Pediyosin Uygulamasının Listeria monocytogenes’in Büyüme ve Yaşam Sürecine Etkisinin Modellenmesi
Year 2025,
Volume: 28 Issue: 6, 1405 - 1413
Zehra Tuğçe Toprak
,
Pınar Şanlıbaba
,
Sencer Buzrul
Abstract
Bu çalışmanın amacı, pediyosinin Listeria monocytogenes üzerindeki etkisini optimum sıcaklık koşullarında incelemek ve pediyosin varlığında ya da yokluğunda bakterinin büyüme ve hayatta kalma süreçlerini modellemektir. Çalışmada, 28 farklı L. monocytogenes suşunun pediyosine duyarlılığı Minimum İnhibitör Konsantrasyon (MIK) testleri ile değerlendirilmiştir. Pediyosinin antimikrobiyal etkisini belirlemek için suşlara 7 µg/mL ve 12 µg/mL konsantrasyonlarında pediyosin uygulanmış, 35 °C’de bakteriyel büyüme üzerindeki inhibitör etkisi incelenmiştir. Model parametreleri, R-BioXL yazılımı kullanılarak tahmin edilmiş ve model performansı R², düzeltilmiş R² (R²ₐdⱼ) ve RMSE değerleri ile desteklenmiştir. Sonuçlar, L. monocytogenes 287-1P suşunun pediyosin direncinin diğer suşlara göre daha yüksek olduğunu göstermiştir. Pediyosin, büyüme hızını düşürerek patojenin çoğalmasını geciktirse de, tek başına uygulandığında sınırlı bir kontrol sağlamaktadır. Bu nedenle, pediyosinin diğer koruyucu yöntemlerle birlikte, “hurdle teknolojisi” kapsamında kullanılması önerilmektedir. Elde edilen bulgular, pediyosinin gıda ürünlerinde L. monocytogenes kontrolünde biyokoruyucu ajan olarak potansiyel taşıdığını ve bu sayede mikrobiyal güvenliğin artırılarak halk sağlığının korunmasına katkı sağlanabileceğini ortaya koymaktadır. Ayrıca, pediyosin etkisinin modellenmesi, patojenin büyüme ve hayatta kalma dinamiklerinin değerlendirilmesinde etkili bir araç olarak önem taşımaktadır.
Project Number
Ankara Üniversitesi Bilimsel Araştırma Projeleri (BAP), Proje Numarası: 21H0443002
References
- Bahrami, A., Moaddabdoost Baboli, Z., Schimmel, K., Jafari, S. M., & Williams, L. (2020). Efficiency of novel processing technologies for the control of Listeria monocytogenes in food products. Trends in Food Science and Technology, 96, 61–78. https://doi.org/10.1016/j.tifs.2019.12.009
- Balandin, S. V., Sheremeteva, E. V., & Ovchinnikova, T. V. (2019). Pediocin-Like Antimicrobial Peptides of Bacteria. Biochemistry, 84, 464–478. https://doi.org/10.1134/S000629791905002X
- Bruschi, C., Komora, N., Castro, S. M., Saraiva, J., Ferreira, V. B., & Teixeira, P. (2017). High hydrostatic pressure effects on Listeria monocytogenes and L. innocua: Evidence for variability in inactivation behaviour and in resistance to pediocin bacHA-6111-2. Food Microbiology, 64, 226-231. http://dx.doi.org/10.1016/j.fm.2017.01.011
- Chen, C. M., Sebranek, J. G., Dickson, J. S., & Mendonca, A. F. (2004). Combining pediocin (ALTA 2341) with postpackaging thermal pasteurization for control of Listeria monocytogenes on frankfurters. Journal of Food Protection, 67 (9), 1855-1865. https://doi.org/10.4315/0362-028x-67.9.1855
- Çolak, F. Ç., Dığrak, M., & Aksoy, Z. (2008). Kahramanmaras’ta Tüketime Sunulan Tavuk Etlerinde Listeria Türlerinin Patojenitesi’nin Belirlenmesi. KSÜ Doğa Bilimleri Dergisi, 11(1), 8-12.
- EFSA (2023). European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2022 Zoonoses Report. EFSA Journal, 21, e8442. https://doi.org/10.2903/j.efsa.2023.8442
- Espitia, P. J. P., Otoni, C. G., & Soares, N. F. F. (2016). Pediocin Applications in Antimicrobial Food Packaging Systems. In: Antimicrobial Food Packaging, Editor(s): Jorge Barros-Velázquez, Academic Press, Chapter 36, Pages 445-454, ISBN 9780128007235, https://doi.org/10.1016/B978-0-12-800723-5.00036-X
- Fidan, H., Esatbeyoglu, T., Simat, V., Trif, M., Tabanelli, G., Kostka, T., Montanari, C., Ibrahim, S. A., & Özogul, F. (2022). Recent developments of lactic acid bacteria and their metabolites on foodborne pathogens and spoilage bacteria: Facts and gaps. Food Bioscience, 47, 101741. https://doi.org/10.1016/j.fbio.2022.101741.
- Gray, J. A., Chandry, P. S., Kaur, M., Kocharunchitt, C., Bowman, J. P., & Fox, E. M. (2018). Novel Biocontrol Methods for Listeria monocytogenes Biofilms in Food Production Facilities. Frontiers in Microbiology, 9, 605. https://doi.org/10.3389/fmicb.2018.00605
- Grigore-Gurgu, L., Bucur, F. I., Mihalache, O. A., & Nicolau, A. I. (2024). Comprehensive Review on the Biocontrol of Listeria monocytogenes in Food Products. Foods, 13(5), 734.
https://doi.org/10.3390/foods13050734
- Huang, Y., Luo, Y., Zhai, Z., Zhang, H., Yang, C., Tian, H., Li, Z., Feng, J., Liu, H., & Hao, Y. (2009). Characterization and application of an anti-Listeria bacteriocin produced by Pediococcus pentosaceus 05-10 isolated from Sichuan Pickle, a traditionally fermented vegetable product from China. Food Control, 20, 1030-1035. https://doi.org/10.1016/j.foodcont.2008.12.008
- Jagannath, A., Ramesh, A., Ramesh, M. N., Chandrashekar, A., & Varadaraj, M. C. (2001). Predictive model for the behavior of Listeria monocytogenes Scott A in Shrikhand, prepared with a biopreservative, pediocin K7. Food Microbiology, 18(3), 335-343. https://doi.org/10.1006/fmic.2001.0406.
- Khan, I., Tango, C. N., Miskeen, S., Lee, B. H., & Oh, D. H. (2017). Hurdle technology: A novel approach for enhanced food quality and safety – A review. Food Control, 73, 1426-1444. https://doi.org/10.1016/j.foodcont.2016.11.010
- Khanipour, E., Flint, S. H., McCarthy, O. J., Golding, M., Palmer, J., Ratkowsky, D. A., Ross, T., & Tramplin, M. (2016). Modelling the Combined Effects of Salt, Sorbic Acid and Nisin on the Probability of Growth of Clostridium sporogenes in a Controlled Environment (Nutrient Broth). Food Control, 62, 32–43.
https://doi.org/10.1016/j.foodcont.2015.10.012
- Khorshidian, N., Khanniri, E., Mohammadi, M., Mortazavian, A. M., & Yousefi, M. (2021). Antibacterial Activity of Pediocin and Pediocin-Producing Bacteria Against Listeria monocytogenes in Meat Products. Frontiers in Microbiology, 12, 709959. https://doi.org/10.3389/fmicb.2021.709959
- Kiran, F., & Osmanagaoglu, O. (2014). Inhibition of Listeria monocytogenes in chicken meat by pediocin AcH/PA-1 produced by Pediococcus pentosaceus OZF. Agro Food Industry Hi-Tech, 25, 66-69.
- Komora, N., Maciel, C., Pinto, C. A., Ferreira, V., Brandão, T. R., Saraiva, J. M., Castro, S. M., & Teixeira, P. (2020). Non-thermal approach to Listeria monocytogenes inactivation in milk: the combined effect of high pressure, pediocin PA-1 and bacteriophage P100. Food Microbiology, 86, 103315. https://doi.org/10.1016/ j.fm.2019.103315
- Kumariya, R., Garsa, A. K., Rajput, Y. S., Sood, S. K., Akhtar, N., & Patel, S. (2019). Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis, 128, 171-177. https://doi.org/10.1016/j.micpath.2019.01.002
- Lahiri, D., Nag, M., Dutta, B., Sarkar, T., Pati, S., Basu, D., Abdul Kari, Z., Wei, L.S., Smaoui, S., Wen Goh, K., & Ray, R. R. (2022). Bacteriocin: A natural approach for food safety and food security. Frontiers in Bioengineering and Biotechnology, 10, 1005918. https://doi.org/10.3389/fbioe.2022.1005918
- Liu, G., Nie, R., Liu, Y., & Mehmood, A. (2022). Combined antimicrobial effect of bacteriocins with other hurdles of physicochemic and microbiome to prolong shelf life of food: A review. Science of The Total Environment, 825, 154058. https://doi.org/10.1016/j.scitotenv.2022.154058
- Lynch, D., Hill, C., Field, D., & Begley, M. (2021). Inhibition of Listeria monocytogenes by the Staphylococcus Capitis-Derived Bacteriocin Capidermicin. Food Microbiology, 94, 103661. https://doi.org/10.1016/ j.fm.2020.103661
- Maks, N., Zhu, L., Juneja, V. K., Ravishankar, S. (2010). Sodium lactate, sodium diacetate and pediocin: Effects and interactions on the thermal inactivation of Listeria monocytogenes on bologna. Food Microbiology, 27 (1), 64-69. https://doi.org/10.1016/j.fm.2009.08.004
- Maldonado-Barragán, A., Alegría-Carrasco, E., Blanco, Md. M., Vela, A.I., Fernández-Garayzábal, J. F., Rodríguez, J. M., & Gibello A. (2022). Garvicins AG1 and AG2: Two Novel Class IId Bacteriocins of Lactococcus garvieae Lg-Granada. International Journal of Molecular Science, 23, 4685.
https://doi.org/10.3390/ijms23094685
- Martín, I., Rodríguez, A., Delgado, J., & Córdoba, J. J. (2022). Strategies for Biocontrol of Listeria monocytogenes Using Lactic Acid Bacteria and Their Metabolites in Ready-to-Eat Meat- and Dairy-Ripened Products. Foods, 11(4), 542. https://doi.org/10.3390/foods11040542
- Mckellar, R. C., & Lu, X. (2003). Modelling Responses in Food. 1st Edition, 360 pages, CRC Press, ISBN: 9780429210969, https://doi.org/10.1201/9780203503942
- Mejlholm, O., &Dalgaard, P. (2007). Modeling and predicting the growth boundary of Listeria monocytogenes in lightly preserved seafood. Journal of Food Protection, 70(1), 70-84. https://doi.org/10.4315/0362-028x-70.1.70
- Morandi, S., Silvetti, T., Battelli, G., & Brasca, M. (2019). Can lactic acid bacteria be an efficient tool for controlling Listeria monocytogenes contamination on cheese surface? The case of Gorgonzola cheese. Food Control, 96, 499-507. https://doi.org/10.1016/j.foodcont.2018.10.012.
- O’Connor, P. M., Kuniyoshi, T. M., Oliveira, R. P., Hill, C., Ross, R. P., & Cotter, P. D. (2020). Antimicrobials for food and feed; a bacteriocin perspective. Current Opinion in Biotechnology, 61, 160-167. https://doi.org/10.1016/j.copbio.2019.12.023
- Öksüz, H. B., & Buzrul, S. (2024). Regression tool in MS Excel® spreadsheets for biological data: R-BioXL. Akademik Gıda, 22, 224-235. https://doi.org/10.24323/akademik-gida.1603881
- Połaska, M., & Sokołowska, B. (2019). Bacteriophages-a new hope or a huge problem in the food industry. AIMS Microbiology, 5, 324-346. https://doi.org/10.3934/microbiol.2019.4.324
- Ramos, B., Brandão, T. R., Teixeira, P., & Silva, C. L. (2020). Biopreservation approaches to reduce Listeria monocytogenes in fresh vegetables. Food Microbiology, 85, 103282. https://doi.org/10.1016/j.fm.2019.103282
- Rodríguez, J. M., Martínez, M. I., & Kok, J. (2002). Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Critical Reviev of Food Science and Nutrition, 42(2), 91-121. https://doi.org/10.1080/ 10408690290825475
- Şanlıbaba, P., Tezel, B. U., & Çakmak, G. A. (2018). “Prevalence and Antibiotic Resistance of Listeria monocytogenes Isolated from Ready–to–Eat Foods in Turkey”, Hindawi Journal of Food Quality, Article ID 7693782, 9 pages, https://doi.org/10.1155/2018/7693782
- Thakur, M., Asrani, R. K., & Patial, V. (2018). Listeria monocytogenes: A Food-Borne Pathogen, In: Handbook of Food Bioengineering, Foodborne Diseases, Editor(s): Alina Maria Holban, Alexandru Mihai Grumezescu, Academic Press, Chapter 6, Pages 157-192, ISBN 9780128114445, https://doi.org/10.1016/B978-0-12-811444-5.00006-3
- Zacharof, M. P., & Lovitt, R. W. (2012). Bacteriocins Produced by Lactic Acid Bacteria: A Review Article. APCBEE Procedia, 2, 50–56. https://doi.org/10.1016/j.apcbee.2012.06.010
Modeling the Effect of Pediocin Application on the Growth and Survival of Listeria monocytogenes
Year 2025,
Volume: 28 Issue: 6, 1405 - 1413
Zehra Tuğçe Toprak
,
Pınar Şanlıbaba
,
Sencer Buzrul
Abstract
The aim of this study was to investigate the effect of pediocin on Listeria monocytogenes under optimal temperature conditions and to model the bacterial growth and survival dynamics in the presence and absence of pediocin. The susceptibility of 28 L. monocytogenes strains to pediocin was evaluated using Minimum Inhibitory Concentration (MIC) tests. To determine the antimicrobial efficacy of pediocin, solutions at concentrations of 7 µg/mL and 12 µg/mL were applied to the strains, including the reference strain, and the inhibitory effect on bacterial growth was assessed at 35 °C. Model parameters were estimated using R-BioXL software, with model performance supported by R², adjusted R², and RMSE values. The results showed that the L. monocytogenes 287-1P strain exhibited higher resistance to pediocin compared to other strains. Although pediocin reduced the growth rate and delayed bacterial proliferation, its effect as a sole treatment was limited. Therefore, it is recommended that pediocin be used in combination with other preservative strategies within a hurdle technology framework. The findings indicate that pediocin has potential as a bioprotective agent for controlling L. monocytogenes in food products, contributing to enhanced microbial safety and public health protection. Furthermore, modeling the effect of pediocin provides a valuable tool for evaluating the growth and survival dynamics of this pathogen.
Project Number
Ankara Üniversitesi Bilimsel Araştırma Projeleri (BAP), Proje Numarası: 21H0443002
References
- Bahrami, A., Moaddabdoost Baboli, Z., Schimmel, K., Jafari, S. M., & Williams, L. (2020). Efficiency of novel processing technologies for the control of Listeria monocytogenes in food products. Trends in Food Science and Technology, 96, 61–78. https://doi.org/10.1016/j.tifs.2019.12.009
- Balandin, S. V., Sheremeteva, E. V., & Ovchinnikova, T. V. (2019). Pediocin-Like Antimicrobial Peptides of Bacteria. Biochemistry, 84, 464–478. https://doi.org/10.1134/S000629791905002X
- Bruschi, C., Komora, N., Castro, S. M., Saraiva, J., Ferreira, V. B., & Teixeira, P. (2017). High hydrostatic pressure effects on Listeria monocytogenes and L. innocua: Evidence for variability in inactivation behaviour and in resistance to pediocin bacHA-6111-2. Food Microbiology, 64, 226-231. http://dx.doi.org/10.1016/j.fm.2017.01.011
- Chen, C. M., Sebranek, J. G., Dickson, J. S., & Mendonca, A. F. (2004). Combining pediocin (ALTA 2341) with postpackaging thermal pasteurization for control of Listeria monocytogenes on frankfurters. Journal of Food Protection, 67 (9), 1855-1865. https://doi.org/10.4315/0362-028x-67.9.1855
- Çolak, F. Ç., Dığrak, M., & Aksoy, Z. (2008). Kahramanmaras’ta Tüketime Sunulan Tavuk Etlerinde Listeria Türlerinin Patojenitesi’nin Belirlenmesi. KSÜ Doğa Bilimleri Dergisi, 11(1), 8-12.
- EFSA (2023). European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2022 Zoonoses Report. EFSA Journal, 21, e8442. https://doi.org/10.2903/j.efsa.2023.8442
- Espitia, P. J. P., Otoni, C. G., & Soares, N. F. F. (2016). Pediocin Applications in Antimicrobial Food Packaging Systems. In: Antimicrobial Food Packaging, Editor(s): Jorge Barros-Velázquez, Academic Press, Chapter 36, Pages 445-454, ISBN 9780128007235, https://doi.org/10.1016/B978-0-12-800723-5.00036-X
- Fidan, H., Esatbeyoglu, T., Simat, V., Trif, M., Tabanelli, G., Kostka, T., Montanari, C., Ibrahim, S. A., & Özogul, F. (2022). Recent developments of lactic acid bacteria and their metabolites on foodborne pathogens and spoilage bacteria: Facts and gaps. Food Bioscience, 47, 101741. https://doi.org/10.1016/j.fbio.2022.101741.
- Gray, J. A., Chandry, P. S., Kaur, M., Kocharunchitt, C., Bowman, J. P., & Fox, E. M. (2018). Novel Biocontrol Methods for Listeria monocytogenes Biofilms in Food Production Facilities. Frontiers in Microbiology, 9, 605. https://doi.org/10.3389/fmicb.2018.00605
- Grigore-Gurgu, L., Bucur, F. I., Mihalache, O. A., & Nicolau, A. I. (2024). Comprehensive Review on the Biocontrol of Listeria monocytogenes in Food Products. Foods, 13(5), 734.
https://doi.org/10.3390/foods13050734
- Huang, Y., Luo, Y., Zhai, Z., Zhang, H., Yang, C., Tian, H., Li, Z., Feng, J., Liu, H., & Hao, Y. (2009). Characterization and application of an anti-Listeria bacteriocin produced by Pediococcus pentosaceus 05-10 isolated from Sichuan Pickle, a traditionally fermented vegetable product from China. Food Control, 20, 1030-1035. https://doi.org/10.1016/j.foodcont.2008.12.008
- Jagannath, A., Ramesh, A., Ramesh, M. N., Chandrashekar, A., & Varadaraj, M. C. (2001). Predictive model for the behavior of Listeria monocytogenes Scott A in Shrikhand, prepared with a biopreservative, pediocin K7. Food Microbiology, 18(3), 335-343. https://doi.org/10.1006/fmic.2001.0406.
- Khan, I., Tango, C. N., Miskeen, S., Lee, B. H., & Oh, D. H. (2017). Hurdle technology: A novel approach for enhanced food quality and safety – A review. Food Control, 73, 1426-1444. https://doi.org/10.1016/j.foodcont.2016.11.010
- Khanipour, E., Flint, S. H., McCarthy, O. J., Golding, M., Palmer, J., Ratkowsky, D. A., Ross, T., & Tramplin, M. (2016). Modelling the Combined Effects of Salt, Sorbic Acid and Nisin on the Probability of Growth of Clostridium sporogenes in a Controlled Environment (Nutrient Broth). Food Control, 62, 32–43.
https://doi.org/10.1016/j.foodcont.2015.10.012
- Khorshidian, N., Khanniri, E., Mohammadi, M., Mortazavian, A. M., & Yousefi, M. (2021). Antibacterial Activity of Pediocin and Pediocin-Producing Bacteria Against Listeria monocytogenes in Meat Products. Frontiers in Microbiology, 12, 709959. https://doi.org/10.3389/fmicb.2021.709959
- Kiran, F., & Osmanagaoglu, O. (2014). Inhibition of Listeria monocytogenes in chicken meat by pediocin AcH/PA-1 produced by Pediococcus pentosaceus OZF. Agro Food Industry Hi-Tech, 25, 66-69.
- Komora, N., Maciel, C., Pinto, C. A., Ferreira, V., Brandão, T. R., Saraiva, J. M., Castro, S. M., & Teixeira, P. (2020). Non-thermal approach to Listeria monocytogenes inactivation in milk: the combined effect of high pressure, pediocin PA-1 and bacteriophage P100. Food Microbiology, 86, 103315. https://doi.org/10.1016/ j.fm.2019.103315
- Kumariya, R., Garsa, A. K., Rajput, Y. S., Sood, S. K., Akhtar, N., & Patel, S. (2019). Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis, 128, 171-177. https://doi.org/10.1016/j.micpath.2019.01.002
- Lahiri, D., Nag, M., Dutta, B., Sarkar, T., Pati, S., Basu, D., Abdul Kari, Z., Wei, L.S., Smaoui, S., Wen Goh, K., & Ray, R. R. (2022). Bacteriocin: A natural approach for food safety and food security. Frontiers in Bioengineering and Biotechnology, 10, 1005918. https://doi.org/10.3389/fbioe.2022.1005918
- Liu, G., Nie, R., Liu, Y., & Mehmood, A. (2022). Combined antimicrobial effect of bacteriocins with other hurdles of physicochemic and microbiome to prolong shelf life of food: A review. Science of The Total Environment, 825, 154058. https://doi.org/10.1016/j.scitotenv.2022.154058
- Lynch, D., Hill, C., Field, D., & Begley, M. (2021). Inhibition of Listeria monocytogenes by the Staphylococcus Capitis-Derived Bacteriocin Capidermicin. Food Microbiology, 94, 103661. https://doi.org/10.1016/ j.fm.2020.103661
- Maks, N., Zhu, L., Juneja, V. K., Ravishankar, S. (2010). Sodium lactate, sodium diacetate and pediocin: Effects and interactions on the thermal inactivation of Listeria monocytogenes on bologna. Food Microbiology, 27 (1), 64-69. https://doi.org/10.1016/j.fm.2009.08.004
- Maldonado-Barragán, A., Alegría-Carrasco, E., Blanco, Md. M., Vela, A.I., Fernández-Garayzábal, J. F., Rodríguez, J. M., & Gibello A. (2022). Garvicins AG1 and AG2: Two Novel Class IId Bacteriocins of Lactococcus garvieae Lg-Granada. International Journal of Molecular Science, 23, 4685.
https://doi.org/10.3390/ijms23094685
- Martín, I., Rodríguez, A., Delgado, J., & Córdoba, J. J. (2022). Strategies for Biocontrol of Listeria monocytogenes Using Lactic Acid Bacteria and Their Metabolites in Ready-to-Eat Meat- and Dairy-Ripened Products. Foods, 11(4), 542. https://doi.org/10.3390/foods11040542
- Mckellar, R. C., & Lu, X. (2003). Modelling Responses in Food. 1st Edition, 360 pages, CRC Press, ISBN: 9780429210969, https://doi.org/10.1201/9780203503942
- Mejlholm, O., &Dalgaard, P. (2007). Modeling and predicting the growth boundary of Listeria monocytogenes in lightly preserved seafood. Journal of Food Protection, 70(1), 70-84. https://doi.org/10.4315/0362-028x-70.1.70
- Morandi, S., Silvetti, T., Battelli, G., & Brasca, M. (2019). Can lactic acid bacteria be an efficient tool for controlling Listeria monocytogenes contamination on cheese surface? The case of Gorgonzola cheese. Food Control, 96, 499-507. https://doi.org/10.1016/j.foodcont.2018.10.012.
- O’Connor, P. M., Kuniyoshi, T. M., Oliveira, R. P., Hill, C., Ross, R. P., & Cotter, P. D. (2020). Antimicrobials for food and feed; a bacteriocin perspective. Current Opinion in Biotechnology, 61, 160-167. https://doi.org/10.1016/j.copbio.2019.12.023
- Öksüz, H. B., & Buzrul, S. (2024). Regression tool in MS Excel® spreadsheets for biological data: R-BioXL. Akademik Gıda, 22, 224-235. https://doi.org/10.24323/akademik-gida.1603881
- Połaska, M., & Sokołowska, B. (2019). Bacteriophages-a new hope or a huge problem in the food industry. AIMS Microbiology, 5, 324-346. https://doi.org/10.3934/microbiol.2019.4.324
- Ramos, B., Brandão, T. R., Teixeira, P., & Silva, C. L. (2020). Biopreservation approaches to reduce Listeria monocytogenes in fresh vegetables. Food Microbiology, 85, 103282. https://doi.org/10.1016/j.fm.2019.103282
- Rodríguez, J. M., Martínez, M. I., & Kok, J. (2002). Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Critical Reviev of Food Science and Nutrition, 42(2), 91-121. https://doi.org/10.1080/ 10408690290825475
- Şanlıbaba, P., Tezel, B. U., & Çakmak, G. A. (2018). “Prevalence and Antibiotic Resistance of Listeria monocytogenes Isolated from Ready–to–Eat Foods in Turkey”, Hindawi Journal of Food Quality, Article ID 7693782, 9 pages, https://doi.org/10.1155/2018/7693782
- Thakur, M., Asrani, R. K., & Patial, V. (2018). Listeria monocytogenes: A Food-Borne Pathogen, In: Handbook of Food Bioengineering, Foodborne Diseases, Editor(s): Alina Maria Holban, Alexandru Mihai Grumezescu, Academic Press, Chapter 6, Pages 157-192, ISBN 9780128114445, https://doi.org/10.1016/B978-0-12-811444-5.00006-3
- Zacharof, M. P., & Lovitt, R. W. (2012). Bacteriocins Produced by Lactic Acid Bacteria: A Review Article. APCBEE Procedia, 2, 50–56. https://doi.org/10.1016/j.apcbee.2012.06.010