Research Article
BibTex RIS Cite

The Effects of Water Stress on Cotton Leaf Area and Leaf Morphology

Year 2023, , 140 - 149, 28.02.2023
https://doi.org/10.18016/ksutarimdoga.vi.992764

Abstract

The most important effect of water stress on plants is that it reduces leaf area and leads to changes in leaf morphology. Decreased leaf area results in reduces crop yield through the reduction in photosynthesis. This study investigates the effects of the decrease in leaf area on seed cotton yield, evapotranspiration (ET), water use efficiency (WUE), and leaf geometry in cotton plants under water stress in different growth periods. The cotton plant was divided into three different growth periods (vegetative period (VP), flowering and boll growth period (FB), and boll opening (BO) period), and irrigation water was applied at field capacity level during the periods of full irrigation (T), while non-irrigation was applied during the water stress periods (O). In the experiment, 6 different irrigation strategies were based on: OOO, TTT, OTO, TOO, OTT, and TOT. In each treatment, five leaves were taken from three plants in every replicate during three growth periods, and the leaf area and geometric lengths of each leaf were measured. Seed cotton yield, evapotranspiration, and WUE decreased significantly depending on the severity and duration of the water stress to which the cotton was exposed. Physiologically, cotton leaves under water stress in the first stage of growth tended to increase the leaf lobe numbers while reducing the leaf area. Therefore, there were more leaf lobes numbers measured in OOO than in other treatments. Irrigation in the vegetative growth period was more effective in increasing the leaf area than the other growth periods.

Supporting Institution

tübitak

Project Number

214O254

Thanks

This study was carried out within the scope of the project supported by the Scientific and Technological Research Council of Turkey (TUBITAK) (Project No: 214O254).

References

  • Abd El-Mageed, T.A., Semida, W.M., Mohamed, G.F. & Rady, M.M. (2016). Combined effect of foliar-applied salicylic acid and deficit irrigation onphysiological–anatomical responses, and yield of squash plants under saline soil. South African Journal of Botany 106, 8-16.
  • Akram-Ghaderi, F. & Soltani, A. (2007). Leaf area relationships to plant vegetative characteristics in cotton (Gossypium hirsutum L.) grown in a temperate sub-humid environment. International Journal of Plant Production 1(1), 63-71.
  • Al‐Khafaf, S., Wierenga, P.J. & Williams, B.C. (1978). Evaporative flux from ırrigated cotton as related to leaf area ındex, soil water, and evaporative demand. Agronomy Journal 70(6), 912-917.
  • Andres, R., Bowman, D.T., Jones. D.C. & Kuraparthy, V. (2016). Major leaf shapes of cotton: genetics and agronomic effects in crop production. The Journal of Cotton Science 20, 330-340
  • Babu, V.R. & Rao, D.V.M. (1983). Water stress adaptations in the ground nut (Arachis hypogara L.)-foliar characteristics and adaptations to moisture stress. Plant physiology & biochemistry 10, 64-80.
  • Bañona, S.J., Fernandez, A., Franco, J.A., Torrecillas, A., Alarcón, J.J. & Sánchez-Blanco, M.J. (2004). Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of lotus creticus plants. Scientia Horticulturae 101(3), 333-342.
  • Baştuğ, R. & Tekinel, O. (1989). Water production functions of cotton under limited irrigation water conditions. Doga Turkish Journal of Agriculture Forestry 13,163-168.
  • Bozkurt, S. & Keskin, M. (2018). Effect of deficit ırrigation on the estimation of cucumber leaf area under greenhouse conditions. Internatıonal journal of agrıculture & bıology 20, 877-882.
  • Burt, C. M., O’Connor, K. & Ruehr, T. (1995). Fertigation, California polytechnic state university. Order from: the irrigation training and research center, California polytechnic state university (Cal Poly). San Luis Obispo, California. 295 pp.
  • Can, D. & Ödemiş, B. (2018). Determination of the effects of deficit ırrigation on quality, yield and yield components of some cotton variety in Amik plain conditions. 1. International Gap Agriculture Livestock Congress, Şanlıurfa/Türkiye, 1(1): 599-605.
  • Centritto, M., Loreto, F., Massacci, A., Pietrini, F., Villani, M.C. & Zacchine, M. (2000). Improved growth and water use efficiency of cherry saplings under reduced light intensity. Ecological Research 15(4), 385-392.
  • Cho, Y.Y., Oh, S., Oh, M. & Son, J.E. (2007). Estimation of ındividual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Scientia Horticulturae 111(4), 330-334
  • Correia, M.J., Coelho, D. & David, M.M. (2001). Response to seasonal drought in three cultivars of ceratonia siliqua; leaf growth and water relation Tree Physiology, 21(10), 645-653.
  • Doorenbos, J. & Kassam, A.H. (1979). Yield response to water. FAO 33, 193 pp.
  • Ertek, A. & Kanber, R. (2003). Effects of different irrigation programs on the lint out-turn of cotton under drip irrigation. Ksu Journal of Science and Engineering 6, 106-116.
  • Fournioux, J.C. (1996). Demonstration and study of characters of foliar « compensatory growth » phenomenon in grapevine (Vitis vinifera L.). Journal international des sciences de la vigne et du vin 30(2), 53-65.
  • Howell, T. A., Davis, K. R., McCormick, R. L., Yamada, H., Walhood, V. T. & Meek, D. W. (1984). Water use efficiency of narrow row cotton. Irrigation Science 5(3), 195-214.
  • James, L.G. (1988). Principles of farm ırrigation system design. Krieger Publishing, New York, 543 pp.
  • Kanemasu, E.T., Asrar, G. & Fuchs, M. (1985). Application of remotely sensed data in wheat growth modelling. In Wheat Growth and Modelling Springer, Boston, MA. 357-369 pp.
  • Karami, E., Krieg, D.R. & Quisenberry, J.E. (1980). Water relations and carbon-14 assimilation of cotton with different leaf morphology. Crop Science 20, 421-426.
  • Kazgöz-Candemir, D. & Ödemiş, B. (2018). Yapraktan uygulanan farklı kükürt dozlarının pamuk bitkisinin (Gossypium hirsutum L.) değişik gelişme dönemlerindeki su stresinin azaltılması üzerine etkileri. Derim. 35(2), 161-172.
  • Koc, M. & Barutcular, C. (2000). Relationship between leaf area index at anthesis and yield in wheat under Cukurova conditions. Turkish Journal of Agriculture and Forestry 24(5), 585-593.
  • Krieg, D.R. (1997). Genetic and environmental factors affecting productivity of cotton. Proc. Beltwide Cotton Prod. Res. Conf. 1347 pp.
  • Krieg, D.R. & Sung, F.J.M. (1986). Source-sink relationships as affected by water stress. 73-78 pp. In: J.R. Mauney and J.M. Stewart (eds.). Cotton Physiology. The Cotton Foundation, Memphis, Tenn.
  • Loison, R. (2019). Analyse écophysiologique et modélisation de l’interaction génotype x environnement x itinéraire technique chez le cotonnier (Gossypium hirsutum L.) au cameroun pour la conception d’idéotypes. Université Montpellier, 156 pp.
  • Loveys, B.R., Stoll, M. & Davies, W.J. (2004). Physiological approaches to enhance water use efficiency in agriculture: exploiting plant signalling in novel irrigation practice. Water use efficiency in plant biology 113-141.
  • Marani, A., Baker, D.N., Reddy, V.R., McKinion, J. (1985). Effect of water stress on canopy senescence and carbon exchange rates in cotton. Crop Science 25, 798-802.
  • Ödemiş, B., Akışcan, Y., Akgöl, B. & Can, D. (2018). Kısıtlı su koşullarında yapraktan uygulanan farklı kükürt dozlarının pamuk bitkisinin kuraklık toleransına etkileri. TUBİTAK sonuç raporu. Proje No: 214O254. 112 sy.
  • Pettigrew, W.T. (2004a). Moisture deficit effect on cotton lint yield, yield components, and boll distribution. Agronomy Journal 96(2), 377-383.
  • Pettigrew, W.T. (2004b). Physiological consequences of moisture deficit stress in cotton. Crop Science 44, 1265-1272.
  • Poşta, D.S. & Sala, F. (2018). Leaf area and ıts relationship with leaf descriptors elements in liquidambar styraciflua L. Bulletin UASVM Horticulture, 75, 1.
  • Reddy, V.R., Reddy, K.R. & Hodges, H.F. (1995). Carbon dioxide enrichment and temperature effects on cotton canopy photosynthesis, transpiration, and water-use efficiency. Field Crops Research, 41(1), 13-23.
  • Reich, P.B., Schoettle, A.W. & Amundson ,R.G. (1985). Effects of low concentrations of O3, leaf age and water stress on leaf diffusive conductance and water use efficiency in soybean. Physiologia Plantarum 63(1), 58-64.
  • Rucker, K.S., Kevin, C.K., Holbrook, C.C. & Hook, J.E. (1995). Identification of peanut genotypes with improved drought avoidance traits. Peanut Science 22, 14-18.
  • Sala, F., Arsene, G.G., Lordănescu, O. & Boldea, M. (2015). Leaf area constant model in optimizing foliar area measurement in plants: a case study in apple tree. Scientia Horticulturae 193, 218-224.
  • Sundaravalli, V. M., Paliwal, K. & Ruckmani, A. (2005). Effect of water stress on photosynthesis, protein content and nitrate reducates activity of albizzia seedlings. Journal of Plant Biology-New Delhi, 32(1), 13-17.
  • Tekinel, O. & Kanber, R. (1989). Pamuk sulamasının genel ilkeleri. Ç.Ü. Zir. Fak. No:18. 56 sy.
  • Tian, M., Yu, G., He, N. & Hou, J. (2016). Leaf morphological and anatomical traits from tropical to temperate coniferous forests: mechanisms and ınfluencing factors. Scientific Reports 6:19703 DOI: 10.1038/srep19703 www.nature.com/ scientificreports.
  • Wilson, R.F., Burke, J.J. & Quisenberry, J.E. (1987). Plant morphological and biochemical responses to field water deficits. II. Responses of leaf glycerolipid composition in cotton. Plant physiology, 84(2), 251-254.
  • Yıldırım, O. (2008). Sulama sistemlerinin tasarımı. Ankara Üniversitesi Ziraat Fakültesi Yayın No: 1565, 354 sy.

Su Stresinin Pamuk Yaprak Alanına ve Morfolojisine Etkileri

Year 2023, , 140 - 149, 28.02.2023
https://doi.org/10.18016/ksutarimdoga.vi.992764

Abstract

Su stresinin bitkiler üzerindeki en önemli etkisi yaprak alanını azal-tarak yaprak morfolojisinde değişime yol açmasıdır. Yaprak alanının azalması fotosentezdeki azalma yoluyla mahsul veriminin azal-masına neden olur. Bu çalışmada farklı gelişme dönemlerinde susuz bırakılan pamuk bitkisinde yaprak alanındaki azalmanın verim, evapotranspirasyon (ET), su kullanma oranına (WUE) ve yaprak geometrisine etkileri belirlenmeye çalışılmıştır. Pamuk bitkisi 3 farklı gelişme dönemine (vegetatif dönem, çiçeklenme ve koza oluşumu dönemi ve kozaların açılması dönemi) ayrıldı ve tam sulamanın yapıldığı dönemlerde tarla kapasitesi düzeyinde su uygu-lanırken (T), su stresli dönemlerde sulama suyu uygulan-mamıştır (O). Denemede OOO, TTT, OTO, TOO, OTT, TOT konuları olmak üzere 6 farklı sulama stratejisi esas alındı. Her konuda 3 gelişme döneminde her tekerrürdeki 3 bitkiden 5 er yaprak alındı ve her yaprağın yaprak alanı ve geometrik uzunlukları ölçüldü. Pamuğun maruz kaldığı stresin şiddetine ve süresine bağlı olarak verim, eva-potranspirasyon ve WUE önemli ölçüde azaldı. Fizyolojik olarak büyümenin ilk evresinde susuz bırakılan pamuk yaprakları alan-larını küçültürken kanat sayılarını artırma eğilimine girmiştir. Bu nedenle yaprak kanat sayısı OOO konusunda diğer konulardan daha fazla ölçüldü. Vegetatif gelişme dönemindeki sulamaların yaprak alanının artmasında gelişme dönemlerinden daha etkili olmuştur.

Project Number

214O254

References

  • Abd El-Mageed, T.A., Semida, W.M., Mohamed, G.F. & Rady, M.M. (2016). Combined effect of foliar-applied salicylic acid and deficit irrigation onphysiological–anatomical responses, and yield of squash plants under saline soil. South African Journal of Botany 106, 8-16.
  • Akram-Ghaderi, F. & Soltani, A. (2007). Leaf area relationships to plant vegetative characteristics in cotton (Gossypium hirsutum L.) grown in a temperate sub-humid environment. International Journal of Plant Production 1(1), 63-71.
  • Al‐Khafaf, S., Wierenga, P.J. & Williams, B.C. (1978). Evaporative flux from ırrigated cotton as related to leaf area ındex, soil water, and evaporative demand. Agronomy Journal 70(6), 912-917.
  • Andres, R., Bowman, D.T., Jones. D.C. & Kuraparthy, V. (2016). Major leaf shapes of cotton: genetics and agronomic effects in crop production. The Journal of Cotton Science 20, 330-340
  • Babu, V.R. & Rao, D.V.M. (1983). Water stress adaptations in the ground nut (Arachis hypogara L.)-foliar characteristics and adaptations to moisture stress. Plant physiology & biochemistry 10, 64-80.
  • Bañona, S.J., Fernandez, A., Franco, J.A., Torrecillas, A., Alarcón, J.J. & Sánchez-Blanco, M.J. (2004). Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of lotus creticus plants. Scientia Horticulturae 101(3), 333-342.
  • Baştuğ, R. & Tekinel, O. (1989). Water production functions of cotton under limited irrigation water conditions. Doga Turkish Journal of Agriculture Forestry 13,163-168.
  • Bozkurt, S. & Keskin, M. (2018). Effect of deficit ırrigation on the estimation of cucumber leaf area under greenhouse conditions. Internatıonal journal of agrıculture & bıology 20, 877-882.
  • Burt, C. M., O’Connor, K. & Ruehr, T. (1995). Fertigation, California polytechnic state university. Order from: the irrigation training and research center, California polytechnic state university (Cal Poly). San Luis Obispo, California. 295 pp.
  • Can, D. & Ödemiş, B. (2018). Determination of the effects of deficit ırrigation on quality, yield and yield components of some cotton variety in Amik plain conditions. 1. International Gap Agriculture Livestock Congress, Şanlıurfa/Türkiye, 1(1): 599-605.
  • Centritto, M., Loreto, F., Massacci, A., Pietrini, F., Villani, M.C. & Zacchine, M. (2000). Improved growth and water use efficiency of cherry saplings under reduced light intensity. Ecological Research 15(4), 385-392.
  • Cho, Y.Y., Oh, S., Oh, M. & Son, J.E. (2007). Estimation of ındividual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Scientia Horticulturae 111(4), 330-334
  • Correia, M.J., Coelho, D. & David, M.M. (2001). Response to seasonal drought in three cultivars of ceratonia siliqua; leaf growth and water relation Tree Physiology, 21(10), 645-653.
  • Doorenbos, J. & Kassam, A.H. (1979). Yield response to water. FAO 33, 193 pp.
  • Ertek, A. & Kanber, R. (2003). Effects of different irrigation programs on the lint out-turn of cotton under drip irrigation. Ksu Journal of Science and Engineering 6, 106-116.
  • Fournioux, J.C. (1996). Demonstration and study of characters of foliar « compensatory growth » phenomenon in grapevine (Vitis vinifera L.). Journal international des sciences de la vigne et du vin 30(2), 53-65.
  • Howell, T. A., Davis, K. R., McCormick, R. L., Yamada, H., Walhood, V. T. & Meek, D. W. (1984). Water use efficiency of narrow row cotton. Irrigation Science 5(3), 195-214.
  • James, L.G. (1988). Principles of farm ırrigation system design. Krieger Publishing, New York, 543 pp.
  • Kanemasu, E.T., Asrar, G. & Fuchs, M. (1985). Application of remotely sensed data in wheat growth modelling. In Wheat Growth and Modelling Springer, Boston, MA. 357-369 pp.
  • Karami, E., Krieg, D.R. & Quisenberry, J.E. (1980). Water relations and carbon-14 assimilation of cotton with different leaf morphology. Crop Science 20, 421-426.
  • Kazgöz-Candemir, D. & Ödemiş, B. (2018). Yapraktan uygulanan farklı kükürt dozlarının pamuk bitkisinin (Gossypium hirsutum L.) değişik gelişme dönemlerindeki su stresinin azaltılması üzerine etkileri. Derim. 35(2), 161-172.
  • Koc, M. & Barutcular, C. (2000). Relationship between leaf area index at anthesis and yield in wheat under Cukurova conditions. Turkish Journal of Agriculture and Forestry 24(5), 585-593.
  • Krieg, D.R. (1997). Genetic and environmental factors affecting productivity of cotton. Proc. Beltwide Cotton Prod. Res. Conf. 1347 pp.
  • Krieg, D.R. & Sung, F.J.M. (1986). Source-sink relationships as affected by water stress. 73-78 pp. In: J.R. Mauney and J.M. Stewart (eds.). Cotton Physiology. The Cotton Foundation, Memphis, Tenn.
  • Loison, R. (2019). Analyse écophysiologique et modélisation de l’interaction génotype x environnement x itinéraire technique chez le cotonnier (Gossypium hirsutum L.) au cameroun pour la conception d’idéotypes. Université Montpellier, 156 pp.
  • Loveys, B.R., Stoll, M. & Davies, W.J. (2004). Physiological approaches to enhance water use efficiency in agriculture: exploiting plant signalling in novel irrigation practice. Water use efficiency in plant biology 113-141.
  • Marani, A., Baker, D.N., Reddy, V.R., McKinion, J. (1985). Effect of water stress on canopy senescence and carbon exchange rates in cotton. Crop Science 25, 798-802.
  • Ödemiş, B., Akışcan, Y., Akgöl, B. & Can, D. (2018). Kısıtlı su koşullarında yapraktan uygulanan farklı kükürt dozlarının pamuk bitkisinin kuraklık toleransına etkileri. TUBİTAK sonuç raporu. Proje No: 214O254. 112 sy.
  • Pettigrew, W.T. (2004a). Moisture deficit effect on cotton lint yield, yield components, and boll distribution. Agronomy Journal 96(2), 377-383.
  • Pettigrew, W.T. (2004b). Physiological consequences of moisture deficit stress in cotton. Crop Science 44, 1265-1272.
  • Poşta, D.S. & Sala, F. (2018). Leaf area and ıts relationship with leaf descriptors elements in liquidambar styraciflua L. Bulletin UASVM Horticulture, 75, 1.
  • Reddy, V.R., Reddy, K.R. & Hodges, H.F. (1995). Carbon dioxide enrichment and temperature effects on cotton canopy photosynthesis, transpiration, and water-use efficiency. Field Crops Research, 41(1), 13-23.
  • Reich, P.B., Schoettle, A.W. & Amundson ,R.G. (1985). Effects of low concentrations of O3, leaf age and water stress on leaf diffusive conductance and water use efficiency in soybean. Physiologia Plantarum 63(1), 58-64.
  • Rucker, K.S., Kevin, C.K., Holbrook, C.C. & Hook, J.E. (1995). Identification of peanut genotypes with improved drought avoidance traits. Peanut Science 22, 14-18.
  • Sala, F., Arsene, G.G., Lordănescu, O. & Boldea, M. (2015). Leaf area constant model in optimizing foliar area measurement in plants: a case study in apple tree. Scientia Horticulturae 193, 218-224.
  • Sundaravalli, V. M., Paliwal, K. & Ruckmani, A. (2005). Effect of water stress on photosynthesis, protein content and nitrate reducates activity of albizzia seedlings. Journal of Plant Biology-New Delhi, 32(1), 13-17.
  • Tekinel, O. & Kanber, R. (1989). Pamuk sulamasının genel ilkeleri. Ç.Ü. Zir. Fak. No:18. 56 sy.
  • Tian, M., Yu, G., He, N. & Hou, J. (2016). Leaf morphological and anatomical traits from tropical to temperate coniferous forests: mechanisms and ınfluencing factors. Scientific Reports 6:19703 DOI: 10.1038/srep19703 www.nature.com/ scientificreports.
  • Wilson, R.F., Burke, J.J. & Quisenberry, J.E. (1987). Plant morphological and biochemical responses to field water deficits. II. Responses of leaf glycerolipid composition in cotton. Plant physiology, 84(2), 251-254.
  • Yıldırım, O. (2008). Sulama sistemlerinin tasarımı. Ankara Üniversitesi Ziraat Fakültesi Yayın No: 1565, 354 sy.
There are 40 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section RESEARCH ARTICLE
Authors

Berkant Ödemiş 0000-0001-7636-2858

Derya Kazgöz Candemir 0000-0002-5741-5464

Project Number 214O254
Publication Date February 28, 2023
Submission Date September 8, 2021
Acceptance Date February 24, 2022
Published in Issue Year 2023

Cite

APA Ödemiş, B., & Kazgöz Candemir, D. (2023). The Effects of Water Stress on Cotton Leaf Area and Leaf Morphology. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 26(1), 140-149. https://doi.org/10.18016/ksutarimdoga.vi.992764

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149