Research Article
BibTex RIS Cite

Changes in Volatile Compounds of ‘Hayward’ Kiwifruit During Storage

Year 2026, Volume: 29 Issue: 1, 51 - 61
https://doi.org/10.18016/ksutarimdoga.vi.1564516

Abstract

The aim of this study was to compare the aroma profiles of fresh ‘Hayward’ kiwifruit during different cold storage periods, using the SPME method in combination with gas chromatography-mass spectrometry (GC-MS). Cold storage duration significantly influenced the accumulation of volatile and major aroma compounds. After three months, 1-hexanol, a main aroma component, increased by 66.7% before exhibiting a slight decline. The concentration of 2-hexen-1-ol (E) increased by 170% in the third month, then returned to nearly its initial level by the fifth month. Conversely, 2-hexanal steadily declined, decreasing by nearly 81% by the fifth month. Similarly, 3-hexen-1-ol (Z) increased by approximately 100% after three months, but subsequently decreased by 75% in the fifth month. Notably, ethanol and acetic acid ethyl ester, initially undetected, rapidly accumulated during storage, reaching 4.38% in the third month and 22.40% in the fifth month. Total alcohol content increased steadily, rising from 6.99% to 15.85% and further to 48.10%. Total esters showed the most significant increase, rising from 0.99% to 31.49% by month five. In contrast, total aldehyde content decreased from 80.56% (0M) to 28.19% (5M). Ketones and terpenes, initially undetected, emerged during storage, reaching 0.30% and 24.07% by month five, respectively. These results indicate significant alterations in the aroma profiles, potentially impacting the aroma quality of kiwifruits during extended storage.

References

  • Argenta, L. C., Fan, X., & Mattheis, J. P. (2002). Responses of ‘Fuji’ apples to short and long duration exposure to elevated CO2 concentration. Postharvest Biology and Technology, 24(1), 13–24. https://doi.org/10.1016/S0925-5214(01)00120-X
  • Arthur, C. L., & Pawliszyn, J. (1990). Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry, 62(19), 2145–2148.
  • Bai, J., Hagenmaier, R. D., & Baldwin, E. A. (2003). Coating selection for ‘Delicious’ and other apples. Postharvest Biology and Technology, 28(3), 381–390. https://doi.org/10.1016/S0925-5214(02)00201-6
  • Baldwin, E. A., Burns, J. K., Kazokas, W., Brecht, J. K., Hagenmaier, R. D., Bender, R. J., & Pesis, E. (1999). Effect of two edible coatings with different permeability characteristics on mango (Mangifera indica L.) ripening during storage. Postharvest Biology and Technology, 17(3), 215–226. https://doi.org/10.1016/S0925-5214(99)00053-8
  • Bartley, J. P., & Schwede, A. M. (1989). Production of volatile compounds in ripening kiwi fruit (Actinidia chinensis). Journal of Agricultural and Food Chemistry, 37 (4), 1023–1025.
  • Beaudry, R. M. (1993). Effect of carbon dioxide partial pressure on blueberry fruit respiration and respiratory quotient. Postharvest Biology and Technology, 3(3), 249–258. https://doi.org/10.1016/0925-5214(93)90060-G
  • Biniecka, M., & Caroli, S. (2011). Analytical methods for the quantification of volatile aromatic compounds. TrAC Trends in Analytical Chemistry, 30(11), 1756–1770. https://doi.org/10.1016/j.trac.2011.06.015
  • Bruemmer, J. H., & Roe, B. (1985). Pyruvate dehydrogenase activity during ripening of hamlin oranges. Phytochemistry, 24(9), 2105–2106. https://doi.org/10.1016/S0031-9422(00)83131-3
  • Burgut, A., Ada, M., Bilgin, Ö. F., & Kafkas, E. (2023). Aroma compounds and chemical content of four selected mulberry genotypes using gas chromatography (gc-ms) in Turkey. International Journal of Agriculture Forestry and Life Sciences, 7(2), 30–32.
  • Chervin, C., Truett, J. K., & Speirs, J. (1999). Alcohol dehydrogenase expression and alcohol production during pear ripening. Journal of the American Society for Horticultural Science, 124 (1), 1999, 71-75
  • Collins, B. H., Horská, A., Hotten, P. M., Riddoch, C., & Collins, A. R. (2001). Kiwifruit Protects Against Oxidative DNA Damage in Human Cells and In Vitro. Nutrition and Cancer, 39(1), 148–153. https://doi.org/10.1207/S15327914nc391_20
  • Cozzolino, R., De Giulio, B., Petriccione, M., Martignetti, A., Malorni, L., Zampella, L., Laurino, C., & Pellicano, M. (2020). Comparative analysis of volatile metabolites, quality and sensory attributes of Actinidia chinensis fruit. Food Chemistry, 316, 126340.
  • Dijksterhuis, G. B., & Piggott, J. R. (2000). Dynamic methods of sensory analysis. Trends in Food Science & Technology, 11(8), 284–290.
  • Ferguson, A. R. (2014). Kiwifruit in the world-2014. In VIII International Symposium on Kiwifruit 1096 (pp. 33-46). Ferguson, A. R. & Bollard, E. G. (1990). "Domestication of the kiwifruit," in Kiwifruit Science and Management, I. J. Warrington & G. C. Weston, eds., Ray Richards, Auckland, pp. 165-246.
  • Fidler, J. (1968). The metabolism of acetaldehyde by plant tissues. Journal of Experimental Botany, 19(1), 41–51.
  • Forney, C. F., Kalt, W., & Jordan, M. A. (2000). The composition of strawberry aroma is influenced by cultivar, maturity, and storage. HortScience, 35(6), 1022–1025.
  • Frank, D., O’Riordan, P., Varelis, P., Zabaras, D., Watkins, P., Ceccato, C., Wijesundera, C., Ferguson, A., Hewett, E., & Gunson, F. (2007). Deconstruction and recreation of ‘Hayward’volatile flavour using a trained sensory panel, olfactometry and a kiwifruit model matrix. Acta Hortic, 753(753), 107–118.
  • Friel, E. N., Wang, M., Taylor, A. J., & MacRae, E. A. (2007). In Vitro and in Vivo Release of Aroma Compounds from Yellow-Fleshed Kiwifruit. Journal of Agricultural and Food Chemistry, 55(16), 6664–6673. https://doi.org/10.1021/jf063733x
  • Garcia, C. V., Quek, S.-Y., Stevenson, R. J., & Winz, R. A. (2012). Kiwifruit flavour: A review. Trends in Food Science & Technology, 24(2), 82–91. https://doi.org/10.1016/j.tifs.2011.08.012
  • Günther, C. S., Matich, A. J., Marsh, K. B., & Nicolau, L. (2011). Development of a quantitative method for headspace analysis of methylsulfanyl-volatiles from kiwifruit tissue. Food Research International, 44(5), 1331–1338. https://doi.org/10.1016/j.foodres.2011.01.014
  • Huang, H.-W., & Ferguson, A. (2006). Actinidia in China: Natural diversity, phylogeographical evolution, interspecific gene flow and kiwifruit cultivar improvement. VI International Symposium on Kiwifruit 753 (pp. 31-40).31–40.
  • Jordán, M. J., Margaría, C. A., Shaw, P. E., & Goodner, K. L. (2002). Aroma active components in aqueous kiwi fruit essence and kiwi fruit puree by gc-ms and multidimensional gc/gc-o. Journal of Agricultural and Food Chemistry, 50(19), 5386–5390. https://doi.org/10.1021/jf020297f
  • Katsikis, V. (2012). MATLAB: A Fundamental Tool for Scientific Computing and Engineering Applications-Volume 3. BoD–Books on Demand. https://www.mathworks.com/help/stats/index.html
  • Lavilla, T., Recasens, I., & LÃpez, M. (2000). Production of volatile aromatic compounds in Big Top nectarines and Royal Glory peaches during maturity. Acta Horticulturae. 553, 233–234.
  • Ligor M, Wójcik J, Buszewski B (2004) Application of the solid phase microextraction (spme) and gas chromatography (GC, GC/MS) in food analysis. Polish J Food Nutr Sci 13(4), 355–362 https://www.cabdirect.org/cabdirect/abstract/20073139015
  • Lv, Z., Liu, H., Yang, W., Zhang, Q., Chen, D., Jiao, Z., & Liu, J. (2024). Comprehensive Analysis of Physicochemical Properties and Volatile Compounds in Different Strawberry Wines under Various Pre-Treatments. Molecules, 29 (9), 2045.
  • McDonnell, T., & Pawliszyn, J. (1990). Solid phase microextraction with thermal desorption fused silica optical fibres. J. Anal. Chem, 62, 2145–2148.
  • McGuire, R. G., & Hallman, G. J. (1995). Coating guavas with cellulose-or carnauba-based emulsions interferes with postharvest ripening. HortScience, 30(2), 294–295.
  • Nichols, W. C., & Patterson, M. E. (1987). Ethanol accumulation and poststorage quality of ’Delicious’ apples during short-term, low-O2, CA storage. HortScience, 22 , pp. 89-92
  • Norman, S., & Houck, L. (1977). The role of volatiles in storage of citrus fruits. Proc. Int. Soc. Citriculture, 1, 238–242.
  • Oz, A., Baktemur, G., Kargi, S. P., & Kafkas, E. (2016). Volatile compounds of strawberry varieties. Chemistry of Natural Compounds, 52, 507–509.
  • Panighel, A., & Flamini, R. (2014). Applications of solid-phase microextraction and gas chromatography/mass spectrometry (SPME-GC/MS) in the study of grape and wine volatile compounds. Molecules, 19(12), 21291–21309.
  • Paterson, V. J., Macrae, E. A., & Young, H. (1991). Relationships between sensory properties and chemical composition of kiwifruit ( Actinidia deliciosa ). Journal of the Science of Food and Agriculture, 57(2), 235–251. https://doi.org/10.1002/jsfa.2740570208
  • Pelayo, C., Ebeler, S., & Kader, A. (2003). Postharvest life and flavor quality of three strawberry cultivars kept at 5 C in air or air+ 20 kPa CO2. Postharvest Biology and Technology, 27(2), 171–183.
  • Pesis, E. (2005). The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest Biology and Technology, 37(1), 1–19. https://doi.org/10.1016/j.postharvbio.2005.03.001
  • Pesis, E., & Avissar, L. (1990). Effect of postharvest application of acetaldehyde vapour on strawberry decay, taste and certain volatiles. Journal of the Science of Food and Agriculture, 52(3), 377–385. https://doi.org/10.1002/jsfa.2740520310
  • Petracek, P. D., Joles, D. W., Shirazi, A., & Cameron, A. C. (2002). Modified atmosphere packaging of sweet cherry (Prunus avium L., ev. ‘Sams’) fruit: Metabolic responses to oxygen, carbon dioxide, and temperature. Postharvest Biology and Technology, 24(3), 259–270. https://doi.org/10.1016/S0925-5214(01)00192-2
  • Pfannhauser, W. Sensorische und instrumentelle analytische untersuchungen des kiwi-aromas. Z. Lebensm. Unters. Forsch. 1988, 187, 224−228.
  • Rassam, M., & Laing, W. (2005). Variation in ascorbic acid and oxalate levels in the fruit of actinidia chinensis tissues and genotypes. Journal of Agricultural and Food Chemistry, 53(6), 2322–2326. https://doi.org/10.1021/jf048197s
  • Reid, L. M., O’Donnell, C. P., & Downey, G. (2004). Potential of spme-gc and chemometrics to detect adulteration of soft fruit purées. Journal of Agricultural and Food Chemistry, 52(3), 421–427. https://doi.org/10.1021/jf034962b
  • Shiota, H., (1982). Kiwifruit. Koryo, 137, pp. 59-64.
  • Sale, P. R. & Lyford, P. B. (1990). Cultural, management and harvesting practices for kiwifruit in New Zealand,in Kiwifruit. Science and Management, I. J. Warrington & G. C. Weston, eds., Ray Richards in association with the New Zealand Society for Horticultural Science, Auckland, pp. 247-296.
  • Starowicz, M., Błaszczak, W., Ciska, E., & Latocha, P. (2022). Characterization of Volatile Organic Compounds in Kiwiberries (Actinidia arguta) Exposed to High Hydrostatic Pressure Processing by hs-spme/gc-ms. Molecules, 27(18), 5914. https://doi.org/10.3390/molecules27185914
  • Statistics Globe. (2022). Biplot of PCA in Python. Retrieved from https://statisticsglobe.com/biplot-pca-python
  • Sun, S. Y., Jiang, W. G., & Zhao, Y. P. (2012). Comparison of aromatic and phenolic compounds in cherry wines with different cherry cultivars by hs‐spme‐gc‐ms and hplc. International Journal of Food Science & Technology, 47(1), 100–106.
  • Takeoka, G. R., Guntert, M., Flath, R. A., Wurz, R. E., & Jennings, W. (1986). Volatile constituents of kiwi fruit (Actinidia chinensis Planch.). Journal of Agricultural and Food Chemistry, 34(3), 576–578. https://doi.org/10.1021/jf00069a050
  • Trugo, L. C., & Finglas, P. M. (2003). Encyclopedia of food sciences and nutrition. L. C. Trugo and PM Finglas, Eds, 1498–1506.
  • Vrhovsek, U., Lotti, C., Masuero, D., Carlin, S., Weingart, G., & Mattivi, F. (2014). Quantitative metabolic profiling of grape, apple and raspberry volatile compounds (vocs) using a gc/ms/ms method. Journal of Chromatography B, 966, 132–139.
  • Wan, X. M., Stevenson, R. J., Chen, X. D., & Melton, L. D. (1999). Application of headspace solid-phase microextraction to volatile ¯avour pro®le development during storage and ripening of kiwifruit. Food Res. Int., 32 (1999), pp. 175-183
  • Wang, M. Y., MacRae, E., Wohlers, M., & Marsh, K. (2011). Changes in volatile production and sensory quality of kiwifruit during fruit maturation in Actinidia deliciosa ‘Hayward’ and A. chinensis ‘Hort16A.’ Postharvest Biology and Technology, 59(1), 16–24. https://doi.org/10.1016/j.postharvbio.2010.08.010
  • Watkins, C., Silsby, K., & Goffinet, M. (1997). Controlled atmosphere and antioxidant effects on external CO2 injury of Empire’apples. HortScience, 32 (1997), pp. 1242-1246
  • Young, H., Paterson, V. J., & Burns, D. J. W. (1983). Volatile aroma constituents of kiwifruit. Journal of the Science of Food and Agriculture, 34(1), 81–85. https://doi.org/10.1002/jsfa.2740340112
  • Zhang, C.-Y., Zhang, Q., Zhong, C.-H., & Guo, M.-Q. (2016). Analysis of volatile compounds responsible for kiwifruit aroma by desiccated headspace gas chromatography–mass spectrometry. Journal of Chromatography A, 1440, 255–259. https://doi.org/10.1016/j.chroma.2016.02.056
  • Zhao, N., Zhang, Y., Liu, D., Zhang, J., Qi, Y., Xu, J., Wei, X., & Fan, M. (2020). Free and bound volatile compounds in ‘Hayward’ and ‘Hort16A’ kiwifruit and their wines. European Food Research and Technology, 246(5), 875–890. https://doi.org/10.1007/s00217-020-03452-9.

Hayward’ Kivi Çeşidinin Aroma Bileşiklerinde Depolama Sırasında Meydana Gelen Değişimler

Year 2026, Volume: 29 Issue: 1, 51 - 61
https://doi.org/10.18016/ksutarimdoga.vi.1564516

Abstract

Bu çalışmanın amacı, ‘Hayward’ kivi çeşidi meyvelerinin farklı soğuk depolama süreleri boyunca aroma profillerini karşılaştırmaktır. Çalışmada, GC-MS (Gaz Kromatografisi-Kütle Spektrometresi) ile birlikte SPME yöntemi kullanılmıştır. Soğuk depolama süresi, uçucu bileşiklerin ve temel aroma bileşiklerinin birikimini önemli önemli ölçüde etkilemiştir. Üçüncü aydan sonra, başlıca aroma bileşenlerinden biri olan 1-hexanol, %66,7 oranında artış göstermiş, ardından hafif bir düşüş kaydetmiştir. Benzer şekilde, 2-hexen-1-ol (E) üçüncü ayda %170 oranında artış göstermiş, ancak beşinci ayda başlangıç seviyelerine akın bir düzeye gerilemiştir. Buna karşılık, 2-hexanal beşinci aya kadar sürekli bir düşüş göstermiş ve toplamda %81 oranında azalma kaydetmiştir. Aynı şekilde, 3-hexen-1-ol (Z) üçüncü aydan sonra yaklaşık %100 oranında artmış, ancak beşinci ayda %75 oranında düşüş göstermiştir. Başlangıçta tespit edilemeyen etanol ve etil asetik, depolama sırasında hızla birikmiş ve üçüncü ayda sırasıyla %4.38 ve beşinci ayda %22.40 seviyelerine ulaşmıştır. Toplam alkol içeriği istikrarlı artış göstererek, %6.99’dan üçüncü ayda %15.85’e ve beşinci ayda %48.10’a yükselmiştir. Toplam ester miktarı ise en belirgin artışı göstererek, beşinci ayda %0.99’dan %31.49’a yükselmiştir. Buna karşılık, toplam aldehit miktarı depolama süresince %80.56’dan (0.ay) seviyesinden %28.19’a (5.ay) düşmüştür. Başlangıçta tespit edilemeyen ketonlar ve terpenler, depolama sırasında ortaya çıkmış ve sırasıyla üçüncü ayda %0,30 ve beşinci ayda ise %24,07 seviyelerine ulaşmıştır. Bu sonuçlar, aroma profillerinde önemli değişikliklere işaret etmekte ve kivi meyvelerinin uzun süreli depolama sırasında aroma kalitesini önemli ölçüde etkileyebileceğini ortaya koymuştur.

References

  • Argenta, L. C., Fan, X., & Mattheis, J. P. (2002). Responses of ‘Fuji’ apples to short and long duration exposure to elevated CO2 concentration. Postharvest Biology and Technology, 24(1), 13–24. https://doi.org/10.1016/S0925-5214(01)00120-X
  • Arthur, C. L., & Pawliszyn, J. (1990). Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry, 62(19), 2145–2148.
  • Bai, J., Hagenmaier, R. D., & Baldwin, E. A. (2003). Coating selection for ‘Delicious’ and other apples. Postharvest Biology and Technology, 28(3), 381–390. https://doi.org/10.1016/S0925-5214(02)00201-6
  • Baldwin, E. A., Burns, J. K., Kazokas, W., Brecht, J. K., Hagenmaier, R. D., Bender, R. J., & Pesis, E. (1999). Effect of two edible coatings with different permeability characteristics on mango (Mangifera indica L.) ripening during storage. Postharvest Biology and Technology, 17(3), 215–226. https://doi.org/10.1016/S0925-5214(99)00053-8
  • Bartley, J. P., & Schwede, A. M. (1989). Production of volatile compounds in ripening kiwi fruit (Actinidia chinensis). Journal of Agricultural and Food Chemistry, 37 (4), 1023–1025.
  • Beaudry, R. M. (1993). Effect of carbon dioxide partial pressure on blueberry fruit respiration and respiratory quotient. Postharvest Biology and Technology, 3(3), 249–258. https://doi.org/10.1016/0925-5214(93)90060-G
  • Biniecka, M., & Caroli, S. (2011). Analytical methods for the quantification of volatile aromatic compounds. TrAC Trends in Analytical Chemistry, 30(11), 1756–1770. https://doi.org/10.1016/j.trac.2011.06.015
  • Bruemmer, J. H., & Roe, B. (1985). Pyruvate dehydrogenase activity during ripening of hamlin oranges. Phytochemistry, 24(9), 2105–2106. https://doi.org/10.1016/S0031-9422(00)83131-3
  • Burgut, A., Ada, M., Bilgin, Ö. F., & Kafkas, E. (2023). Aroma compounds and chemical content of four selected mulberry genotypes using gas chromatography (gc-ms) in Turkey. International Journal of Agriculture Forestry and Life Sciences, 7(2), 30–32.
  • Chervin, C., Truett, J. K., & Speirs, J. (1999). Alcohol dehydrogenase expression and alcohol production during pear ripening. Journal of the American Society for Horticultural Science, 124 (1), 1999, 71-75
  • Collins, B. H., Horská, A., Hotten, P. M., Riddoch, C., & Collins, A. R. (2001). Kiwifruit Protects Against Oxidative DNA Damage in Human Cells and In Vitro. Nutrition and Cancer, 39(1), 148–153. https://doi.org/10.1207/S15327914nc391_20
  • Cozzolino, R., De Giulio, B., Petriccione, M., Martignetti, A., Malorni, L., Zampella, L., Laurino, C., & Pellicano, M. (2020). Comparative analysis of volatile metabolites, quality and sensory attributes of Actinidia chinensis fruit. Food Chemistry, 316, 126340.
  • Dijksterhuis, G. B., & Piggott, J. R. (2000). Dynamic methods of sensory analysis. Trends in Food Science & Technology, 11(8), 284–290.
  • Ferguson, A. R. (2014). Kiwifruit in the world-2014. In VIII International Symposium on Kiwifruit 1096 (pp. 33-46). Ferguson, A. R. & Bollard, E. G. (1990). "Domestication of the kiwifruit," in Kiwifruit Science and Management, I. J. Warrington & G. C. Weston, eds., Ray Richards, Auckland, pp. 165-246.
  • Fidler, J. (1968). The metabolism of acetaldehyde by plant tissues. Journal of Experimental Botany, 19(1), 41–51.
  • Forney, C. F., Kalt, W., & Jordan, M. A. (2000). The composition of strawberry aroma is influenced by cultivar, maturity, and storage. HortScience, 35(6), 1022–1025.
  • Frank, D., O’Riordan, P., Varelis, P., Zabaras, D., Watkins, P., Ceccato, C., Wijesundera, C., Ferguson, A., Hewett, E., & Gunson, F. (2007). Deconstruction and recreation of ‘Hayward’volatile flavour using a trained sensory panel, olfactometry and a kiwifruit model matrix. Acta Hortic, 753(753), 107–118.
  • Friel, E. N., Wang, M., Taylor, A. J., & MacRae, E. A. (2007). In Vitro and in Vivo Release of Aroma Compounds from Yellow-Fleshed Kiwifruit. Journal of Agricultural and Food Chemistry, 55(16), 6664–6673. https://doi.org/10.1021/jf063733x
  • Garcia, C. V., Quek, S.-Y., Stevenson, R. J., & Winz, R. A. (2012). Kiwifruit flavour: A review. Trends in Food Science & Technology, 24(2), 82–91. https://doi.org/10.1016/j.tifs.2011.08.012
  • Günther, C. S., Matich, A. J., Marsh, K. B., & Nicolau, L. (2011). Development of a quantitative method for headspace analysis of methylsulfanyl-volatiles from kiwifruit tissue. Food Research International, 44(5), 1331–1338. https://doi.org/10.1016/j.foodres.2011.01.014
  • Huang, H.-W., & Ferguson, A. (2006). Actinidia in China: Natural diversity, phylogeographical evolution, interspecific gene flow and kiwifruit cultivar improvement. VI International Symposium on Kiwifruit 753 (pp. 31-40).31–40.
  • Jordán, M. J., Margaría, C. A., Shaw, P. E., & Goodner, K. L. (2002). Aroma active components in aqueous kiwi fruit essence and kiwi fruit puree by gc-ms and multidimensional gc/gc-o. Journal of Agricultural and Food Chemistry, 50(19), 5386–5390. https://doi.org/10.1021/jf020297f
  • Katsikis, V. (2012). MATLAB: A Fundamental Tool for Scientific Computing and Engineering Applications-Volume 3. BoD–Books on Demand. https://www.mathworks.com/help/stats/index.html
  • Lavilla, T., Recasens, I., & LÃpez, M. (2000). Production of volatile aromatic compounds in Big Top nectarines and Royal Glory peaches during maturity. Acta Horticulturae. 553, 233–234.
  • Ligor M, Wójcik J, Buszewski B (2004) Application of the solid phase microextraction (spme) and gas chromatography (GC, GC/MS) in food analysis. Polish J Food Nutr Sci 13(4), 355–362 https://www.cabdirect.org/cabdirect/abstract/20073139015
  • Lv, Z., Liu, H., Yang, W., Zhang, Q., Chen, D., Jiao, Z., & Liu, J. (2024). Comprehensive Analysis of Physicochemical Properties and Volatile Compounds in Different Strawberry Wines under Various Pre-Treatments. Molecules, 29 (9), 2045.
  • McDonnell, T., & Pawliszyn, J. (1990). Solid phase microextraction with thermal desorption fused silica optical fibres. J. Anal. Chem, 62, 2145–2148.
  • McGuire, R. G., & Hallman, G. J. (1995). Coating guavas with cellulose-or carnauba-based emulsions interferes with postharvest ripening. HortScience, 30(2), 294–295.
  • Nichols, W. C., & Patterson, M. E. (1987). Ethanol accumulation and poststorage quality of ’Delicious’ apples during short-term, low-O2, CA storage. HortScience, 22 , pp. 89-92
  • Norman, S., & Houck, L. (1977). The role of volatiles in storage of citrus fruits. Proc. Int. Soc. Citriculture, 1, 238–242.
  • Oz, A., Baktemur, G., Kargi, S. P., & Kafkas, E. (2016). Volatile compounds of strawberry varieties. Chemistry of Natural Compounds, 52, 507–509.
  • Panighel, A., & Flamini, R. (2014). Applications of solid-phase microextraction and gas chromatography/mass spectrometry (SPME-GC/MS) in the study of grape and wine volatile compounds. Molecules, 19(12), 21291–21309.
  • Paterson, V. J., Macrae, E. A., & Young, H. (1991). Relationships between sensory properties and chemical composition of kiwifruit ( Actinidia deliciosa ). Journal of the Science of Food and Agriculture, 57(2), 235–251. https://doi.org/10.1002/jsfa.2740570208
  • Pelayo, C., Ebeler, S., & Kader, A. (2003). Postharvest life and flavor quality of three strawberry cultivars kept at 5 C in air or air+ 20 kPa CO2. Postharvest Biology and Technology, 27(2), 171–183.
  • Pesis, E. (2005). The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest Biology and Technology, 37(1), 1–19. https://doi.org/10.1016/j.postharvbio.2005.03.001
  • Pesis, E., & Avissar, L. (1990). Effect of postharvest application of acetaldehyde vapour on strawberry decay, taste and certain volatiles. Journal of the Science of Food and Agriculture, 52(3), 377–385. https://doi.org/10.1002/jsfa.2740520310
  • Petracek, P. D., Joles, D. W., Shirazi, A., & Cameron, A. C. (2002). Modified atmosphere packaging of sweet cherry (Prunus avium L., ev. ‘Sams’) fruit: Metabolic responses to oxygen, carbon dioxide, and temperature. Postharvest Biology and Technology, 24(3), 259–270. https://doi.org/10.1016/S0925-5214(01)00192-2
  • Pfannhauser, W. Sensorische und instrumentelle analytische untersuchungen des kiwi-aromas. Z. Lebensm. Unters. Forsch. 1988, 187, 224−228.
  • Rassam, M., & Laing, W. (2005). Variation in ascorbic acid and oxalate levels in the fruit of actinidia chinensis tissues and genotypes. Journal of Agricultural and Food Chemistry, 53(6), 2322–2326. https://doi.org/10.1021/jf048197s
  • Reid, L. M., O’Donnell, C. P., & Downey, G. (2004). Potential of spme-gc and chemometrics to detect adulteration of soft fruit purées. Journal of Agricultural and Food Chemistry, 52(3), 421–427. https://doi.org/10.1021/jf034962b
  • Shiota, H., (1982). Kiwifruit. Koryo, 137, pp. 59-64.
  • Sale, P. R. & Lyford, P. B. (1990). Cultural, management and harvesting practices for kiwifruit in New Zealand,in Kiwifruit. Science and Management, I. J. Warrington & G. C. Weston, eds., Ray Richards in association with the New Zealand Society for Horticultural Science, Auckland, pp. 247-296.
  • Starowicz, M., Błaszczak, W., Ciska, E., & Latocha, P. (2022). Characterization of Volatile Organic Compounds in Kiwiberries (Actinidia arguta) Exposed to High Hydrostatic Pressure Processing by hs-spme/gc-ms. Molecules, 27(18), 5914. https://doi.org/10.3390/molecules27185914
  • Statistics Globe. (2022). Biplot of PCA in Python. Retrieved from https://statisticsglobe.com/biplot-pca-python
  • Sun, S. Y., Jiang, W. G., & Zhao, Y. P. (2012). Comparison of aromatic and phenolic compounds in cherry wines with different cherry cultivars by hs‐spme‐gc‐ms and hplc. International Journal of Food Science & Technology, 47(1), 100–106.
  • Takeoka, G. R., Guntert, M., Flath, R. A., Wurz, R. E., & Jennings, W. (1986). Volatile constituents of kiwi fruit (Actinidia chinensis Planch.). Journal of Agricultural and Food Chemistry, 34(3), 576–578. https://doi.org/10.1021/jf00069a050
  • Trugo, L. C., & Finglas, P. M. (2003). Encyclopedia of food sciences and nutrition. L. C. Trugo and PM Finglas, Eds, 1498–1506.
  • Vrhovsek, U., Lotti, C., Masuero, D., Carlin, S., Weingart, G., & Mattivi, F. (2014). Quantitative metabolic profiling of grape, apple and raspberry volatile compounds (vocs) using a gc/ms/ms method. Journal of Chromatography B, 966, 132–139.
  • Wan, X. M., Stevenson, R. J., Chen, X. D., & Melton, L. D. (1999). Application of headspace solid-phase microextraction to volatile ¯avour pro®le development during storage and ripening of kiwifruit. Food Res. Int., 32 (1999), pp. 175-183
  • Wang, M. Y., MacRae, E., Wohlers, M., & Marsh, K. (2011). Changes in volatile production and sensory quality of kiwifruit during fruit maturation in Actinidia deliciosa ‘Hayward’ and A. chinensis ‘Hort16A.’ Postharvest Biology and Technology, 59(1), 16–24. https://doi.org/10.1016/j.postharvbio.2010.08.010
  • Watkins, C., Silsby, K., & Goffinet, M. (1997). Controlled atmosphere and antioxidant effects on external CO2 injury of Empire’apples. HortScience, 32 (1997), pp. 1242-1246
  • Young, H., Paterson, V. J., & Burns, D. J. W. (1983). Volatile aroma constituents of kiwifruit. Journal of the Science of Food and Agriculture, 34(1), 81–85. https://doi.org/10.1002/jsfa.2740340112
  • Zhang, C.-Y., Zhang, Q., Zhong, C.-H., & Guo, M.-Q. (2016). Analysis of volatile compounds responsible for kiwifruit aroma by desiccated headspace gas chromatography–mass spectrometry. Journal of Chromatography A, 1440, 255–259. https://doi.org/10.1016/j.chroma.2016.02.056
  • Zhao, N., Zhang, Y., Liu, D., Zhang, J., Qi, Y., Xu, J., Wei, X., & Fan, M. (2020). Free and bound volatile compounds in ‘Hayward’ and ‘Hort16A’ kiwifruit and their wines. European Food Research and Technology, 246(5), 875–890. https://doi.org/10.1007/s00217-020-03452-9.
There are 54 citations in total.

Details

Primary Language English
Subjects Post Harvest Horticultural Technologies (Incl. Transportation and Storage), Pomology and Treatment
Journal Section RESEARCH ARTICLE
Authors

Ömer Faruk Bilgin 0000-0002-9300-1867

Early Pub Date October 18, 2025
Publication Date October 19, 2025
Submission Date October 10, 2024
Acceptance Date May 31, 2025
Published in Issue Year 2026 Volume: 29 Issue: 1

Cite

APA Bilgin, Ö. F. (2025). Changes in Volatile Compounds of ‘Hayward’ Kiwifruit During Storage. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 29(1), 51-61. https://doi.org/10.18016/ksutarimdoga.vi.1564516


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149