Research Article
BibTex RIS Cite

Tarımsal Alanların İmarlaşmaya Dönüşümünün Mikro Ölçekli Hava Kirleticiler Üzerindeki Etkisi: Trabzon Yalıncak Örneği

Year 2025, Volume: 28 Issue: 6, 1445 - 1457
https://doi.org/10.18016/ksutarimdoga.vi.1623025

Abstract

Yenilenemeyen kaynaklar arasında yer alan toprak, yaşamın vazgeçilmez bir parçası olup, tarımın en önemli hammaddesidir. Ancak, kentleşme ve tarım dışı kullanımlar için cazibe merkezi haline gelmesi, tarım arazilerinin giderek azalmasına neden olmaktadır. Bu durum, özellikle kentlerde çevresel birçok sorunu beraberinde getirmekte, mikro ve makro ölçeklerde hava kalitesinin bozulmasına yol açmaktadır. Tarım topraklarının önemli işlevlerinden biri, organik madde birikimi yoluyla büyük miktarda karbon depolamaktır. Ayrıca, tarım alanları rüzgarla taşınan toz ve partikül madde miktarını azaltarak hava kalitesine olumlu katkıda bulunmaktadır. Bu çalışma kapsamında seçilen arazi, 2009 ve öncesinde tarım alanı olarak kullanılmıştır. Ancak, çalışma alanının yarısı, yapılaşmaya açılarak günümüzde toplu konut hizmeti vermektedir. Araştırma kapsamında her iki çalışma alanında da kirletici madde (PM2.5, PM10, CO, CO2) ölçümleri yapılmış ve elde edilen veriler karşılaştırılarak tarım alanlarının mikro hava kalitesine etkisi incelenmiştir. Elde edilen sonuçlara, göre tarımsal alanlarda karbon monoksit (CO) ve karbon dioksit (CO₂) seviyelerinin, yapılaşmış alanlara kıyasla daha düşük olduğu görülmüştür. CO seviyeleri tarım alanlarında 1,09 µg m-³ ile 2,87 µg m-³ arasında, yapılaşmış alanlarda ise 2,09 µg m-³ ile 2,98 µg m-³ arasında ölçülmüştür. Benzer şekilde, tarımsal bitki örtüsü sayesinde CO₂ seviyeleri tarım alanlarında 251,47 µg m-³ ile 429,97 µg m-³ arasında kalırken, yapılaşmış alanlarda 411,75 µg m-³ ile 520,59 µg m-³ arasında ölçülmüştür. Bu sonuçlar, tarım arazilerinin karbon emilimini artırarak ve partikül madde konsantrasyonlarını azaltarak çevresel fayda sağladığını ve sürdürülebilir şehirleşme için kritik bir rol oynadığını ortaya koymaktadır.

References

  • Akseki, H., & Meşhur, M. Ç. (2013). Kentsel yayılma sonucu yapılaşmaya açılan verimli tarım alanları: Konya kenti deneyimleri. Megaron, 8(3), 165-174.
  • Aneja, V. P., Schlesinger, W. H., & Erisman, J. W. (2009). Effects of agriculture upon the air quality and climate: research, policy, and regulations. Environ. Sci. Technology. 43. 4234-4240.
  • Barnes, K. B., Morgan, J. M., Roberge, M. C., & Lowe, S. (2001). Sprawl development, its patterns, consequences, and measurement. Center for Geographic Information Sciences, Towson University.
  • Bruegmann, R. (2005). Sprawl: A compact history. Chicago: The University of Chicago Press.
  • Chen, Y., Yu, P., Wang, L., Chen, Y., & Chan, E. H. W. (2024). The impact of rice-crayfish field on socio-ecological system in traditional farming areas: Implications for sustainable agricultural landscape transformation. Journal of Cleaner Production, 434, 139625. https://doi.org/10.1016/j.jclepro.2024.139625
  • Donnelly, A., Misstear, B., & Broderick, B. (2015). Real-time air quality forecasting using integrated parametric and non-parametric regression techniques. Atmospheric Environment, 103, 53–65. https://doi.org/10.1016/ j.atmosenv.2014.12.033
  • Duan, J., Ren, C., Wang, S., Zhang, X., Reis, S., Xu, J., & Gu, B. (2021). Consolidation of agricultural land can contribute to agricultural sustainability in China. Nature Food, 2(12), 1014-1022. https://doi.org/10.1038/ s43016-021-00415-5
  • Fatima, S., Abbas, S., Rebi, A., & Ying, Z. (2024). Sustainable forestry and environmental impacts: Assessing the economic, environmental, and social benefits of adopting sustainable agricultural practices. Ecological Frontiers.44. 1119-1127
  • Gulpınar Sekban, D. U., & Acar, C. (2024a). Evaluation of the variables affecting usage preferences in reclaimed areas through design focus and intensity. European Planning Studies, 32(1), 121–147. https://doi.org/10.1080/ 09654313.2023.2177099
  • Gulpınar Sekban, D. U., & Düzgüneş, E. (2021). Planting design approach in sustainable urban planning. International Journal of Built Environment and Sustainability, 8(2), 63–71. https://doi.org/ 10.11113/ijbes.v8.n2.674
  • Gulpınar Sekban, D. U., & Acar, C. (2024b). Combining climate change adaptation strategies with spatial analysis and transforming urban open spaces into landscape design solutions: Case of Trabzon City, Türkiye. Journal of Urban Planning and Development, 150(3), 05024020. https://doi.org/10.1061/JUPDDM.UPENG-4809
  • Gulpınar Sekban, D. U., Bekar, M., & Acar, C. (2019). Evaluation of sustainability potential according to Cittaslow criteria in Turkey/Trabzon. Fresenius Environmental Bulletin, 28(7), 5435–5446.
  • Güneroğlu, N., & Bekar, M. (2016). Agricultural landscape values of Turkey. In Environmental sustainability and landscape management. Sofia: St. Kliment Ohridski University Press.
  • Güneroğlu, N., & Bekar, M. (2016). Agricultural landscape values of Turkey. In Environmental sustainability and landscape management. Sofia: St. Kliment Ohridski University Press.
  • Hua, A. K., & Ping, O. W. (2018). The influence of land-use/land-cover changes on land surface temperature: A case study of Kuala Lumpur metropolitan city. European Journal of Remote Sensing, 51(1), 1049–1069. https://doi.org/10.1080/22797254.2018.1542976
  • Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D., Pozzer, A., 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525, 367–371.
  • Liang, L., & Gong, P. (2020). Urban and air pollution: a multi-city study of long-term effects of urban landscape patterns on air quality trends. Scientific reports, 10(1), 18618.
  • Liu, J. B., Zheng, Y. Q., & Lee, C. C. (2024). Statistical analysis of the regional air quality index of the Yangtze River Delta based on complex network theory. Applied Energy, 357, 122529. https://doi.org/10.1016/ j.apenergy.2024.122529
  • Pielke, R. A., et al. (2011). Land use/land cover changes and climate: Modeling analysis and observational evidence. WIREs Climate Change, 2(6), 828–850. https://doi.org/10.1002/wcc.144
  • Remy, S., Nawrot, T., Fierens, F., Petit, P., Vanderstraeten, P., Nemery, B., Bouland, C., 2011. Health impact of urban air pollution in Belgium. Air Qual. Atmos. Heal. 4, 243–246.
  • Saha, M., Al Kafy, A., Bakshi, A., Nath, H., Alsulamy, S., Rahaman, Z. A., & Saroar, M. (2024). The urban air quality nexus: Assessing the interplay of land cover change and air pollution in emerging South Asian cities. Environmental Pollution, 361, 124877. https://doi.org/10.1016/j.envpol.2024.124877
  • Tomson, M., Kumar, P., Barwise, Y., Perez, P., Forehead, H., French, K., ... Watts, J. F. 2021. Green infrastructure for air quality improvement in street canyons. Environment international, 146, 106288.
  • TÜİK. (2025). Nüfus verileri. https://cip.tuik.gov.tr (Erişim tarihi: 16 Ocak 2025).
  • TC Ortahisar Kaymakamlığı. (2025). Coğrafi durum. http://www.ortahisar.gov.tr/cografi-durum (Erişim tarihi: 16 Ocak 2025).
  • Topçu, T. (2012). Tarım arazilerinin korunması ve etkin kullanılmasına yönelik politikalar. TC Kalkınma Bakanlığı Uzmanlık Tezi.
  • URL-1. (2025). Trabzon nüfusu. https://www.nufusu.com/il/trabzon-nufusu (Erişim tarihi: 16 Ocak 2025). Vialatte, A., Barnaud, C., Blanco, J., Ouin, A., Choisis, J. P., Andrieu, E., Sheeren, D., Ladet, S., Deconchat, M., Clément, F., Esquerré, D., & Sirami, C. (2019). A conceptual framework for the governance of multiple ecosystem services in agricultural landscapes. Landscape Ecology, 34, 1653–1673. https://doi.org/ 10.1007/s10980-019-00829-4
  • Wang, Y., Jia, S., Wang, Z., Chen, Y., Mo, S., & Sze, N. N. (2021). Planning considerations of green corridors for the improvement of biodiversity resilience in suburban areas. Journal of Infrastructure Preservation and Resilience, 2, 1-15. https://doi.org/10.1186/s43065-021-00023-4
  • World Health Organization. (2014). 7 million premature deaths annually linked to air pollution. Arrival at: https://www.who.int/news/item/25-03-2014-7-million-premature-deaths-annually-linked-to-air-pollution.
  • Xu, C., Zhang, Z., Ling, G., Wang, G., & Wang, M. 2022. Air pollutant spatiotemporal evolution characteristics and effects on human health in North China. Chemosphere, 294, 133814.
  • Yao, S., Xie, R., Han, F., & Zhang, Q. (2023). Labor market distortion and air pollution: An empirical analysis based on spatial effect modeling. Journal of Environmental Management, 337, 117743. https://doi.org/10.1016/j.jenvman.2023.117743
  • Zhang, X., Han, L., Wei, H., Tan, X., Zhou, W., Li, W., & Qian, Y. (2022). Linking urbanization and air quality together: A review and a perspective on the future sustainable urban development. Journal of Cleaner Production, 346, 130988. https://doi.org/10.1016/j.jclepro.2022.130988

The Impact of the Transformation of Agricultural Lands into Urbanized Areas on Micro-Scale Air Pollutants: The Case of Yalıncak, Trabzon

Year 2025, Volume: 28 Issue: 6, 1445 - 1457
https://doi.org/10.18016/ksutarimdoga.vi.1623025

Abstract

Soil is a vital non-renewable resource and the main basis of agriculture. However, urbanization and growing non-agricultural demands are steadily reducing agricultural lands. This situation brings with it many environmental problems, especially in cities, and leads to deterioration of air quality at micro and macro scales. One of the important functions of agricultural soils is to store large amounts of carbon through organic matter accumulation. Agricultural areas help improve air quality by limiting wind-borne dust and particulates. The study area was agricultural land prior to 2009. However, half of the study area was opened to construction and currently provides mass housing services. Within the scope of the research, pollutant (PM2.5, PM10, CO, CO2) measurements were made in both study areas, and the obtained data were compared, and the effect of agricultural areas on micro air quality was examined. According to the obtained results, it was observed that carbon monoxide (CO) and carbon dioxide (CO₂) levels in agricultural areas were lower compared to constructed areas. CO levels were measured between 1.09 µg/m³ and 2.87 µg/m³ in agricultural areas and between 2.09 µg/m³ and 2.98 µg/m³ in built-up areas. Similarly, thanks to agricultural vegetation, CO₂ levels remained between 251.47 µg/m³ and 429.97 µg/m³ in agricultural areas and between 411.75 µg/m³ and 520.59 µg/m³ in built-up areas. These findings indicate that agricultural lands enhance carbon absorption, reduce particulate matter, and are vital for sustainable urbanization.

References

  • Akseki, H., & Meşhur, M. Ç. (2013). Kentsel yayılma sonucu yapılaşmaya açılan verimli tarım alanları: Konya kenti deneyimleri. Megaron, 8(3), 165-174.
  • Aneja, V. P., Schlesinger, W. H., & Erisman, J. W. (2009). Effects of agriculture upon the air quality and climate: research, policy, and regulations. Environ. Sci. Technology. 43. 4234-4240.
  • Barnes, K. B., Morgan, J. M., Roberge, M. C., & Lowe, S. (2001). Sprawl development, its patterns, consequences, and measurement. Center for Geographic Information Sciences, Towson University.
  • Bruegmann, R. (2005). Sprawl: A compact history. Chicago: The University of Chicago Press.
  • Chen, Y., Yu, P., Wang, L., Chen, Y., & Chan, E. H. W. (2024). The impact of rice-crayfish field on socio-ecological system in traditional farming areas: Implications for sustainable agricultural landscape transformation. Journal of Cleaner Production, 434, 139625. https://doi.org/10.1016/j.jclepro.2024.139625
  • Donnelly, A., Misstear, B., & Broderick, B. (2015). Real-time air quality forecasting using integrated parametric and non-parametric regression techniques. Atmospheric Environment, 103, 53–65. https://doi.org/10.1016/ j.atmosenv.2014.12.033
  • Duan, J., Ren, C., Wang, S., Zhang, X., Reis, S., Xu, J., & Gu, B. (2021). Consolidation of agricultural land can contribute to agricultural sustainability in China. Nature Food, 2(12), 1014-1022. https://doi.org/10.1038/ s43016-021-00415-5
  • Fatima, S., Abbas, S., Rebi, A., & Ying, Z. (2024). Sustainable forestry and environmental impacts: Assessing the economic, environmental, and social benefits of adopting sustainable agricultural practices. Ecological Frontiers.44. 1119-1127
  • Gulpınar Sekban, D. U., & Acar, C. (2024a). Evaluation of the variables affecting usage preferences in reclaimed areas through design focus and intensity. European Planning Studies, 32(1), 121–147. https://doi.org/10.1080/ 09654313.2023.2177099
  • Gulpınar Sekban, D. U., & Düzgüneş, E. (2021). Planting design approach in sustainable urban planning. International Journal of Built Environment and Sustainability, 8(2), 63–71. https://doi.org/ 10.11113/ijbes.v8.n2.674
  • Gulpınar Sekban, D. U., & Acar, C. (2024b). Combining climate change adaptation strategies with spatial analysis and transforming urban open spaces into landscape design solutions: Case of Trabzon City, Türkiye. Journal of Urban Planning and Development, 150(3), 05024020. https://doi.org/10.1061/JUPDDM.UPENG-4809
  • Gulpınar Sekban, D. U., Bekar, M., & Acar, C. (2019). Evaluation of sustainability potential according to Cittaslow criteria in Turkey/Trabzon. Fresenius Environmental Bulletin, 28(7), 5435–5446.
  • Güneroğlu, N., & Bekar, M. (2016). Agricultural landscape values of Turkey. In Environmental sustainability and landscape management. Sofia: St. Kliment Ohridski University Press.
  • Güneroğlu, N., & Bekar, M. (2016). Agricultural landscape values of Turkey. In Environmental sustainability and landscape management. Sofia: St. Kliment Ohridski University Press.
  • Hua, A. K., & Ping, O. W. (2018). The influence of land-use/land-cover changes on land surface temperature: A case study of Kuala Lumpur metropolitan city. European Journal of Remote Sensing, 51(1), 1049–1069. https://doi.org/10.1080/22797254.2018.1542976
  • Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D., Pozzer, A., 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525, 367–371.
  • Liang, L., & Gong, P. (2020). Urban and air pollution: a multi-city study of long-term effects of urban landscape patterns on air quality trends. Scientific reports, 10(1), 18618.
  • Liu, J. B., Zheng, Y. Q., & Lee, C. C. (2024). Statistical analysis of the regional air quality index of the Yangtze River Delta based on complex network theory. Applied Energy, 357, 122529. https://doi.org/10.1016/ j.apenergy.2024.122529
  • Pielke, R. A., et al. (2011). Land use/land cover changes and climate: Modeling analysis and observational evidence. WIREs Climate Change, 2(6), 828–850. https://doi.org/10.1002/wcc.144
  • Remy, S., Nawrot, T., Fierens, F., Petit, P., Vanderstraeten, P., Nemery, B., Bouland, C., 2011. Health impact of urban air pollution in Belgium. Air Qual. Atmos. Heal. 4, 243–246.
  • Saha, M., Al Kafy, A., Bakshi, A., Nath, H., Alsulamy, S., Rahaman, Z. A., & Saroar, M. (2024). The urban air quality nexus: Assessing the interplay of land cover change and air pollution in emerging South Asian cities. Environmental Pollution, 361, 124877. https://doi.org/10.1016/j.envpol.2024.124877
  • Tomson, M., Kumar, P., Barwise, Y., Perez, P., Forehead, H., French, K., ... Watts, J. F. 2021. Green infrastructure for air quality improvement in street canyons. Environment international, 146, 106288.
  • TÜİK. (2025). Nüfus verileri. https://cip.tuik.gov.tr (Erişim tarihi: 16 Ocak 2025).
  • TC Ortahisar Kaymakamlığı. (2025). Coğrafi durum. http://www.ortahisar.gov.tr/cografi-durum (Erişim tarihi: 16 Ocak 2025).
  • Topçu, T. (2012). Tarım arazilerinin korunması ve etkin kullanılmasına yönelik politikalar. TC Kalkınma Bakanlığı Uzmanlık Tezi.
  • URL-1. (2025). Trabzon nüfusu. https://www.nufusu.com/il/trabzon-nufusu (Erişim tarihi: 16 Ocak 2025). Vialatte, A., Barnaud, C., Blanco, J., Ouin, A., Choisis, J. P., Andrieu, E., Sheeren, D., Ladet, S., Deconchat, M., Clément, F., Esquerré, D., & Sirami, C. (2019). A conceptual framework for the governance of multiple ecosystem services in agricultural landscapes. Landscape Ecology, 34, 1653–1673. https://doi.org/ 10.1007/s10980-019-00829-4
  • Wang, Y., Jia, S., Wang, Z., Chen, Y., Mo, S., & Sze, N. N. (2021). Planning considerations of green corridors for the improvement of biodiversity resilience in suburban areas. Journal of Infrastructure Preservation and Resilience, 2, 1-15. https://doi.org/10.1186/s43065-021-00023-4
  • World Health Organization. (2014). 7 million premature deaths annually linked to air pollution. Arrival at: https://www.who.int/news/item/25-03-2014-7-million-premature-deaths-annually-linked-to-air-pollution.
  • Xu, C., Zhang, Z., Ling, G., Wang, G., & Wang, M. 2022. Air pollutant spatiotemporal evolution characteristics and effects on human health in North China. Chemosphere, 294, 133814.
  • Yao, S., Xie, R., Han, F., & Zhang, Q. (2023). Labor market distortion and air pollution: An empirical analysis based on spatial effect modeling. Journal of Environmental Management, 337, 117743. https://doi.org/10.1016/j.jenvman.2023.117743
  • Zhang, X., Han, L., Wei, H., Tan, X., Zhou, W., Li, W., & Qian, Y. (2022). Linking urbanization and air quality together: A review and a perspective on the future sustainable urban development. Journal of Cleaner Production, 346, 130988. https://doi.org/10.1016/j.jclepro.2022.130988
There are 31 citations in total.

Details

Primary Language English
Subjects Agro-Ecosystem Function and Prediction
Journal Section RESEARCH ARTICLE
Authors

Makbulenur Onur 0000-0003-4511-1284

Early Pub Date August 14, 2025
Publication Date
Submission Date January 19, 2025
Acceptance Date May 16, 2025
Published in Issue Year 2025Volume: 28 Issue: 6

Cite

APA Onur, M. (2025). The Impact of the Transformation of Agricultural Lands into Urbanized Areas on Micro-Scale Air Pollutants: The Case of Yalıncak, Trabzon. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(6), 1445-1457. https://doi.org/10.18016/ksutarimdoga.vi.1623025


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149