenmiştir. Pupada en bol bulunan amino asitler arginin (35.4±3.26 mg/g), aspartik asit (40.2±3.64 mg/g), glisin (104.0±6.69 mg/g), lisin (98.1±5.80 mg/g), prolin (39.9±3.57 mg/g) ve serin (43.1±3.38 mg/g) idi. Toplam doymuş, tekli doymamış (TD) ve çoklu doymamış (ÇD) yağ asitleri içeriği sırasıyla 26.7±0.05, 31.2±0.08 ve 42.0±0.05 olarak bulunmuştur. İPT’de laurik asit, miristik asit, palmitik asit, stearik asit, oleik asit ve α-linolenik asit yağ asitleri bol miktarda bulunmuştur. İPT’nin, potasyum, fosfor, magnezyum ve kalsiyum içeriği sırasıyla 83.9±0.6±, 63.4±1.8, 26.2±0.3 ve 9.8±0.5’dır. Bu bulgular, İPT’nin kanatlı beslemede kullanılabilecek bir protein kaynağı olduğunu göstermektedir.

References

  • Ahmad, S., Hasan, M.U., Sageer, M., & Sahi, S.T. (2020). Impact of bio-accumulated cadmium in Bombyx mori L. reared on mulberry plants grown in heavy metal impregnated soils in Faisalabad. Pakistan. African Entomology, 28, 406–414.
  • AOAC, 2005. Association of Official Analytical Chemists, Official Methods of Analysis. 18th ed. AOAC, Maryland, USA.
  • Baiao, N.C., Mendez, J., Mateos, J., García, M., & Mateos, G.G. (1999). Pigmenting efficacy of several oxycarotenoids on egg yolk. Journal of Applied Poultry Research, 8, 472–479.
  • Banday, M.T., Bhat, G.A., Shahnazand, S., & Bhakat, M. (2009). Influence of feeding processed silkworm pupae meal on the performance of broiler chicken. Indian Journal of Animal. Nutrition, 26, 292–295.
  • Banday, M.T., Sheikh, A., Islam, U., Sheikh, H.H., Farhat, I., Qadri, M.E., Sahfi, H.S.A.W. S., Taia, A., Abd, E.M., Heba, M., Salem, A.E., Taha, M.T.E.S, & Mohamed, E.A.E.H. (2023). The use of silkworm pupae (Bombyx mori) meal as an alternative protein source for poultry. World’s Poultry Science Journal, 79, 119-134.
  • Bhagat, R.P., & Barat, S. (2017). Effect of artificial feed on survival and growth of rainbow trout, oncorhynchusmykiss (Walbaum) during exogenous feeding in the raceways of Kathmandu, Nepal. Turkish Journal of Fisheries and Aquatic Sciences, 5, 149–156.
  • Chandrasekharaiah, M., Sampath, K.T., & Thulasi, A. (2002). Rumen protein degradability of certain feedstuffs in cattle determined by nylon bag technique. Indian Journal of Dairy & Biosciences, 13, 18–21.
  • Chandrasekharaiah, M., Sampath, K.T., Thulasi, A. (2003). Essential amino acid content of commonly used feedstuffs. Indian Journal of Animal Sciences, 73, 305–307.
  • Dawit, M.Z. (2019). Nutritional evaluation of insects pupae-larva and its utilization in poultry compound feed. Open Agriculture Journal, 14, 1–8.
  • Egounlety, M. &Aworh, D.C. (1990). Production and physico-chemical properties of Tempeh fortified maize based weaning food. Nigerian Food Journal, 70, 92-102.
  • Eknayake, S., Jansz, E.R., & Nair, B.M. (1999). Proximate composition, mineral and amino acid content of mature Canavania gladiata seeds. Food Chemistry, 66, 115–119.
  • El-Sabrout, K., Khalifah, A., Mishra, B. (2023). Application of botanical products as nutraceutical feed additives for improving poultry health and production. Veterinary World, 16, 369.
  • Enser, M., (1984). The chemistry, biochemistry and nutritional importance of animal fats, in: Wiseman, J. (Ed.), Fats in Animal Nutrition, Butterworths Publishing, London, pp. 23–51.
  • Folch, J., Lees, M., & Stanley, G.H.S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, 497–509.
  • Gong, Y., Li, L., Gong, D., Yin, H., & Zhang, J. (2016). Biomolecular evidence of silk from 8,500 years ago. PLoS ONE, 11, e0168042.
  • Hăbeanu, M., Gheorghe, A., & Mihalcea, T. (2023). Nutritional value of silkworm pupae (Bombyx mori) with emphases on fatty acids profile and their potential applications for humans and animals. Insects, 14, 254.
  • Heuzé, V., Tran, G., Giger-Reverdin, S., & Lebas, F. (2017). Silkworm pupae meal. Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO. https://feedipedia.org/node/199
  • Jariyahatthakij, P., Chomtee, B., Poeikhampha, T., Loongyai, W., & Bunchasak, C. (2018). Effects of adding methionine in low-protein diet and subsequently fed low-energy diet on productive performance, blood chemical profile, and lipid metabolism related gene expression of broiler chickens. Poultry Science, 97, 2021–2033.
  • Ji, H., Zhang, J.L., Huang, J.Q., Cheng, X.F., & Liu, C. (2015). Effect of replacement of dietary fishmeal with silkworm pupae meal on growth performance, body composition, intestinal protease activity and health status in Juvenile Carp (Cyprinus Carpio Var. Jain). Aquaculture Research, 46, 1209–1221.
  • Jintasataporn, O. (2012). Production performance of broiler chickens fed with silkworm pupa (Bombyx mori). Journal of Agricultural Sciences and Technology, 2, 505–510.
  • Khalifah, A., Abdalla, S., Rageb, M., Maruccio, L., Ciani, F., & El-Sabrout, K. (2023). Could insect products provide a safe and sustainable feed alternative for the poultry industry? A comprehensive review. Animals, 13, 1534.
  • Khatun, R., Howlider, M.A.R., Rahman, M.M., & Hasanuzzaman, M. (2003). Replacement of fish meal by silkworm pupae in broiler diets. Pakistan Journal of Biological Sciences, 6, 955–958.
  • Kongsup, P., Lertjirakul, S., Chotimanothum, B., Chundang, P., & Kovitvadhi, A. (2022). Effects of eri silkworm (Samia ricini) pupae inclusion in broiler diets on growth performances, health, carcass characteristics and meat quality. Animal Bioscience, 35, 711–720.
  • Kotake-Nara, E., Yamamoto, K., Nozawa, M., Miyashita, K., & Murakami, T. (2002). Lipid profiles and oxidative stability of silkworm pupal oil. Journal of Oleo Science, 51, 681–690.
  • Koundinya, P.R., & Thangavelu, K. (2005). Silk proteins in biomedical research. Indian Silk, 43, 5–8.
  • Kouřimská, L., & Adámkov, A. (2016). Nutritional and sensory quality of edible insects. NFS Journal, 4, 22–26.
  • Kowalska, D., Gugołek, A., & Strychalski, J. (2020). Evaluation of slaughter parameters and meat quality of rabbits fed diets with silkworm pupae and mealworm larvae meals. Annals of Animal Science, 20, 551–564.
  • Kumar, R.V., Srivastava, D., Kumar, U., Kumar, M., & Singh, P. (2021). Bioprospecting of omega-3 fatty acid from silkworm pupal oil: From molecular mechanism to biological activities. Journal of Biologically Active Products from Nature, 10, 495–506.
  • Kwon, M.U.G., Kim, D.S., Lee, J.H., Park, S.W., Choo, Y.K., Han, Y.S., Kim, J.S., Hwang, K.A., Kinarm, K.O., & Kiung, K. (2012). Isolation and analysis of natural compounds from silkworm pupae and effect of its extracts on alcohol detoxification. Entomological Research, 42, 55–62.
  • Lamberti, C., Gai, F., Cirrincione, S., Giribaldi, M., Purrotti, M., Manfredi, M., Marengo, E., Sicuro, B., Saviane, A., Cappellozza, S., Giuffrida, M.G., & Cavallarin, L. (2019). Investigation of the protein profile of silkworm (Bombyx mori) pupae reared on a well-calibrated artificial diet compared to mulberry leaf diet. PeerJ, 7, e6723.
  • Leeson, S., & Summers, J.D. (2005). Commercial Poultry Nutrition, third ed. Publ. Univ. Books, Guelph, Ontario, Canada.
  • Limeneh, D.Y., Tesfaye, T., Ayele, M., Husien, N.M., Ferede, E., Haile, A., Mengie, W., Abuhay, A., Gelebo, G.G., Gibril, M., & Kong, F. (2022). A comprehensive review on utilization of slaughterhouse by-product: current status and prospect. Sustainability, 14, 6469.
  • Longvah, T., Mangthya, K., & Ramulu, P. (2011). Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chemistry, 128, 400–403.
  • Makkar, H.P.S., Tran, G., Heuzé, V., & Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1–33.
  • Meyer-Rochow, V. B., & Jung, C. (2020). Insects used as food and feed: Isn’t that what we all need? Foods, 9, 1003.
  • Meyer-Rochow, V.B., Gahukar, R.T., Ghosh, S., & Jung, C. (2021). Chemical composition, nutrient quality and acceptability of edible insects are affected by species, developmental stage, gender, diet, and processing method. Foods, 10, 1036.
  • Mishra, N., Hazarika, N.C., Narain, K., & Mahanta, J. (2003). Nutritive value of nonmulberry and mulberry Silkworm pupae and consumption pattern in Assam, India. Nutrition Research, 23, 1303–1311.
  • Nakasone, S., & Ito, T. (1967). Fatty acid composition of the silkworm, Bombyx mori L. Journal of Insect Physiology, 13, 1237–1246.
  • Nimbalkar, M.S., Pai, S.R., Pawar, N.V., Oulkar, D., & Dixit, G.B. 2012. Free amino acid profiling in grain Amaranth using LC-MS/MS. Food Chemistry, 134, 2565–2569.
  • Nisha, S.N., Jothi, B.A., & Geetha, B. (2014). Growth performance and haematological parameters of the ornamental fish, (Maylandiaestherae), fed varying inclusion of silkworm pupae meal. Advances in Biological Research, 8, 268–273.
  • Oduguwa, O.O., Fanimo, A.O., & Oso, M.J. (2005). Effect of replacing dietary fish meal or soybean with shrimp waste meal on the performance of laying hens.” Niger. Nigerian Journal of Animal Production, 32, 224–232.
  • Ojewola, G.S., Okopyo, F.C., & Ukoha, O.A. (2005). Comparative utilisation of three animal protein sources by broiler chickens. International Journal of Poultry Science, 4, 462–467.
  • Orsavova, J., Misurcova, L., Ambrozova, J.V., Vicha, R., & Mlcek, J. (2015). Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. International Journal of Molecular Sciences, 16, 12871–12890.
  • Oso, J.A., & Iwalaye, O.A. (2014). Growth performance and nutrient utilization efficiency of Clarias gariepinus juveniles fed Bombyx mori (mulberry silkworm) meal as a partial replacement for fishmeal. British Journal of Applied Science & Technology, 4, 3805–3812.
  • Patil, S.R., Amena, S., Vikas, A., Rahul, P., Jagadeesh, K., & Praveen, K. (2013). Utilization of silkworm litter and pupal wastean eco-friendly approach for mass production of Bacillus thuringiensis. Bioresource Technology, 131, 545–547.
  • Pereira, N.R., Ferrarese-Filho, O., Matsushita, M., & de Souza, N.E. (2003). Proximate composition and fatty acid profile of Bombyx mori L. chrysalis toast. Journal of Food Composition and Analysis, 16, 451–457.
  • Priyadharshini, P., Joncy, M.A., & Saratha, M. (2017). Industrial utilization of silkworm pupae—A review. International Journal of Academic Multidisciplinary Research, 5, 62–70.
  • Pujari, J., Pushpalatha, S.N., & Desai, P.D. (2010). Content-based image retrieval using color and shape descriptors. In: Proceedings of the 2010 International Conference on Signal and Image Processing, ICSIP 2010. pp. 239–242.
  • Rashmi, K.M., Chandrasekharaiah, M., Soren, N.M., Prasad, K.S., David, C.G., Thirupathaiah, Y., & Shivaprasad, V. (2023). Silkworm pupae meal: An alternative protein source for livestock. Pharma Innovation Journal, 12, 3691–3696.
  • Ravindran, V., Tancharoenrat, P., Zaefarian, F., & Ravindran, G. (2016). Fats in poultry nutrition: Digestive physiology and factors influencing their utilization. Animal Feed Science and Technology, 213, 1–21.
  • Sajid, Q.U.A., Asghar, M.U., Tariq, H., Wilk, M., & Płatek, A. (2023). Insect meal as an alternative to protein concentrates in poultry nutrition with future perspectives (An updated review). Agriculture, 13, 1239.
  • Sharma, A., Gupta, R., Sharma, P., Duwa, A.K., & Bandral, R. (2022). Silkworm as an edible insect: A review. Pharma Innovation Journal, 11, 1667–1674.
  • Shukurova, Z.Y., Khalilov, Z.M., & Shukurlu, I.H. (2021). Study of the organic and mineral composition of living pupae of the wild silkworm Saturnia pyri for use as food additives. International Journal of Industrial Entomology, 43, 52–58.
  • Tamuly, B., Manimegalai, S., Chitra, P., Priyadharshini, P., & Baranidharan, K. (2024). Silkworm pupae meal: A breakthrough for conventional poultry feed. Archives of Current Research International 24(7), 111-22.
  • Thirupathaiah, Y., Chandel, A. K., & Sivaprasad, V. (2018). Potential applications of enzymes in sericulture, in Singh, O.V., Chandel, A.K. (Eds.), Sustainable Biotechnology- Enzymatic Resources of Renewable Energy. Springer Nature Publishing, pp. 463–472.
  • Tomotake, H., Katagiri, M., & Yamato, M. (2010). Silkworm pupae (Bombyx mori) are new sources of high quality protein and lipid. Journal of Nutritional Science and Vitaminology, 56, 446–448.
  • TÜİK, (2024). https://data.tuik.gov.tr/Bulten/Index?p=Animal-Production-Statistics-2023-49681.
  • Uguz, S., & Sozcu, A. (2023). Nutritional Value of Microalgae and Cyanobacteria Produced with Batch and Continuous Cultivation: Potential Use as Feed Material in Poultry Nutrition. Animals, 13, 3431.
  • Ullah, R. (2016). Replacement of soybean meal with silkworm meal (Bombyx mori) in poultry ration. PhD. thesis in poultry science, Peshawar: The University of Agriculture.
  • Valerie, H., Tran, G., Giger-Reverdin, S., & Lebas, F. (2015). Silkworm Pupae Meal. Feedipedia, a Programme by INRA, CIRAD, AFZ and FAO. 2015. Available online: http://www.feedipedia.org/node/199.
  • Wei, Z.J., Liao, A.M., Zhang, H.X., Liu, J., & Jiang, S.T. (2009). Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology. Bioresource Technology, 100, 4214–4219.
  • Wendin, K., & Nyberg, M. (2021). Factors influencing consumer perception and acceptability of insect- based foods. Current Opinion in Food Science, 40, 67–71.
  • Yeruva, T., Jayaram, H., Aurade, R., Shunmugam, M.M., Shinde, V.S., Venkatesharao, S.R.B., & Azhiyakathu, M.J. (2023). Profiling of nutrients and bioactive compounds in the pupae of silkworm Bombyx Mori. Food Chemistry Advances, 3, 100382.
  • Zhou, J., & Han, D. (2006). Proximate amino acid and mineral composition of pupae of the silkworm antheraea pernyi in China. Journal of Food Composition and Analysis, 19, 850–853.
  • Zhou, Y., Zhou, S., Duan, H., Wang, J., & Yan, W. (2022). Silkworm pupae: A functional food with health benefits for humans. Foods, 11, 1594.
  • Zotte, A.D., Singh, Y., Zsedely, E., Contiero, B., Palumbo, B., & Cullere, M. (2024). Dietary inclusion of defatted silkworm (Bombyx mori L.) pupa meal in broiler chickens: phase feeding effects on nutritional and sensory meat quality. Poultry Science, 103, 103812.

Nutrient Composition, Amino Acid and Fatty Acid Profiles, and Mineral Content of Silkworm (Bombyx mori L.) Pupa Powder to be used as a feed ingredient in Poultry Diets

Year 2025, Volume: 28 Issue: 5, 1391 - 1400
https://doi.org/10.18016/ksutarimdoga.vi.1676565

Abstract

The aim of this study was to determine the nutrient composition, amino acid and fatty acid profiles, and mineral content of silkworm (Bombyx mori L.) pupa powder (SPP) that can be used as a feed ingredient in poultry diets. In this study, the dry matter, organic matter, crude protein (CP), ether extract (EE), crude fiber, and ash contents, amino acid and fatty acid profiles, and the contents of some minerals of SPP dried until they reached a constant weight at 130°C for 12 hours were determined. In addition, color characteristics (L*, a*, and b* values) were also determined. The CP, EE, and ash contents of SPP were determined to be %58.8±0.39, %20.8±0.93, and 5.9±0.04, respectively, on a dry matter basis. The most abundant amino acids were arginine (35.4±3.26 mg/g), aspartic acid (40.2±3.64 mg/g), glycine (104.0±6.69 mg/g), lysine (98.1±5.80 mg/g), proline (39.9±3.57 mg/g), and serine (43.1±3.38 mg/g) in SPP. The total saturated, monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids were found to be 26.7±0.05, 31.2±0.08, and 42.0±0.05, respectively. The fatty acids lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, and α-linolenic acid were found as abundant fatty acids in silkworm pupa powder. The potassium, phosphorus, magnesium, and calcium contents of SPP were 83.9±0.6±, 63.4±1.8, 26.2±0.3, and 9.8±0.5, respectively. These findings clearly show that SPP is a potential protein source that can be used in poultry nutrition.

References

  • Ahmad, S., Hasan, M.U., Sageer, M., & Sahi, S.T. (2020). Impact of bio-accumulated cadmium in Bombyx mori L. reared on mulberry plants grown in heavy metal impregnated soils in Faisalabad. Pakistan. African Entomology, 28, 406–414.
  • AOAC, 2005. Association of Official Analytical Chemists, Official Methods of Analysis. 18th ed. AOAC, Maryland, USA.
  • Baiao, N.C., Mendez, J., Mateos, J., García, M., & Mateos, G.G. (1999). Pigmenting efficacy of several oxycarotenoids on egg yolk. Journal of Applied Poultry Research, 8, 472–479.
  • Banday, M.T., Bhat, G.A., Shahnazand, S., & Bhakat, M. (2009). Influence of feeding processed silkworm pupae meal on the performance of broiler chicken. Indian Journal of Animal. Nutrition, 26, 292–295.
  • Banday, M.T., Sheikh, A., Islam, U., Sheikh, H.H., Farhat, I., Qadri, M.E., Sahfi, H.S.A.W. S., Taia, A., Abd, E.M., Heba, M., Salem, A.E., Taha, M.T.E.S, & Mohamed, E.A.E.H. (2023). The use of silkworm pupae (Bombyx mori) meal as an alternative protein source for poultry. World’s Poultry Science Journal, 79, 119-134.
  • Bhagat, R.P., & Barat, S. (2017). Effect of artificial feed on survival and growth of rainbow trout, oncorhynchusmykiss (Walbaum) during exogenous feeding in the raceways of Kathmandu, Nepal. Turkish Journal of Fisheries and Aquatic Sciences, 5, 149–156.
  • Chandrasekharaiah, M., Sampath, K.T., & Thulasi, A. (2002). Rumen protein degradability of certain feedstuffs in cattle determined by nylon bag technique. Indian Journal of Dairy & Biosciences, 13, 18–21.
  • Chandrasekharaiah, M., Sampath, K.T., Thulasi, A. (2003). Essential amino acid content of commonly used feedstuffs. Indian Journal of Animal Sciences, 73, 305–307.
  • Dawit, M.Z. (2019). Nutritional evaluation of insects pupae-larva and its utilization in poultry compound feed. Open Agriculture Journal, 14, 1–8.
  • Egounlety, M. &Aworh, D.C. (1990). Production and physico-chemical properties of Tempeh fortified maize based weaning food. Nigerian Food Journal, 70, 92-102.
  • Eknayake, S., Jansz, E.R., & Nair, B.M. (1999). Proximate composition, mineral and amino acid content of mature Canavania gladiata seeds. Food Chemistry, 66, 115–119.
  • El-Sabrout, K., Khalifah, A., Mishra, B. (2023). Application of botanical products as nutraceutical feed additives for improving poultry health and production. Veterinary World, 16, 369.
  • Enser, M., (1984). The chemistry, biochemistry and nutritional importance of animal fats, in: Wiseman, J. (Ed.), Fats in Animal Nutrition, Butterworths Publishing, London, pp. 23–51.
  • Folch, J., Lees, M., & Stanley, G.H.S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, 497–509.
  • Gong, Y., Li, L., Gong, D., Yin, H., & Zhang, J. (2016). Biomolecular evidence of silk from 8,500 years ago. PLoS ONE, 11, e0168042.
  • Hăbeanu, M., Gheorghe, A., & Mihalcea, T. (2023). Nutritional value of silkworm pupae (Bombyx mori) with emphases on fatty acids profile and their potential applications for humans and animals. Insects, 14, 254.
  • Heuzé, V., Tran, G., Giger-Reverdin, S., & Lebas, F. (2017). Silkworm pupae meal. Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO. https://feedipedia.org/node/199
  • Jariyahatthakij, P., Chomtee, B., Poeikhampha, T., Loongyai, W., & Bunchasak, C. (2018). Effects of adding methionine in low-protein diet and subsequently fed low-energy diet on productive performance, blood chemical profile, and lipid metabolism related gene expression of broiler chickens. Poultry Science, 97, 2021–2033.
  • Ji, H., Zhang, J.L., Huang, J.Q., Cheng, X.F., & Liu, C. (2015). Effect of replacement of dietary fishmeal with silkworm pupae meal on growth performance, body composition, intestinal protease activity and health status in Juvenile Carp (Cyprinus Carpio Var. Jain). Aquaculture Research, 46, 1209–1221.
  • Jintasataporn, O. (2012). Production performance of broiler chickens fed with silkworm pupa (Bombyx mori). Journal of Agricultural Sciences and Technology, 2, 505–510.
  • Khalifah, A., Abdalla, S., Rageb, M., Maruccio, L., Ciani, F., & El-Sabrout, K. (2023). Could insect products provide a safe and sustainable feed alternative for the poultry industry? A comprehensive review. Animals, 13, 1534.
  • Khatun, R., Howlider, M.A.R., Rahman, M.M., & Hasanuzzaman, M. (2003). Replacement of fish meal by silkworm pupae in broiler diets. Pakistan Journal of Biological Sciences, 6, 955–958.
  • Kongsup, P., Lertjirakul, S., Chotimanothum, B., Chundang, P., & Kovitvadhi, A. (2022). Effects of eri silkworm (Samia ricini) pupae inclusion in broiler diets on growth performances, health, carcass characteristics and meat quality. Animal Bioscience, 35, 711–720.
  • Kotake-Nara, E., Yamamoto, K., Nozawa, M., Miyashita, K., & Murakami, T. (2002). Lipid profiles and oxidative stability of silkworm pupal oil. Journal of Oleo Science, 51, 681–690.
  • Koundinya, P.R., & Thangavelu, K. (2005). Silk proteins in biomedical research. Indian Silk, 43, 5–8.
  • Kouřimská, L., & Adámkov, A. (2016). Nutritional and sensory quality of edible insects. NFS Journal, 4, 22–26.
  • Kowalska, D., Gugołek, A., & Strychalski, J. (2020). Evaluation of slaughter parameters and meat quality of rabbits fed diets with silkworm pupae and mealworm larvae meals. Annals of Animal Science, 20, 551–564.
  • Kumar, R.V., Srivastava, D., Kumar, U., Kumar, M., & Singh, P. (2021). Bioprospecting of omega-3 fatty acid from silkworm pupal oil: From molecular mechanism to biological activities. Journal of Biologically Active Products from Nature, 10, 495–506.
  • Kwon, M.U.G., Kim, D.S., Lee, J.H., Park, S.W., Choo, Y.K., Han, Y.S., Kim, J.S., Hwang, K.A., Kinarm, K.O., & Kiung, K. (2012). Isolation and analysis of natural compounds from silkworm pupae and effect of its extracts on alcohol detoxification. Entomological Research, 42, 55–62.
  • Lamberti, C., Gai, F., Cirrincione, S., Giribaldi, M., Purrotti, M., Manfredi, M., Marengo, E., Sicuro, B., Saviane, A., Cappellozza, S., Giuffrida, M.G., & Cavallarin, L. (2019). Investigation of the protein profile of silkworm (Bombyx mori) pupae reared on a well-calibrated artificial diet compared to mulberry leaf diet. PeerJ, 7, e6723.
  • Leeson, S., & Summers, J.D. (2005). Commercial Poultry Nutrition, third ed. Publ. Univ. Books, Guelph, Ontario, Canada.
  • Limeneh, D.Y., Tesfaye, T., Ayele, M., Husien, N.M., Ferede, E., Haile, A., Mengie, W., Abuhay, A., Gelebo, G.G., Gibril, M., & Kong, F. (2022). A comprehensive review on utilization of slaughterhouse by-product: current status and prospect. Sustainability, 14, 6469.
  • Longvah, T., Mangthya, K., & Ramulu, P. (2011). Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chemistry, 128, 400–403.
  • Makkar, H.P.S., Tran, G., Heuzé, V., & Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1–33.
  • Meyer-Rochow, V. B., & Jung, C. (2020). Insects used as food and feed: Isn’t that what we all need? Foods, 9, 1003.
  • Meyer-Rochow, V.B., Gahukar, R.T., Ghosh, S., & Jung, C. (2021). Chemical composition, nutrient quality and acceptability of edible insects are affected by species, developmental stage, gender, diet, and processing method. Foods, 10, 1036.
  • Mishra, N., Hazarika, N.C., Narain, K., & Mahanta, J. (2003). Nutritive value of nonmulberry and mulberry Silkworm pupae and consumption pattern in Assam, India. Nutrition Research, 23, 1303–1311.
  • Nakasone, S., & Ito, T. (1967). Fatty acid composition of the silkworm, Bombyx mori L. Journal of Insect Physiology, 13, 1237–1246.
  • Nimbalkar, M.S., Pai, S.R., Pawar, N.V., Oulkar, D., & Dixit, G.B. 2012. Free amino acid profiling in grain Amaranth using LC-MS/MS. Food Chemistry, 134, 2565–2569.
  • Nisha, S.N., Jothi, B.A., & Geetha, B. (2014). Growth performance and haematological parameters of the ornamental fish, (Maylandiaestherae), fed varying inclusion of silkworm pupae meal. Advances in Biological Research, 8, 268–273.
  • Oduguwa, O.O., Fanimo, A.O., & Oso, M.J. (2005). Effect of replacing dietary fish meal or soybean with shrimp waste meal on the performance of laying hens.” Niger. Nigerian Journal of Animal Production, 32, 224–232.
  • Ojewola, G.S., Okopyo, F.C., & Ukoha, O.A. (2005). Comparative utilisation of three animal protein sources by broiler chickens. International Journal of Poultry Science, 4, 462–467.
  • Orsavova, J., Misurcova, L., Ambrozova, J.V., Vicha, R., & Mlcek, J. (2015). Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. International Journal of Molecular Sciences, 16, 12871–12890.
  • Oso, J.A., & Iwalaye, O.A. (2014). Growth performance and nutrient utilization efficiency of Clarias gariepinus juveniles fed Bombyx mori (mulberry silkworm) meal as a partial replacement for fishmeal. British Journal of Applied Science & Technology, 4, 3805–3812.
  • Patil, S.R., Amena, S., Vikas, A., Rahul, P., Jagadeesh, K., & Praveen, K. (2013). Utilization of silkworm litter and pupal wastean eco-friendly approach for mass production of Bacillus thuringiensis. Bioresource Technology, 131, 545–547.
  • Pereira, N.R., Ferrarese-Filho, O., Matsushita, M., & de Souza, N.E. (2003). Proximate composition and fatty acid profile of Bombyx mori L. chrysalis toast. Journal of Food Composition and Analysis, 16, 451–457.
  • Priyadharshini, P., Joncy, M.A., & Saratha, M. (2017). Industrial utilization of silkworm pupae—A review. International Journal of Academic Multidisciplinary Research, 5, 62–70.
  • Pujari, J., Pushpalatha, S.N., & Desai, P.D. (2010). Content-based image retrieval using color and shape descriptors. In: Proceedings of the 2010 International Conference on Signal and Image Processing, ICSIP 2010. pp. 239–242.
  • Rashmi, K.M., Chandrasekharaiah, M., Soren, N.M., Prasad, K.S., David, C.G., Thirupathaiah, Y., & Shivaprasad, V. (2023). Silkworm pupae meal: An alternative protein source for livestock. Pharma Innovation Journal, 12, 3691–3696.
  • Ravindran, V., Tancharoenrat, P., Zaefarian, F., & Ravindran, G. (2016). Fats in poultry nutrition: Digestive physiology and factors influencing their utilization. Animal Feed Science and Technology, 213, 1–21.
  • Sajid, Q.U.A., Asghar, M.U., Tariq, H., Wilk, M., & Płatek, A. (2023). Insect meal as an alternative to protein concentrates in poultry nutrition with future perspectives (An updated review). Agriculture, 13, 1239.
  • Sharma, A., Gupta, R., Sharma, P., Duwa, A.K., & Bandral, R. (2022). Silkworm as an edible insect: A review. Pharma Innovation Journal, 11, 1667–1674.
  • Shukurova, Z.Y., Khalilov, Z.M., & Shukurlu, I.H. (2021). Study of the organic and mineral composition of living pupae of the wild silkworm Saturnia pyri for use as food additives. International Journal of Industrial Entomology, 43, 52–58.
  • Tamuly, B., Manimegalai, S., Chitra, P., Priyadharshini, P., & Baranidharan, K. (2024). Silkworm pupae meal: A breakthrough for conventional poultry feed. Archives of Current Research International 24(7), 111-22.
  • Thirupathaiah, Y., Chandel, A. K., & Sivaprasad, V. (2018). Potential applications of enzymes in sericulture, in Singh, O.V., Chandel, A.K. (Eds.), Sustainable Biotechnology- Enzymatic Resources of Renewable Energy. Springer Nature Publishing, pp. 463–472.
  • Tomotake, H., Katagiri, M., & Yamato, M. (2010). Silkworm pupae (Bombyx mori) are new sources of high quality protein and lipid. Journal of Nutritional Science and Vitaminology, 56, 446–448.
  • TÜİK, (2024). https://data.tuik.gov.tr/Bulten/Index?p=Animal-Production-Statistics-2023-49681.
  • Uguz, S., & Sozcu, A. (2023). Nutritional Value of Microalgae and Cyanobacteria Produced with Batch and Continuous Cultivation: Potential Use as Feed Material in Poultry Nutrition. Animals, 13, 3431.
  • Ullah, R. (2016). Replacement of soybean meal with silkworm meal (Bombyx mori) in poultry ration. PhD. thesis in poultry science, Peshawar: The University of Agriculture.
  • Valerie, H., Tran, G., Giger-Reverdin, S., & Lebas, F. (2015). Silkworm Pupae Meal. Feedipedia, a Programme by INRA, CIRAD, AFZ and FAO. 2015. Available online: http://www.feedipedia.org/node/199.
  • Wei, Z.J., Liao, A.M., Zhang, H.X., Liu, J., & Jiang, S.T. (2009). Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology. Bioresource Technology, 100, 4214–4219.
  • Wendin, K., & Nyberg, M. (2021). Factors influencing consumer perception and acceptability of insect- based foods. Current Opinion in Food Science, 40, 67–71.
  • Yeruva, T., Jayaram, H., Aurade, R., Shunmugam, M.M., Shinde, V.S., Venkatesharao, S.R.B., & Azhiyakathu, M.J. (2023). Profiling of nutrients and bioactive compounds in the pupae of silkworm Bombyx Mori. Food Chemistry Advances, 3, 100382.
  • Zhou, J., & Han, D. (2006). Proximate amino acid and mineral composition of pupae of the silkworm antheraea pernyi in China. Journal of Food Composition and Analysis, 19, 850–853.
  • Zhou, Y., Zhou, S., Duan, H., Wang, J., & Yan, W. (2022). Silkworm pupae: A functional food with health benefits for humans. Foods, 11, 1594.
  • Zotte, A.D., Singh, Y., Zsedely, E., Contiero, B., Palumbo, B., & Cullere, M. (2024). Dietary inclusion of defatted silkworm (Bombyx mori L.) pupa meal in broiler chickens: phase feeding effects on nutritional and sensory meat quality. Poultry Science, 103, 103812.
There are 66 citations in total.

Details

Primary Language English
Subjects Animal Feeding
Journal Section RESEARCH ARTICLE
Authors

Şeniz Öziş Altınçekiç 0000-0001-9044-8092

Arda Sözcü 0000-0002-0955-4371

Early Pub Date July 27, 2025
Publication Date
Submission Date April 15, 2025
Acceptance Date June 14, 2025
Published in Issue Year 2025Volume: 28 Issue: 5

Cite

APA Öziş Altınçekiç, Ş., & Sözcü, A. (2025). Nutrient Composition, Amino Acid and Fatty Acid Profiles, and Mineral Content of Silkworm (Bombyx mori L.) Pupa Powder to be used as a feed ingredient in Poultry Diets. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(5), 1391-1400. https://doi.org/10.18016/ksutarimdoga.vi.1676565


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149