Amino Acid Profile of Rhus coriaria L. (Sumac) Grown in Different Regions
Yıl 2024,
, 423 - 429, 01.04.2024
Haval Ali
,
Dursun Özer
,
Fikret Karataş
,
Sinan Saydam
Öz
In this study, the amounts of amino acids in Rhus coriaria L. (Sumac) samples grown in different regions were analyzed by High Performance Liquid Chromatography (HPLC). A comparison of the amino acid content of analyzed samples showed that Maraş sumac was the richest in glutamic acid, on the other hand, Kadana and Sheladize were rich in non-essential amino acids. It was observed that the sumacs of Shelaza and Maraş regions were the poorest for non-essential amino acids. In terms of essential amino acids, it was determined that the sumacs of the Kadana and Sheladize regions were richer, while the sumacs of the Suleymania and Maraş regions were poorer. It can be said that all of the examined sumac samples are rich in glutamic acid, histidine and alanine, but poor in glycine. It was seen that the richest in terms of total essential and non-essential amino acids was the Kadana sumac, while the poorest was the Shelaza sumac. It can be said that the amount of essential and non-essential amino acids varies between regions, resulting from geographical and ecological differences.
Kaynakça
- Abu-Reidah, I. M., Ali-Shtayeh, M. S., Jamous, R. M., Arráez-Román, D., & Segura-Carretero, A. (2015). HPLC–DAD–ESI-MS/MS Screening of Bioactive Components from Rhus coriaria L. Sumac fruits. Food Chemistry, 166, 179–191. doi: 10.1016/j.foodchem.2014.06.011.
- Abu-Reidah, I. M., Jamous, R. M., & Ali-Shtayeh, M. S. (2014). Phytochemistry. Pharmacological Properties and Industrial Application of Rhus coriaria L. Sumac: A Review. Jordan Journal of Biological Sciences JJBS, 7(4), 233-244. doi:10.12816/0008245.
- Bakar, B., Çakmak, M., Ibrahim, M. S., Özer, D., Saydam, S., & Karatas, F. (2020). Investigation of Amounts of vitamins. lycopene. and elements in the fruits of opuntia ficus-indica subjected to different pretreatments. Biological Trace Element Research,198(1), 315-323. https://doi.org/ 10.1007/ s12011-020-02050-w.
- Bouba, A.A., Ponka, R., Augustin, G., Yanou, N.N., El-Sayed, M.A., Montet, D., Scher,J., Mbofung, C.M. (2016). Amino Acid and Fatty Acid Profile of Twenty Wild Plants Used as Spices in Cameroon. American Journal of Food Science and Technology 4(2), 29-37. DOI:10.12691/ajfst-4-2-1.
- Davidson, J. A. (2019). Amino Acids in Life: A Prebiotic Division of Labor. Journal of Molecular Evolution, 87, 1-3. https://doi.org/10.1007/s00239-018-9879-z.
- DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., & Thompson, C. B. (2007). Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. USA, 104, 19345–19350. doi:
10.1073/pnas.0709747104.
- Demchik, S., Rajangam, A., Hall, J., & Singsaas, E. (2015). Fatty Acids. Carbohydrates and Total Proteins of Wild Sumac (Rhus typhina L.) Drupes from the Upper Midwest of the United States. American Journal of Essential Oils and Natural Products, 3(2), 30–34. ISSN: 2321 9114.
- Duan, W., Huang, Y., Xiao, J., Zhang, Y., & Tang, Y. (2020). Determination of free amino acids, organic acids, and nucleotides in 29 elegant spices. Food Science Nutrition, 8, 3777–3792. doi: 10.1002/fsn3.1667.
- Elkin, R.G., & Wasynczuk, A. M. (1987). Amino acid analysis of feedstuff hydrolysates by precolumn derivatization with phenylisothiocyanate and reversed-phase high-performance liquid chromatography. Cereal Chemistry 64(4): 226-229.
- Forde, B. G., & Lea, J. F. (2007). Glutamate in plants: metabolism, regulation, and signalling. Journal of Experimental Botany, 58(9), 2339-2358. doi:10.1093/jxb/erm121.
- Gorska-Ponikowska, M., Perricone, U., Kuban-Jankowska, A., Lo Bosco, G., & Barone, G. (2017). 2-methoxyestradiol impacts on amino acids-mediated metabolic reprogramming in osteosarcoma cells by interaction with NMDA receptor. Journal of Cell Physiology, 232(11), 3030-3049. doi: 10.1002/jcp.25888.
- Han, M.; Zhang, C.; Suglo, P.; Sun, S.; Wang, M.; Su, T. (2021). L-Aspartate: An Essential Metabolite for Plant Growth and Stress Acclimation. Molecules 26: 1-17. doi: 10.3390/molecules26071887.
- Haroun, S. A., Shukry, W. M., & El-Sawy, O. (2010). Effect of asparagine or glutamine on growth and metabolic changes in phaseolus vulgaris under in vitro conditions. Bioscience Research, 7(1), 1-21. ISSN: 2218-3973.,
- Hayes, M. (2020). Measuring Protein Content in Food: An Overview of Methods. Foods 9, 1340; 1-4. doi:10.3390/foods9101340.
- Joint, WHO/FAO/UNU. (2007). Expert Consultation. Protein and amino acid requirements in human nutrition. World Health Organ Tech Rep Ser, (935). Table 1.
- Kalefetoğlu, T., Ekmekçi, Y. (2005). Bitkilerde kuraklık stresinin etkileri ve dayanıklılık. Gazi Üniversitesi Fen Bilimleri Dergisi, 18(4), 723-740. ISSN 1303-9709.
- Kishor, P. B. K., Suravajhala, R., Rajasheker, G., Nagaraju Marka, N., Shridhar, K. K., Dhulala, D., Scinthia, K. P.,
Divya, K., Doma, M., Edupuganti, S., Suravajhala, P., & Polavarapu, R. (2020). Lysine, Lysine-Rich, Serine, and Serine-Rich Proteins: Link Between Metabolism, Development, and Abiotic Stress Tolerance and the Role of ncRNAs in Their Regulation. Frontiers in Plant Science, 11, 1-15. doi: 10.3389/fpls.2020.546213.
- Kossah, R., Nsabimana, C., Zhao, J. X., Chen, H. Q., Tian, F. W., Zhang, H., & Chen, W. (2009). Comparative Study on the Chemical Composition of Syrian Sumac (Rhus coriaria L.) and Chinese Sumac (Rhus typhina L.) Fruits. Pakistan Journal Nutrition, 8, 1570-1574. ISSN 1680-5194.
- Kwanyuen P & Burton JW (2010). A Modified amino acid analysis using PITC derivatization for soybeans with accurate determination of cysteine and half-cystine. Journal of the American Oil Chemists’ Society 87(2): 127-132. doi.org/10.1007/s11746-009-1484-2.
- Lee, D. Y., & Kim, E. H. (2019). Therapeutic Effects of Amino Acids in Liver Diseases: Current Studies and Future Perspectives. Journal of Cancer Prevention, 24(2), 72-78. doi: 10.15430/JCP.2019.24.2.72.
- Mendoza-Cozatl, D. G., Zhai, Z., Jobe, T. O., Akmakjian, G. Z., Song, W. Y., Limbo, O., Russell, M. R., Kozlovskyy, V. I, Martinoia, E., Vatamaniuk, O. K., Russell, P., & Schroeder, J. I. (2010). Tonoplast-localized Abc2 transporter mediates phytochelatin accumulation in vacuoles and confers cadmium tolerance. Journal of Biological Chemistry 285, 40416-40426. doi: 10.1074/ jbc.M110.155408.
- Miflin, B. J., & Habash, D. Z. (2002). The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. Journal of Experimental Botany, 53(370), 979- 987. https://doi.org/10.1093/ jexbot/53.370.979.
- Mukhtar, Z. G., Özer, D., Karataş, F., & Saydam, S. (2022). Amino Acid Contents of Some Eggplant Species Grown in Different Region. Journal of the Institute of Science and Technology, 12(2), 857-869. doi:10.21597/jist.1037958.
- Olgun, M., Budak Başçiftçi, Z., Ayter, G., Turan, M., Aydın, D., Şaban, D., Sönmez, A. C., & Koyuncu, O. (2016). Potasyum Iyodür Uygulamasının Ekmeklik Buğday Çeşitlerinin Biyokimyasal Özellikleri Üzerine Etkisi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 11(2), 46-60. ISSN 1304-9984.
- Ros, R., Bertomeu, J. M., & Krueger, S. (2014). Serine in plants: biosynthesis, metabolism, and functions. Trends in Plant Science, 19(9), 564-569. http://dx.doi.org/10.1016/j.tplants.2014.06.003.
- Sadiq, I. S., Izuagie, T., Shuaibu, M., Dogoyaro, A. I, Garba, A., & Abubakar, S. (2013). The Nutritional Evaluation and Medicinal Value of Date Palm (Phoenix dactylifera). International Journal of Modern Chemistry 4(3): 147-154. ISSN: 2165-0128.
- Shabbir, A. (2012). Rhus Coriaria linn. a Plant of medicinal. nutritional and industrial importance: a review. Journal Animal Plant and Science, 22(2), 505–512. ISSN: 1018-7081.
- Song, Y. T., Xu, C., Kuroki, H., Liao, Y. Y., & Tsunoda, M. (2018). Recent trends in analytical methods for the determination of amino acids in biological samples. Journal of Pharmaceutical and Biomedical Analysis, 147, 35–49. doi: 10.1016/j.jpba.2017.08.050.
- Stoimenova, A., Ivanov, K., Obreshkova, D., & Saso, L. (2013). Biotechnology in the production of pharmaceutical industry ingredients: Amino acids. Biotechnology & Biotechnological Equipment, 27(2), 3620–3626. https://doi.org/10.5504/ BBEQ.2012.0134.
- Tajiri, K., & Shimizu, Y. (2013). Branched-chain amino acids in liver diseases. World J Gastroenterol, 19 (43), 7620-7629. doi:10.3748/wjg.v19.i43.7620.
- Ünder, D., & Saltan, F. Z. (2019). Sumak ve Önemli Biyolojik Etkileri. Çukurova Tarım Gıda Bilimleri Dergisi, 34(1), 51-60. Corpus ID: 202817465.
- Wang, S., Zhu, F. (2017). Chemical composition and biological activity of staghorn sumac (Rhus typhina). Food Chemistry 237: 431–443. https://doi.org/10.1016/j.foodchem.2017.05.111.
- Xu, J. J., Fang, X., Li, C. Y., Yang, L., & Chen, X. Y. (2020). General and specialized tyrosine metabolism pathways in plants. aBIOTECH 1:97-105. doi: 10.1007/s42994-019-00006-w.
- Zemanova, V., Pavlik, M., & Pavlikova, D. (2017). Cadmium toxicity induced contrasting patterns of concentrations of free sarcosine, specific amino acids and selected microelements in two Noccaea species. Plos One, 12(5), 1-17. https://doi.org/10.1371/journal.pone.0177963.
- Zhou, W., Wang, Y., Yang, F., Dong, Q., Wang, H., & Hu, N. (2019). Rapid Determination of Amino Acids of Nitraria tangutorum Bobr. from the Qinghai-Tibet Plateau Using HPLC-FLD-MS/MS and a Highly Selective and Sensitive Pre-Column Derivatization Method. Molecules, 24, 1665: doi:10.3390/molecules24091665.
Farklı Bölgelerde Yetişen Rhus coriaria L.'nin (Sumak) Amino Asit Profili
Yıl 2024,
, 423 - 429, 01.04.2024
Haval Ali
,
Dursun Özer
,
Fikret Karataş
,
Sinan Saydam
Öz
Bu çalışmada, farklı bölgelerde yetişen Rhus coriaria L. (Sumak) örneklerinde aminoasit miktarları Yüksek Performanslı Sıvı Kromatografisi (HPLC) ile analiz edildi. Analiz edilen örneklerdeki aminoasit miktarları karşılaştırıldığında, glutamik asit bakımından en zengin Maraş bölgesi sumağı iken, esansiyel olmayan diğer amino asitler bakımından ise Kadana ve Sheladize bölgeleri olduğu tespit edilmiştir. Esansiyel olmayan amino asitler açısından en fakir Shelaza ve Maraş bölgesi sumaklarının olduğu gözlenmiştir. Esansiyel amino asitler açısından Kadana ve Sheladize bölgesi sumaklarının daha zengin, Süleymaniye ve Maraş bölgesi sumaklarının ise daha fakir olduğu tespit edilmiştir. İncelenen sumak örneklerinin hepsinin, glutamik asit, histidin ve alanin bakımından zengin ve glisin bakımından fakir oldukları söylenebilir. Toplam esansiyel ve non-esansiyel amino asit bakımından en zengin Kadana sumağı iken, en fakir Shelaza sumağının olduğu görülmüştür. Esansiyel ve non-esansiyel amino asit miktarlarının bölgeler arasında değişiklik göstermesi, coğrafi ve ekolojik farklıklardan kaynaklandığı söylenebilir.
Kaynakça
- Abu-Reidah, I. M., Ali-Shtayeh, M. S., Jamous, R. M., Arráez-Román, D., & Segura-Carretero, A. (2015). HPLC–DAD–ESI-MS/MS Screening of Bioactive Components from Rhus coriaria L. Sumac fruits. Food Chemistry, 166, 179–191. doi: 10.1016/j.foodchem.2014.06.011.
- Abu-Reidah, I. M., Jamous, R. M., & Ali-Shtayeh, M. S. (2014). Phytochemistry. Pharmacological Properties and Industrial Application of Rhus coriaria L. Sumac: A Review. Jordan Journal of Biological Sciences JJBS, 7(4), 233-244. doi:10.12816/0008245.
- Bakar, B., Çakmak, M., Ibrahim, M. S., Özer, D., Saydam, S., & Karatas, F. (2020). Investigation of Amounts of vitamins. lycopene. and elements in the fruits of opuntia ficus-indica subjected to different pretreatments. Biological Trace Element Research,198(1), 315-323. https://doi.org/ 10.1007/ s12011-020-02050-w.
- Bouba, A.A., Ponka, R., Augustin, G., Yanou, N.N., El-Sayed, M.A., Montet, D., Scher,J., Mbofung, C.M. (2016). Amino Acid and Fatty Acid Profile of Twenty Wild Plants Used as Spices in Cameroon. American Journal of Food Science and Technology 4(2), 29-37. DOI:10.12691/ajfst-4-2-1.
- Davidson, J. A. (2019). Amino Acids in Life: A Prebiotic Division of Labor. Journal of Molecular Evolution, 87, 1-3. https://doi.org/10.1007/s00239-018-9879-z.
- DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., & Thompson, C. B. (2007). Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. USA, 104, 19345–19350. doi:
10.1073/pnas.0709747104.
- Demchik, S., Rajangam, A., Hall, J., & Singsaas, E. (2015). Fatty Acids. Carbohydrates and Total Proteins of Wild Sumac (Rhus typhina L.) Drupes from the Upper Midwest of the United States. American Journal of Essential Oils and Natural Products, 3(2), 30–34. ISSN: 2321 9114.
- Duan, W., Huang, Y., Xiao, J., Zhang, Y., & Tang, Y. (2020). Determination of free amino acids, organic acids, and nucleotides in 29 elegant spices. Food Science Nutrition, 8, 3777–3792. doi: 10.1002/fsn3.1667.
- Elkin, R.G., & Wasynczuk, A. M. (1987). Amino acid analysis of feedstuff hydrolysates by precolumn derivatization with phenylisothiocyanate and reversed-phase high-performance liquid chromatography. Cereal Chemistry 64(4): 226-229.
- Forde, B. G., & Lea, J. F. (2007). Glutamate in plants: metabolism, regulation, and signalling. Journal of Experimental Botany, 58(9), 2339-2358. doi:10.1093/jxb/erm121.
- Gorska-Ponikowska, M., Perricone, U., Kuban-Jankowska, A., Lo Bosco, G., & Barone, G. (2017). 2-methoxyestradiol impacts on amino acids-mediated metabolic reprogramming in osteosarcoma cells by interaction with NMDA receptor. Journal of Cell Physiology, 232(11), 3030-3049. doi: 10.1002/jcp.25888.
- Han, M.; Zhang, C.; Suglo, P.; Sun, S.; Wang, M.; Su, T. (2021). L-Aspartate: An Essential Metabolite for Plant Growth and Stress Acclimation. Molecules 26: 1-17. doi: 10.3390/molecules26071887.
- Haroun, S. A., Shukry, W. M., & El-Sawy, O. (2010). Effect of asparagine or glutamine on growth and metabolic changes in phaseolus vulgaris under in vitro conditions. Bioscience Research, 7(1), 1-21. ISSN: 2218-3973.,
- Hayes, M. (2020). Measuring Protein Content in Food: An Overview of Methods. Foods 9, 1340; 1-4. doi:10.3390/foods9101340.
- Joint, WHO/FAO/UNU. (2007). Expert Consultation. Protein and amino acid requirements in human nutrition. World Health Organ Tech Rep Ser, (935). Table 1.
- Kalefetoğlu, T., Ekmekçi, Y. (2005). Bitkilerde kuraklık stresinin etkileri ve dayanıklılık. Gazi Üniversitesi Fen Bilimleri Dergisi, 18(4), 723-740. ISSN 1303-9709.
- Kishor, P. B. K., Suravajhala, R., Rajasheker, G., Nagaraju Marka, N., Shridhar, K. K., Dhulala, D., Scinthia, K. P.,
Divya, K., Doma, M., Edupuganti, S., Suravajhala, P., & Polavarapu, R. (2020). Lysine, Lysine-Rich, Serine, and Serine-Rich Proteins: Link Between Metabolism, Development, and Abiotic Stress Tolerance and the Role of ncRNAs in Their Regulation. Frontiers in Plant Science, 11, 1-15. doi: 10.3389/fpls.2020.546213.
- Kossah, R., Nsabimana, C., Zhao, J. X., Chen, H. Q., Tian, F. W., Zhang, H., & Chen, W. (2009). Comparative Study on the Chemical Composition of Syrian Sumac (Rhus coriaria L.) and Chinese Sumac (Rhus typhina L.) Fruits. Pakistan Journal Nutrition, 8, 1570-1574. ISSN 1680-5194.
- Kwanyuen P & Burton JW (2010). A Modified amino acid analysis using PITC derivatization for soybeans with accurate determination of cysteine and half-cystine. Journal of the American Oil Chemists’ Society 87(2): 127-132. doi.org/10.1007/s11746-009-1484-2.
- Lee, D. Y., & Kim, E. H. (2019). Therapeutic Effects of Amino Acids in Liver Diseases: Current Studies and Future Perspectives. Journal of Cancer Prevention, 24(2), 72-78. doi: 10.15430/JCP.2019.24.2.72.
- Mendoza-Cozatl, D. G., Zhai, Z., Jobe, T. O., Akmakjian, G. Z., Song, W. Y., Limbo, O., Russell, M. R., Kozlovskyy, V. I, Martinoia, E., Vatamaniuk, O. K., Russell, P., & Schroeder, J. I. (2010). Tonoplast-localized Abc2 transporter mediates phytochelatin accumulation in vacuoles and confers cadmium tolerance. Journal of Biological Chemistry 285, 40416-40426. doi: 10.1074/ jbc.M110.155408.
- Miflin, B. J., & Habash, D. Z. (2002). The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. Journal of Experimental Botany, 53(370), 979- 987. https://doi.org/10.1093/ jexbot/53.370.979.
- Mukhtar, Z. G., Özer, D., Karataş, F., & Saydam, S. (2022). Amino Acid Contents of Some Eggplant Species Grown in Different Region. Journal of the Institute of Science and Technology, 12(2), 857-869. doi:10.21597/jist.1037958.
- Olgun, M., Budak Başçiftçi, Z., Ayter, G., Turan, M., Aydın, D., Şaban, D., Sönmez, A. C., & Koyuncu, O. (2016). Potasyum Iyodür Uygulamasının Ekmeklik Buğday Çeşitlerinin Biyokimyasal Özellikleri Üzerine Etkisi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 11(2), 46-60. ISSN 1304-9984.
- Ros, R., Bertomeu, J. M., & Krueger, S. (2014). Serine in plants: biosynthesis, metabolism, and functions. Trends in Plant Science, 19(9), 564-569. http://dx.doi.org/10.1016/j.tplants.2014.06.003.
- Sadiq, I. S., Izuagie, T., Shuaibu, M., Dogoyaro, A. I, Garba, A., & Abubakar, S. (2013). The Nutritional Evaluation and Medicinal Value of Date Palm (Phoenix dactylifera). International Journal of Modern Chemistry 4(3): 147-154. ISSN: 2165-0128.
- Shabbir, A. (2012). Rhus Coriaria linn. a Plant of medicinal. nutritional and industrial importance: a review. Journal Animal Plant and Science, 22(2), 505–512. ISSN: 1018-7081.
- Song, Y. T., Xu, C., Kuroki, H., Liao, Y. Y., & Tsunoda, M. (2018). Recent trends in analytical methods for the determination of amino acids in biological samples. Journal of Pharmaceutical and Biomedical Analysis, 147, 35–49. doi: 10.1016/j.jpba.2017.08.050.
- Stoimenova, A., Ivanov, K., Obreshkova, D., & Saso, L. (2013). Biotechnology in the production of pharmaceutical industry ingredients: Amino acids. Biotechnology & Biotechnological Equipment, 27(2), 3620–3626. https://doi.org/10.5504/ BBEQ.2012.0134.
- Tajiri, K., & Shimizu, Y. (2013). Branched-chain amino acids in liver diseases. World J Gastroenterol, 19 (43), 7620-7629. doi:10.3748/wjg.v19.i43.7620.
- Ünder, D., & Saltan, F. Z. (2019). Sumak ve Önemli Biyolojik Etkileri. Çukurova Tarım Gıda Bilimleri Dergisi, 34(1), 51-60. Corpus ID: 202817465.
- Wang, S., Zhu, F. (2017). Chemical composition and biological activity of staghorn sumac (Rhus typhina). Food Chemistry 237: 431–443. https://doi.org/10.1016/j.foodchem.2017.05.111.
- Xu, J. J., Fang, X., Li, C. Y., Yang, L., & Chen, X. Y. (2020). General and specialized tyrosine metabolism pathways in plants. aBIOTECH 1:97-105. doi: 10.1007/s42994-019-00006-w.
- Zemanova, V., Pavlik, M., & Pavlikova, D. (2017). Cadmium toxicity induced contrasting patterns of concentrations of free sarcosine, specific amino acids and selected microelements in two Noccaea species. Plos One, 12(5), 1-17. https://doi.org/10.1371/journal.pone.0177963.
- Zhou, W., Wang, Y., Yang, F., Dong, Q., Wang, H., & Hu, N. (2019). Rapid Determination of Amino Acids of Nitraria tangutorum Bobr. from the Qinghai-Tibet Plateau Using HPLC-FLD-MS/MS and a Highly Selective and Sensitive Pre-Column Derivatization Method. Molecules, 24, 1665: doi:10.3390/molecules24091665.