Research Article
BibTex RIS Cite

The Impact of Agricultural Total Factor Productivity and Economic Growth on Environmental Quality: The Case of Agriculturally Successful Countries

Year 2025, Volume: 28 Issue: 6, 1531 - 1544
https://doi.org/10.18016/ksutarimdoga.vi.1661043

Abstract

Agricultural productivity supports the increase in agricultural production by ensuring the efficiency of resources used in the agricultural sector, such as water, soil, labour, and capital. In addition, environmental problems such as land expansion and deforestation can be prevented by using efficient agricultural techniques. However, when the literature is analyzed, it is seen that there is no consensus on the impact of agricultural productivity on environmental quality. On the other hand, it is very important to examine the impact of economic growth on the environment. The economic activities of countries that are in line with their growth and development targets affect environmental quality. In this direction, in this study, in the period 1990-2022, in 12 countries (China, USA, Russia, France, Germany, Canada, Australia, India, Brazil, Indonesia, Argentina, and Türkiye) that are successful in agriculture, The impact of agricultural Total Factor Productivity (T-TFP) and economic growth on environmental quality is analyzed by the Augmented Mean Group (AMG) method and Dumitrescu & Hurlin causality analysis. The carbon emission variable is used to represent environmental quality. The findings show that an increase in T-TFP increases environmental quality in China, the USA, Russia, France, Canada, Indonesia, and Australia; that is, the Borlaug hypothesis is valid in these countries. In India, Brazil, Argentina, and Türkiye, the increase in T-TFP decreases the environmental quality; that is, Jevons' Paradox is valid in these countries. Moreover, in the study, environmental quality decreases as economic growth increases in all countries except Germany. Renewable energy consumption increases environmental quality in China, the USA, Brazil, Australia, and Türkiye. Dumitrescu & Hurlin’s causality analysis findings show that there is a bidirectional causality relationship between T-TFP, carbon emissions, and renewable energy consumption. The findings reveal that T-TFP, economic growth, and renewable energy consumption are important in environmental quality.

References

  • Abrol, I. P. (2000). Agriculture in India. Centre for Advancement of Sustainable Agriculture. http://164.100.161.239/reports/sereport/ser/vision2025/agricul.pdf (Erişim Tarihi: 7 Aralık 2024).
  • Agrolearner (2024). 12 Biggest Farming Countries in the World, https://agrolearner.com/biggest-farming-countries-in-the-world/ (Erişim Tarihi: 01 Aralık 2024).
  • Ahmed, K. & Long, W. (2012). Environmental Kuznets Curve and Pakistan: An Empirical Analysis. Economics and Finance,1, 4–13. https://doi.org/10.1016/S2212-5671(12)00003-2
  • Alcott, B. (2005). Jevons' Paradox. Ecological Economics, 54(1), 9-21. https://doi.org/10.1016/j.ecolecon.2005.03.020
  • Alhassan, H. (2021). The Effect of Agricultural Total Factor Productivity on Environmental Degradation in Sub-Saharan Africa. Scientific African, 12, e00740. https://doi.org/10.1016/j.sciaf.2021.e00740
  • Anwar, A., Sarwar, S., Amin, W., & Arshed, N. (2019). Agricultural Practices and Quality of Environment: Evidence for Gobal Perspective. Environmental Science and Pollution Research, 26, 15617-15630. https://doi.org/10.1007/s11356-019-04957-x
  • Aydınbaş, G. (2024). Tarımsal Verimlilik ile İlişkili Faktörlerin Tespiti: BRICS-T Ülkeleri Örneği. Turkish Journal of Agricultural and Natural Sciences, 11(2), 524-535. https://doi.org/10.30910/turkjans.1401633
  • Borlaug, N. (2007). Feeding a Hungry World. Science, 318(5849), 359-359. https://doi.org/10.1126/science.1151062
  • Breusch, T. S. & Pagan, A. R. (1980). The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics. The Review of Economic Studies, 47(1), 239-253. https://doi.org/10.2307/2297111
  • Burney, J. A., Davis, S. J., & Lobell, D. B. (2010). Greenhouse Gas Mitigation by Agricultural Intensification. Proceedings of the National Academy of Sciences, 107(26), 12052-2057. https://doi.org/10.1073/ pnas.0914216107
  • Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Haughton, R. A. & Marland, G. (2007). Contributions to Accelerating Atmospheric CO2 Growth from Economic Activity, Carbon Intensity, and Efficiency of Natural Sinks. Proceedings of the National Academy of Sciences, 104(47), 18866-18870. https://doi.org/10.1073/pnas.0702737104
  • Ceddia, M. G., Sedlacek, S., Bardsley, N. O., & Gomezy Paloma, S. J. G. E. C. (2013). Sustainable Agricultural Intensification or Jevons Paradox? The Role of Public Governance in Tropical South America. Global Environmental Change, 23(5), 1052-1063. https://doi.org/10.1016/j.gloenvcha.2013.07.005
  • Çetin, M., Saygın, S., & Demir, H. (2020). Tarım Sektörünün Çevre Kirliliği Üzerindeki Etkisi: Türkiye Ekonomisi İçin Bir Eşbütünleşme ve Nedensellik Analizi. Tekirdağ Ziraat Fakültesi Dergisi, 17(3), 329-345. https://doi.org/10.33462/jotaf.678764
  • Deng, H., Jin, Y., Pray, C., Hu, R., Xia, E., & Meng, H. (2021). Impact of Public Research and Development and Extension on Agricultural Productivity in China from 1990 to 2013. China Economic Review, 70, 101699. https://doi.org/10.1016/j.chieco.2021.101699
  • Dumitrescu, E. I. & Hurlin, C. (2012). Testing for Granger Non-Causality in Heterogeneous Panels. Economic Modelling, 29(4), 1450-1460. https://doi.org/10.1016/j.econmod.2012.02.014
  • Eberhardt, M. & Bond, S. (2009). Cross-Section Dependence in Nonstationary Panel Models: A Novel Estimator. MPRA Paper No. 17692. https://mpra.ub.uni-muenchen.de/17692/
  • Economic Research Service (USDA) (2024). International Agricultural Productivity. https://www.ers.usda.gov/data-products/international-agricultural-productivity (Erişim Tarihi: 01 Aralık 2024).
  • Esso, L. J., & Keho, Y. (2016). Energy Consumption, Economic Growth and Carbon Emissions: Cointegration and Causality Evidence from Selected African countries. Energy, 114, 492-497. https://doi.org/10.1016/ j.energy.2016.08.010
  • Eştürk, Ö., Aydın, F. F., & Levent, C. (2023). Tarım ve Sanayi Sektörlerinin Çevre Kirliliği Üzerindeki Etkisi: Seçilmiş OECD Üyesi Ülkelerde Ekonometrik Bir Uygulama. Ardahan Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 5(2), 109-116. https://doi.org/10.58588/aru-jfeas.1379450
  • Fuglie, K. (2015). Accounting for Growth in Global Agriculture. Bio-Based and Applied Economics, 4(3), 201-234. https://doi.org/10.13128/BAE-17151
  • Gardner, B. L. (2002). American Agriculture in the Twentieth Century: How it Flourished and What it Cost. Harvard University Press. https://www.hup.harvard.edu/books/9780674019898
  • Geeksforgeeks (2024). Top 10 Agricultural Producing Countries in the World, https://www.geeksforgeeks.org/ agricultural-producing-countries-in-the-world/ (Erişim Tarihi: 01 Aralık 2024).
  • Granger, C. W. (1969). Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica: Journal of the Econometric Society, 37, 424-438. https://doi.org/10.2307/1912791
  • Grossman, G.M. & Krueger, A.B. (1991). Environmental Impacts of a North American Free Trade Agreement (No. w3914). National Bureau of Economic Research. https://ideas.repec.org/p/nbr/nberwo/3914.html
  • Hofstra, N.& Vermeulen, L.C. (2016). Impacts of Population Growth, Urbanisation and Sanitation Changes on Global Human Cryptosporidium Emissions to Surface Water. Health 219(7), 599-605. https://doi.org/10.1016/j.ijheh.2016.06.005
  • International Energy Agency. (2024). Renewable Energy Consumption Per Capita (kWh). https://www.iea.org (Erişim Tarihi: 01 Aralık 2024).
  • Jalil, A. & Mahmud, S. F. (2009). Environment Kuznets Curve for CO2 Emissions:A Cointegration Analysis for China, Energy Policy, 37, 5167–5172. https://doi.org/10.1016/j.enpol.2009.07.044
  • Jebli, B. M., & Youssef, B. S. (2017). Renewable Energy Consumption and Agriculture: Evidence for Cointegration and Granger Causality for Tunisian Economy. International Journal of Sustainable Development & World Ecology, 24(2), 149-158. https://mpra.ub.uni-muenchen.de/68018/
  • Jethva, H., Torres, O., Field, R. D., Lyapustin, A., Gautam, R., & Kayetha, V. (2019). Connecting Crop Productivity, Residue Fires, and Air Quality over Nrthern India. Scientific Reports, 9(1), 16594. https://doi.org/10.1038/s41598-019-52799-x
  • Karaer, F., & Gürlük, S. (2003). Gelişmekte Olan Ülkelerde Tarım-Çevre-Ekonomi Etkileşimi. Doğuş Üniversitesi Dergisi, 4(2), 197-206. https://dergipark.org.tr/tr/pub/doujournal/issue/66649/1042855
  • Khan, A. N., Ghauri, B. M., Jilani, R., & Rahman, S. (2011). Climate Change: Emissions and Sinks of Greenhouse Gases in Pakistan. Pakistan Space and Upper Atmosphere Research Commission (SUPARCO), 293, 146-159. https://pecongress.org.pk/wp-content/uploads/2024/06/11-Climate-Change-Emissions-and-Sinks-of-Greenhouse-Gases-in-P.pdf
  • Kılavuz, E., & Erdem, İ. (2019). Dünyada Tarım 4.0 Uygulamaları ve Türk Tarımının Dönüşümü. Social Sciences, 14(4), 133-157. http://dx.doi.org/10.12739/NWSA.2019.14.4.3C0189
  • Kukal, M. S., & Irmak, S. (2020). Impact of Irrigation on Interannual Variability in United States Agricultural Productivity. Agricultural Water Management, 234, 106141. https://doi.org/10.1016/j.agwat.2020.106141
  • Lobell, D. B., Baldos, U. L. C., & Hertel, T. W. (2013). Climate Adaptation as Mitigation: The Case of Agricultural Investments. Environmental Research Letters, 8(1), 015012. http://iopscience.iop.org/1748-9326/8/1/015012
  • Ma, L., Zhang, Y., Chen, S., Yu, L., & Zhu, Y. (2022). Environmental Effects and Their Causes of Agricultural Production: Evidence from the Farming Regions of China. Ecological Indicators, 144, 109549. https://doi.org/10.1016/j.ecolind.2022.109549
  • Nin-Pratt, A., Yu, B., & Fan, S. (2010). Comparisons of Agricultural Productivity Growth in China and India. Journal of Productivity Analysis, 33, 209-223. https://doi.org/10.1007/s11123-009-0156-4
  • Osadume, R., & University, E. O. (2021). Impact of Economic Growth on Carbon Emissions in Selected West African Countries, 1980–2019. Journal of Money and Business, 1(1), 8-23. https://doi.org/10.1108/JMB-03-2021-0002
  • Özbay, Ü. (2023). Türkiye’de Sanayileşme, CO2 Emisyonu, Ekonomik Büyüme ve Tarımsal Üretim İlişkisi: Ampirik Bir Uygulama. Tarım Ekonomisi Dergisi, 29(2), 79-91. https://doi.org/10.24181/tarekoder.1311715
  • Özkurt, İ. C. (2024). İklim Değişikliğinin Türkiye’de Tarımsal Üretime Etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 27(Ek Sayı 1 (Suppl 1), 263-275. https://doi.org/10.18016/ ksutarimdoga.vi.1394627
  • Pesaran, M. H. & Yamagata, T. (2008). Testing Slope Homogeneity in Large Panels. Journal of Econometrics, 142(1), 50-93. https://doi.org/10.1016/j.jeconom.2007.05.010
  • Pesaran, M. H. (2004). General Diagnostic Tests for Cross Section Dependence in Panels. Faculty of Economics, 1240(1),13-49. https://doi.org/10.17863/CAM.5113
  • Pesaran, M. H. (2007). A Simple Panel Unit Root Test in the Presence of Cross-Section Dependence. Journal of Applied Econometrics, 22, 265-312. https://doi.org/10.1002/jae.951
  • Pesaran, M. H., Ullah, A. & Yamagata, T. (2008). A Bias-Adjusted LM Test of Error Cross Section Independence. The Econometrics Journal, 11(1), 105-127. https://doi.org/10.1111/j.1368-423X.2007.00227.x
  • Rada, N., Liefert, W., & Liefert, O. (2020). Evaluating Agricultural Productivity and Policy in Russia. Journal of Agricultural Economics, 71(1), 96-117. https://doi.org/10.1111/1477-9552.12338
  • Reese, S., & Westerlund, J. (2016). Panicca: Panic on Cross-Section Averages. Journal of Applied Econometrics, 31(6), 961-981. https://www.jstor.org/stable/26609658
  • Rudel, T. K., Schneider, L., Uriarte, M., Turner, B. L., DeFries, R., Lawrence, D., Geoghegan, J., Hecht, S. Ickowitz, A., Lambin, E. F., Birkenholtz, T., Baptista, S. & Grau, R. (2009). Agricultural Intensification and Changes in Cultivated Areas 1970–2005. Proceedings of the National Academy of Sciences, 106(49), 20675-20680. https://doi.org/10.1073/pnas.0812540106
  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural Sustainability and Intensive Production Oractices. Nature, 418(6898), 671-677. https://doi.org/10.1038/nature01014
  • Turgut, E., & Gökten, Y. S. (2023). Jevons Paradoksu Hala Geçerli mi? Yükselen Piyasa Ekonomileri Örneği. Verimlilik Dergisi, 57(1), 85-102. https://doi.org/10.51551/verimlilik.1068682
  • Waheed, R., Chang, D., Sarwar, S., & Chen, W. (2018). Forest, Agriculture, Renewable Energy, and CO2 Emission. Journal of Cleaner Production, 172, 4231-4238. https://doi.org/10.1016/j.jclepro.2017.10.287
  • Wang, S. L., Heisey, P., Schimmelpfennig, D., & Ball, E. (2015). US Agricultural Productivity Growth: The Past, Challenges, and the Future. Amber Waves: The Economics of Food, Farming. Natural Resources, and Rural America,8,1-15. https://www.researchgate.net/publication/283054405_US_Agricultural_Productivity_Growth_the_Past_Challenges_and_the_Future
  • Westerlund, J. & Edgerton, D. L. (2007). A Panel Bootstrap Cointegration Test. Economics Letters, 97(3), 185-190. https://doi.org/10.1016/j.econlet.2007.03.003
  • World Bank (2024). CO2 Emissions (Metric Tons Per Capita). https://data.worldbank.org (Erişim Tarihi: 01 Aralık 2024).
  • World Bank. (2024). Gross Domestic Product Per Capita (Constant 2015 US$). https://data.worldbank.org (Erişim Tarihi: 01 Aralık 2024).
  • Xu, J., Wang, Y., Zhao, X., Etuah, S., Liu, Z., & Zhu, H. (2023). Can Agricultural Trade Improve Total Factor Productivity? Empirical Evidence from G20 Countries. Frontiers in Sustainable Food Systems, 7, 1100038. https://doi.org/10.3389/fsufs.2023.1100038
  • Yu, Z., Lin, Q., & Huang, C. (2022). Re-measurement of Agriculture Green Total Factor Productivity in China from a Carbon Sink Perspective. Agriculture, 12(12), 2025. https://doi.org/10.3390/agriculture12122025

Tarımsal Toplam Faktör Verimliliği ve Ekonomik Büyümenin Çevre Kalitesi Üzerindeki Etkisi: Tarımda Başarılı Olan Ülkeler Örneği

Year 2025, Volume: 28 Issue: 6, 1531 - 1544
https://doi.org/10.18016/ksutarimdoga.vi.1661043

Abstract

Tarımsal verimlilik su, toprak, emek, sermaye gibi tarım sektöründe kullanılan kaynakların verimliliğini sağlayarak tarımsal üretimin artmasını desteklemektedir. Ayrıca verimli tarım teknikleri kullanılarak arazi genişlemesi ve ormansızlaşma gibi çevresel sorunların önüne de geçilebilmektedir. Fakat literatür incelendiğinde tarımsal verimliliğin çevre kalitesi üzerindeki etkisi konusunda fikir birliğine varılamadığı görülmektedir. Diğer taraftan ekonomik büyümenin çevre üzerinde meydana getirdiği etkinin incelenmesi oldukça önemlidir. Ülkelerin büyüme ve kalkınma hedefleri doğrultusunda gerçekleştirdiği ekonomik faaliyetler çevre kalitesini etkilemektedir. Bu doğrultuda çalışmada, 1990-2022 döneminde tarımda başarılı olan 12 ülkede (Çin, ABD, Rusya, Fransa, Almanya, Kanada, Avustralya, Hindistan, Brezilya, Endonezya, Arjantin ve Türkiye) Tarımsal Toplam Faktör Verimliliği (T-TFV) ve ekonomik büyümenin çevre kalitesi üzerindeki etkisi Artırılmış Ortalama Grup (AMG) yöntemi ve Dumitrescu & Hurlin nedensellik analizi ile incelenmektedir. Çevre kalitesini temsilen karbon emisyonu değişkeni kullanılmıştır. Bulgular Çin, ABD, Rusya, Fransa, Kanada, Endonezya ve Avustralya’da T-TFV artışının çevre kalitesini artırdığını göstermektedir. Yani, Borlaug hipotezi bu ülkelerde geçerlidir. Hindistan, Brezilya, Arjantin ve Türkiye’de T-TFV artışı çevre kalitesini azaltmaktadır. Yani, Jevons Paradoksu bu ülkelerde geçerlidir. Ayrıca, çalışmada Almanya hariç diğer tüm ülkelerde ekonomik büyüme arttıkça çevre kalitesi azalmaktadır. Yenilenebilir enerji tüketimi Çin, ABD, Brezilya, Avustralya ve Türkiye’de çevre kalitesini artırmaktadır. Dumitrescu & Hurlin nedensellik analizi bulguları ise T-TFV ile karbon emisyonu ve yenilenebilir enerji tüketimi arasında çift yönlü nedenselik ilişkisi olduğunu göstermektedir. Bulgular, T-TFV, ekonomik büyüme ve yenilenebilir enerji tüketiminin çevre kalitesi üzerinde önemli rol oynadığını ortaya koymaktadır.

References

  • Abrol, I. P. (2000). Agriculture in India. Centre for Advancement of Sustainable Agriculture. http://164.100.161.239/reports/sereport/ser/vision2025/agricul.pdf (Erişim Tarihi: 7 Aralık 2024).
  • Agrolearner (2024). 12 Biggest Farming Countries in the World, https://agrolearner.com/biggest-farming-countries-in-the-world/ (Erişim Tarihi: 01 Aralık 2024).
  • Ahmed, K. & Long, W. (2012). Environmental Kuznets Curve and Pakistan: An Empirical Analysis. Economics and Finance,1, 4–13. https://doi.org/10.1016/S2212-5671(12)00003-2
  • Alcott, B. (2005). Jevons' Paradox. Ecological Economics, 54(1), 9-21. https://doi.org/10.1016/j.ecolecon.2005.03.020
  • Alhassan, H. (2021). The Effect of Agricultural Total Factor Productivity on Environmental Degradation in Sub-Saharan Africa. Scientific African, 12, e00740. https://doi.org/10.1016/j.sciaf.2021.e00740
  • Anwar, A., Sarwar, S., Amin, W., & Arshed, N. (2019). Agricultural Practices and Quality of Environment: Evidence for Gobal Perspective. Environmental Science and Pollution Research, 26, 15617-15630. https://doi.org/10.1007/s11356-019-04957-x
  • Aydınbaş, G. (2024). Tarımsal Verimlilik ile İlişkili Faktörlerin Tespiti: BRICS-T Ülkeleri Örneği. Turkish Journal of Agricultural and Natural Sciences, 11(2), 524-535. https://doi.org/10.30910/turkjans.1401633
  • Borlaug, N. (2007). Feeding a Hungry World. Science, 318(5849), 359-359. https://doi.org/10.1126/science.1151062
  • Breusch, T. S. & Pagan, A. R. (1980). The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics. The Review of Economic Studies, 47(1), 239-253. https://doi.org/10.2307/2297111
  • Burney, J. A., Davis, S. J., & Lobell, D. B. (2010). Greenhouse Gas Mitigation by Agricultural Intensification. Proceedings of the National Academy of Sciences, 107(26), 12052-2057. https://doi.org/10.1073/ pnas.0914216107
  • Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Haughton, R. A. & Marland, G. (2007). Contributions to Accelerating Atmospheric CO2 Growth from Economic Activity, Carbon Intensity, and Efficiency of Natural Sinks. Proceedings of the National Academy of Sciences, 104(47), 18866-18870. https://doi.org/10.1073/pnas.0702737104
  • Ceddia, M. G., Sedlacek, S., Bardsley, N. O., & Gomezy Paloma, S. J. G. E. C. (2013). Sustainable Agricultural Intensification or Jevons Paradox? The Role of Public Governance in Tropical South America. Global Environmental Change, 23(5), 1052-1063. https://doi.org/10.1016/j.gloenvcha.2013.07.005
  • Çetin, M., Saygın, S., & Demir, H. (2020). Tarım Sektörünün Çevre Kirliliği Üzerindeki Etkisi: Türkiye Ekonomisi İçin Bir Eşbütünleşme ve Nedensellik Analizi. Tekirdağ Ziraat Fakültesi Dergisi, 17(3), 329-345. https://doi.org/10.33462/jotaf.678764
  • Deng, H., Jin, Y., Pray, C., Hu, R., Xia, E., & Meng, H. (2021). Impact of Public Research and Development and Extension on Agricultural Productivity in China from 1990 to 2013. China Economic Review, 70, 101699. https://doi.org/10.1016/j.chieco.2021.101699
  • Dumitrescu, E. I. & Hurlin, C. (2012). Testing for Granger Non-Causality in Heterogeneous Panels. Economic Modelling, 29(4), 1450-1460. https://doi.org/10.1016/j.econmod.2012.02.014
  • Eberhardt, M. & Bond, S. (2009). Cross-Section Dependence in Nonstationary Panel Models: A Novel Estimator. MPRA Paper No. 17692. https://mpra.ub.uni-muenchen.de/17692/
  • Economic Research Service (USDA) (2024). International Agricultural Productivity. https://www.ers.usda.gov/data-products/international-agricultural-productivity (Erişim Tarihi: 01 Aralık 2024).
  • Esso, L. J., & Keho, Y. (2016). Energy Consumption, Economic Growth and Carbon Emissions: Cointegration and Causality Evidence from Selected African countries. Energy, 114, 492-497. https://doi.org/10.1016/ j.energy.2016.08.010
  • Eştürk, Ö., Aydın, F. F., & Levent, C. (2023). Tarım ve Sanayi Sektörlerinin Çevre Kirliliği Üzerindeki Etkisi: Seçilmiş OECD Üyesi Ülkelerde Ekonometrik Bir Uygulama. Ardahan Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 5(2), 109-116. https://doi.org/10.58588/aru-jfeas.1379450
  • Fuglie, K. (2015). Accounting for Growth in Global Agriculture. Bio-Based and Applied Economics, 4(3), 201-234. https://doi.org/10.13128/BAE-17151
  • Gardner, B. L. (2002). American Agriculture in the Twentieth Century: How it Flourished and What it Cost. Harvard University Press. https://www.hup.harvard.edu/books/9780674019898
  • Geeksforgeeks (2024). Top 10 Agricultural Producing Countries in the World, https://www.geeksforgeeks.org/ agricultural-producing-countries-in-the-world/ (Erişim Tarihi: 01 Aralık 2024).
  • Granger, C. W. (1969). Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica: Journal of the Econometric Society, 37, 424-438. https://doi.org/10.2307/1912791
  • Grossman, G.M. & Krueger, A.B. (1991). Environmental Impacts of a North American Free Trade Agreement (No. w3914). National Bureau of Economic Research. https://ideas.repec.org/p/nbr/nberwo/3914.html
  • Hofstra, N.& Vermeulen, L.C. (2016). Impacts of Population Growth, Urbanisation and Sanitation Changes on Global Human Cryptosporidium Emissions to Surface Water. Health 219(7), 599-605. https://doi.org/10.1016/j.ijheh.2016.06.005
  • International Energy Agency. (2024). Renewable Energy Consumption Per Capita (kWh). https://www.iea.org (Erişim Tarihi: 01 Aralık 2024).
  • Jalil, A. & Mahmud, S. F. (2009). Environment Kuznets Curve for CO2 Emissions:A Cointegration Analysis for China, Energy Policy, 37, 5167–5172. https://doi.org/10.1016/j.enpol.2009.07.044
  • Jebli, B. M., & Youssef, B. S. (2017). Renewable Energy Consumption and Agriculture: Evidence for Cointegration and Granger Causality for Tunisian Economy. International Journal of Sustainable Development & World Ecology, 24(2), 149-158. https://mpra.ub.uni-muenchen.de/68018/
  • Jethva, H., Torres, O., Field, R. D., Lyapustin, A., Gautam, R., & Kayetha, V. (2019). Connecting Crop Productivity, Residue Fires, and Air Quality over Nrthern India. Scientific Reports, 9(1), 16594. https://doi.org/10.1038/s41598-019-52799-x
  • Karaer, F., & Gürlük, S. (2003). Gelişmekte Olan Ülkelerde Tarım-Çevre-Ekonomi Etkileşimi. Doğuş Üniversitesi Dergisi, 4(2), 197-206. https://dergipark.org.tr/tr/pub/doujournal/issue/66649/1042855
  • Khan, A. N., Ghauri, B. M., Jilani, R., & Rahman, S. (2011). Climate Change: Emissions and Sinks of Greenhouse Gases in Pakistan. Pakistan Space and Upper Atmosphere Research Commission (SUPARCO), 293, 146-159. https://pecongress.org.pk/wp-content/uploads/2024/06/11-Climate-Change-Emissions-and-Sinks-of-Greenhouse-Gases-in-P.pdf
  • Kılavuz, E., & Erdem, İ. (2019). Dünyada Tarım 4.0 Uygulamaları ve Türk Tarımının Dönüşümü. Social Sciences, 14(4), 133-157. http://dx.doi.org/10.12739/NWSA.2019.14.4.3C0189
  • Kukal, M. S., & Irmak, S. (2020). Impact of Irrigation on Interannual Variability in United States Agricultural Productivity. Agricultural Water Management, 234, 106141. https://doi.org/10.1016/j.agwat.2020.106141
  • Lobell, D. B., Baldos, U. L. C., & Hertel, T. W. (2013). Climate Adaptation as Mitigation: The Case of Agricultural Investments. Environmental Research Letters, 8(1), 015012. http://iopscience.iop.org/1748-9326/8/1/015012
  • Ma, L., Zhang, Y., Chen, S., Yu, L., & Zhu, Y. (2022). Environmental Effects and Their Causes of Agricultural Production: Evidence from the Farming Regions of China. Ecological Indicators, 144, 109549. https://doi.org/10.1016/j.ecolind.2022.109549
  • Nin-Pratt, A., Yu, B., & Fan, S. (2010). Comparisons of Agricultural Productivity Growth in China and India. Journal of Productivity Analysis, 33, 209-223. https://doi.org/10.1007/s11123-009-0156-4
  • Osadume, R., & University, E. O. (2021). Impact of Economic Growth on Carbon Emissions in Selected West African Countries, 1980–2019. Journal of Money and Business, 1(1), 8-23. https://doi.org/10.1108/JMB-03-2021-0002
  • Özbay, Ü. (2023). Türkiye’de Sanayileşme, CO2 Emisyonu, Ekonomik Büyüme ve Tarımsal Üretim İlişkisi: Ampirik Bir Uygulama. Tarım Ekonomisi Dergisi, 29(2), 79-91. https://doi.org/10.24181/tarekoder.1311715
  • Özkurt, İ. C. (2024). İklim Değişikliğinin Türkiye’de Tarımsal Üretime Etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 27(Ek Sayı 1 (Suppl 1), 263-275. https://doi.org/10.18016/ ksutarimdoga.vi.1394627
  • Pesaran, M. H. & Yamagata, T. (2008). Testing Slope Homogeneity in Large Panels. Journal of Econometrics, 142(1), 50-93. https://doi.org/10.1016/j.jeconom.2007.05.010
  • Pesaran, M. H. (2004). General Diagnostic Tests for Cross Section Dependence in Panels. Faculty of Economics, 1240(1),13-49. https://doi.org/10.17863/CAM.5113
  • Pesaran, M. H. (2007). A Simple Panel Unit Root Test in the Presence of Cross-Section Dependence. Journal of Applied Econometrics, 22, 265-312. https://doi.org/10.1002/jae.951
  • Pesaran, M. H., Ullah, A. & Yamagata, T. (2008). A Bias-Adjusted LM Test of Error Cross Section Independence. The Econometrics Journal, 11(1), 105-127. https://doi.org/10.1111/j.1368-423X.2007.00227.x
  • Rada, N., Liefert, W., & Liefert, O. (2020). Evaluating Agricultural Productivity and Policy in Russia. Journal of Agricultural Economics, 71(1), 96-117. https://doi.org/10.1111/1477-9552.12338
  • Reese, S., & Westerlund, J. (2016). Panicca: Panic on Cross-Section Averages. Journal of Applied Econometrics, 31(6), 961-981. https://www.jstor.org/stable/26609658
  • Rudel, T. K., Schneider, L., Uriarte, M., Turner, B. L., DeFries, R., Lawrence, D., Geoghegan, J., Hecht, S. Ickowitz, A., Lambin, E. F., Birkenholtz, T., Baptista, S. & Grau, R. (2009). Agricultural Intensification and Changes in Cultivated Areas 1970–2005. Proceedings of the National Academy of Sciences, 106(49), 20675-20680. https://doi.org/10.1073/pnas.0812540106
  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural Sustainability and Intensive Production Oractices. Nature, 418(6898), 671-677. https://doi.org/10.1038/nature01014
  • Turgut, E., & Gökten, Y. S. (2023). Jevons Paradoksu Hala Geçerli mi? Yükselen Piyasa Ekonomileri Örneği. Verimlilik Dergisi, 57(1), 85-102. https://doi.org/10.51551/verimlilik.1068682
  • Waheed, R., Chang, D., Sarwar, S., & Chen, W. (2018). Forest, Agriculture, Renewable Energy, and CO2 Emission. Journal of Cleaner Production, 172, 4231-4238. https://doi.org/10.1016/j.jclepro.2017.10.287
  • Wang, S. L., Heisey, P., Schimmelpfennig, D., & Ball, E. (2015). US Agricultural Productivity Growth: The Past, Challenges, and the Future. Amber Waves: The Economics of Food, Farming. Natural Resources, and Rural America,8,1-15. https://www.researchgate.net/publication/283054405_US_Agricultural_Productivity_Growth_the_Past_Challenges_and_the_Future
  • Westerlund, J. & Edgerton, D. L. (2007). A Panel Bootstrap Cointegration Test. Economics Letters, 97(3), 185-190. https://doi.org/10.1016/j.econlet.2007.03.003
  • World Bank (2024). CO2 Emissions (Metric Tons Per Capita). https://data.worldbank.org (Erişim Tarihi: 01 Aralık 2024).
  • World Bank. (2024). Gross Domestic Product Per Capita (Constant 2015 US$). https://data.worldbank.org (Erişim Tarihi: 01 Aralık 2024).
  • Xu, J., Wang, Y., Zhao, X., Etuah, S., Liu, Z., & Zhu, H. (2023). Can Agricultural Trade Improve Total Factor Productivity? Empirical Evidence from G20 Countries. Frontiers in Sustainable Food Systems, 7, 1100038. https://doi.org/10.3389/fsufs.2023.1100038
  • Yu, Z., Lin, Q., & Huang, C. (2022). Re-measurement of Agriculture Green Total Factor Productivity in China from a Carbon Sink Perspective. Agriculture, 12(12), 2025. https://doi.org/10.3390/agriculture12122025
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Economics (Other)
Journal Section RESEARCH ARTICLE
Authors

Selin Dinçer 0000-0003-3233-493X

Fatih Akın 0000-0002-7741-4004

Early Pub Date August 14, 2025
Publication Date
Submission Date March 19, 2025
Acceptance Date July 20, 2025
Published in Issue Year 2025Volume: 28 Issue: 6

Cite

APA Dinçer, S., & Akın, F. (2025). Tarımsal Toplam Faktör Verimliliği ve Ekonomik Büyümenin Çevre Kalitesi Üzerindeki Etkisi: Tarımda Başarılı Olan Ülkeler Örneği. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(6), 1531-1544. https://doi.org/10.18016/ksutarimdoga.vi.1661043


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149