Assessment of Genetic Diversity in Cucumber (Cucumis sativus L.) Genotypes Using Morphological Characters and AFLP Analysis
Year 2020,
, 577 - 585, 30.06.2020
Yaşar Karakurt
,
Damla Güvercin
,
Sercan Önder
,
Özgür İşler
Abstract
For
this purpose, 18 cucumber lines were
evaluated for their genetic diversity using six morphological characterizations
(plant morphology, plant length, length of leaf blade, fruit length, fruit
diameter and fruit stem length) and eight AFLP markers. These AFLP primer combinations
amplified well and also showed polymorphism. Thus, 1975 AFLP fragments were
obtained and 1468 fragments were polymorphic (75.34%). Dendrograms were drawn
using UPGMA (Unweighted Pair Group Method) arithmetical averages and according
to the UPGMA dendrogram, the cucumber accessions clustered into two main
groups. The genetic distances of the dendrogram varied between 0.92 and 0.96. Cluster analysis based on morphological
data discriminated all lines into three major clusters in UPGMA
dendrogram. The
similarity coefficient ranged between 0.888
and 0.982 indicating that the
cucumber lines used in the study have a low level of genetic variation. Results
obtained from the phylogenetic dendrogram by 8 pairs of AFLP primers were
consistent with those from the UPGMA clustering analysis, which were in
according with the morphological taxonomy on cucumber.
Supporting Institution
Suleyman Demirel University.
Thanks
Funding for this work was provided by a grant from Suleyman Demirel University.
References
- Aybak HÇ and Kaygısız H 2004. Hıyar Yetiştiriciliği. Hasad Publishing, Istanbul: pp. 184.
- Cavagnaro PF, Senalik DA, Yang L, Simon PW, Harkins TT, Kodira CD, Huang S and Weng Y 2010. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomic 11: 569.
- Cortese LM, Honig J, Miller C and Bonos SA 2010. Genetic diversity of twelve switchgrass populations using molecular and morphological Markers. BioEnergy Research 3: 262-271.
- Dijkhuizen A, Kennard WC, Hayey MJ and Staub JE 1996. RFLP variation and genetic relationships in cultivated cucumber. Euphytica 90: 79-87.
- El-Esawi MA, Germaine K, Bourke P and Malone R 2016. AFLP analysis of genetic diversity and phylogenetic relationships of Brassica oleracea in Ireland. Comptes Rendus Biologies 339: 163-170.
- Horejsi T and Staub JE 1999. Genetic variation in cucumber (Cucumis sativus L.) as assessed by random amplified polymorphic DNA. Genetic Resources and Crop Evolution 46: 337-350.
- Hu J, Li J, Liang F, Liu L and Si S 2010. Genetic relationship of a cucumber germplasm collection revealed by newly developed EST-SSR markers. Journal of Genetics 89: 28-32.
- Innark P, Khanobdee C, Samipak S and Jantasuriyarat C 2013. Evaluation of genetic diversity in cucumber (Cucumis sativus L.) germplasm using agro-economic traits and microsatellite markers. Scientia Horticulturae 162: 278-284.
- Knerr LD, Staub JE, Holder DJ and May BP 1989. Genetic diversity in Cucumis sativus L. assessed by at 18 allozyme coding loci. Theoretical and Applied Genetics 78: 119-128.
- Kong Q, Xiang C and Yu Z 2006. Development of EST-SSRs in Cucumis sativus from sequence database. Molecular Ecology Notes 6: 1234-1236.
- Li B, Wang A, Zhang P and Li W 2019. Genetic diversity and population structure of endangered Glehnia littoralis (Apiaceae) in China based on AFLP analysis. Biotechnology & Biotechnological Equipment 33: 1-7.
- Meglic V and Staub JE 1996. Inheritance and linkage relationships of isozyme and morphological loci in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics 92: 865-872.
- Meglic V, Serquen F and Staub JE 1996. Genetic diversity in cucumber (Cucumis sativus L.): I. A reevaluation of the U.S. germplasm collection. Genetic Resources and Crop Evolution 43: 533-546.
- Nei M 1972. Genetic distance between populations. The American Society of Naturalists, 106: 283-292.
- Park YH, Sensoy S, Wye C, Antonise R, Peleman J and Havey MJ 2000. A genetic map of cucumber composed of RAPDs, RFLPs, AFLPs, and loci conditioning resistance to papaya ringspot and zucchini yellow mosaic viruses. Genome 43: 1003-1010.
- Peakall R and Smouse PE 2006. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Molecular Ecology Notes 6: 288-295.
- Rohlf FJ 2000. NTSYS-pc-Numerical taxonomy and multivariate analysis system, Version 2.10. New York, Exeter Software.
- Roldán-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A and De Loose M 2000. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding 6: 125-134.
- Scott KD, Ablett EM, Lee LS and Henry RJ 2000. AFLP markers distinguishing an early mutant of Flame Seedless grape. Euphytica. 113: 245-249.
- Shao QS, Guo QS, Deng YM and Guo HP 2010. A comparative analysis of genetic diversity in medicinal Chrysanthemum morifolium based on morphology, ISSR and SRAP markers. Biochemical Systematics and Ecology 38: 1160-1169.
- Staub JE, Box J, Meglic V, Horejsi TF and McCreight JD 1997. Comparison of isozyme and random amplified polymorphic DNA data for determining intraspecific variation in Cucumis. Genetic Resources and Crop Evolution 44: 257-269.
- Staub JE, Chung SM and Fazio G 2005. Conformity and genetic relatedness estimation in crop species having a narrow genetic base: the case of cucumber (Cucumis sativus L.). Plant Breeding. 124: 44-53.
- UPOV (The International Union for the Protection of New Varieties of Plants), Guidelines for the Conduct of Tests for Distinctness, Homogeneity, and Stability.https://www.upov.int/portal/index.html.en , (accessed 13 March 2019).
- Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M and Zabeau M 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407-4414.
- Watcharawongpaiboon N and Chunwongse J 2008. Development and characterization of microsatellite markers from an enriched genomic library of cucumber (Cucumis sativus). Plant Breeding 127: 74-81.
- Waugh R and Power W 1992. Using RAPD markers for crop improvement. Trends in Biotechnology. 10: 186-191.
- Weising K, Beyermann B, Ramser J and Kahl G 1991. Plant DNA fingerprinting with radioactive and digoxigenated oligonucleotide probes complementary to simple repetitive DNA sequences. Electrophoresis 12: 159-169.
- Witkowicz J, Urbańczyk-Wochniak E and Przybecki Z 2003. AFLP marker polymorphism in cucumber (Cucumis sativus L.) near isogenic lines differing in sex expression. Cellular & Molecular Biology Letters 8: 375-381.
- Wu WD, Liu WH, Sun M, Zhou JQ, Liu W, Zhang CL, Zhang XQ, Peng Y, Huang LK and Ma X 2019. Genetic diversity and structure of Elymus tangutorum accessions from western China as unraveled by AFLP markers. Hereditas 156: 8.
- Xixiang L, Dewei Z, Yongchen D, Di S, Qiusheng K and Jiangping S 2004. Studies on genetic diversity and phylogenetic relationship of cucumber (Cucumis sativus L.) germplasm by AFLP technique. Acta Horticulturae Sinica 3.
Hıyar (Cucumis sativus L.) Genotiplerinin Morfolojik Karakterler ve AFLP Analizi ile Genetik Çeşitliliğinin Değerlendirilmesi
Year 2020,
, 577 - 585, 30.06.2020
Yaşar Karakurt
,
Damla Güvercin
,
Sercan Önder
,
Özgür İşler
Abstract
Bu
çalışmanın amacı hıyar genotiplerinin morfolojik ve moleküler çeşitliliğini
değerlendirmektir. Bu amaçla, altı adet morfolojik özellik (bitki morfolojisi,
bitki boyu, yaprak ayası büyüklüğü, meyve uzunluğu, meyve çapı ve meyve sapı
uzunluğu) ve sekiz AFLP markeri kullanılarak 18 hıyar hattı genetik çeşitlilik
açısından değerlendirilmiştir. Kullanılan AFLP primer kombinasyonları
polimorfizm göstermiştir. Çalışma sonucunda 1975 AFLP fragmanı elde edilmiş ve
1468 fragmanın polimorfik olduğu görülmüştür (%75.34). Dendrogramlar, aritmetik
ortalamalar kullanılarak UPGMA (Unweighted Pair Group Method) yöntemiyle
çizilmiş ve UPGMA dendrogramına göre hıyar genotipleri iki ana gruba
ayrılmıştır. Dendrogramın genetik mesafeleri 0.92 ile 0.96 arasında
değişmiştir. Morfolojik verilere dayanan küme analizinde ise UPGMA dendrogramı
tüm hatları üç ana kümeye ayırmıştır. Çalışmada kullanılan hıyar hatlarının
benzerlik katsayısının 0.888 ile 0.982 arasında değişen düşük bir genetik
varyasyon seviyesine sahip olduğu belirlenmiştir. 8 çift AFLP primeri ile
oluşturulan filogenetik dendogramlarla, morfolojik taksonomi ile yapılan UPGMA
kümeleme analizleriyle oluşturulan dendogramlar örtüşmektedir.
References
- Aybak HÇ and Kaygısız H 2004. Hıyar Yetiştiriciliği. Hasad Publishing, Istanbul: pp. 184.
- Cavagnaro PF, Senalik DA, Yang L, Simon PW, Harkins TT, Kodira CD, Huang S and Weng Y 2010. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomic 11: 569.
- Cortese LM, Honig J, Miller C and Bonos SA 2010. Genetic diversity of twelve switchgrass populations using molecular and morphological Markers. BioEnergy Research 3: 262-271.
- Dijkhuizen A, Kennard WC, Hayey MJ and Staub JE 1996. RFLP variation and genetic relationships in cultivated cucumber. Euphytica 90: 79-87.
- El-Esawi MA, Germaine K, Bourke P and Malone R 2016. AFLP analysis of genetic diversity and phylogenetic relationships of Brassica oleracea in Ireland. Comptes Rendus Biologies 339: 163-170.
- Horejsi T and Staub JE 1999. Genetic variation in cucumber (Cucumis sativus L.) as assessed by random amplified polymorphic DNA. Genetic Resources and Crop Evolution 46: 337-350.
- Hu J, Li J, Liang F, Liu L and Si S 2010. Genetic relationship of a cucumber germplasm collection revealed by newly developed EST-SSR markers. Journal of Genetics 89: 28-32.
- Innark P, Khanobdee C, Samipak S and Jantasuriyarat C 2013. Evaluation of genetic diversity in cucumber (Cucumis sativus L.) germplasm using agro-economic traits and microsatellite markers. Scientia Horticulturae 162: 278-284.
- Knerr LD, Staub JE, Holder DJ and May BP 1989. Genetic diversity in Cucumis sativus L. assessed by at 18 allozyme coding loci. Theoretical and Applied Genetics 78: 119-128.
- Kong Q, Xiang C and Yu Z 2006. Development of EST-SSRs in Cucumis sativus from sequence database. Molecular Ecology Notes 6: 1234-1236.
- Li B, Wang A, Zhang P and Li W 2019. Genetic diversity and population structure of endangered Glehnia littoralis (Apiaceae) in China based on AFLP analysis. Biotechnology & Biotechnological Equipment 33: 1-7.
- Meglic V and Staub JE 1996. Inheritance and linkage relationships of isozyme and morphological loci in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics 92: 865-872.
- Meglic V, Serquen F and Staub JE 1996. Genetic diversity in cucumber (Cucumis sativus L.): I. A reevaluation of the U.S. germplasm collection. Genetic Resources and Crop Evolution 43: 533-546.
- Nei M 1972. Genetic distance between populations. The American Society of Naturalists, 106: 283-292.
- Park YH, Sensoy S, Wye C, Antonise R, Peleman J and Havey MJ 2000. A genetic map of cucumber composed of RAPDs, RFLPs, AFLPs, and loci conditioning resistance to papaya ringspot and zucchini yellow mosaic viruses. Genome 43: 1003-1010.
- Peakall R and Smouse PE 2006. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Molecular Ecology Notes 6: 288-295.
- Rohlf FJ 2000. NTSYS-pc-Numerical taxonomy and multivariate analysis system, Version 2.10. New York, Exeter Software.
- Roldán-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A and De Loose M 2000. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding 6: 125-134.
- Scott KD, Ablett EM, Lee LS and Henry RJ 2000. AFLP markers distinguishing an early mutant of Flame Seedless grape. Euphytica. 113: 245-249.
- Shao QS, Guo QS, Deng YM and Guo HP 2010. A comparative analysis of genetic diversity in medicinal Chrysanthemum morifolium based on morphology, ISSR and SRAP markers. Biochemical Systematics and Ecology 38: 1160-1169.
- Staub JE, Box J, Meglic V, Horejsi TF and McCreight JD 1997. Comparison of isozyme and random amplified polymorphic DNA data for determining intraspecific variation in Cucumis. Genetic Resources and Crop Evolution 44: 257-269.
- Staub JE, Chung SM and Fazio G 2005. Conformity and genetic relatedness estimation in crop species having a narrow genetic base: the case of cucumber (Cucumis sativus L.). Plant Breeding. 124: 44-53.
- UPOV (The International Union for the Protection of New Varieties of Plants), Guidelines for the Conduct of Tests for Distinctness, Homogeneity, and Stability.https://www.upov.int/portal/index.html.en , (accessed 13 March 2019).
- Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M and Zabeau M 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407-4414.
- Watcharawongpaiboon N and Chunwongse J 2008. Development and characterization of microsatellite markers from an enriched genomic library of cucumber (Cucumis sativus). Plant Breeding 127: 74-81.
- Waugh R and Power W 1992. Using RAPD markers for crop improvement. Trends in Biotechnology. 10: 186-191.
- Weising K, Beyermann B, Ramser J and Kahl G 1991. Plant DNA fingerprinting with radioactive and digoxigenated oligonucleotide probes complementary to simple repetitive DNA sequences. Electrophoresis 12: 159-169.
- Witkowicz J, Urbańczyk-Wochniak E and Przybecki Z 2003. AFLP marker polymorphism in cucumber (Cucumis sativus L.) near isogenic lines differing in sex expression. Cellular & Molecular Biology Letters 8: 375-381.
- Wu WD, Liu WH, Sun M, Zhou JQ, Liu W, Zhang CL, Zhang XQ, Peng Y, Huang LK and Ma X 2019. Genetic diversity and structure of Elymus tangutorum accessions from western China as unraveled by AFLP markers. Hereditas 156: 8.
- Xixiang L, Dewei Z, Yongchen D, Di S, Qiusheng K and Jiangping S 2004. Studies on genetic diversity and phylogenetic relationship of cucumber (Cucumis sativus L.) germplasm by AFLP technique. Acta Horticulturae Sinica 3.