Research Article
BibTex RIS Cite

Optimization of Keratinase Enzyme synthesized by Micrococcus luteus using Taguchi DOE Method

Year 2023, Volume: 26 Issue: 5, 1027 - 1033, 31.10.2023
https://doi.org/10.18016/ksutarimdoga.vi.1128064

Abstract

Keratinase is an important enzyme used for degradation of the keratinous wastes, especially slaughterhouse and poultry-derived wastes, that cause environmental pollution. In the current study, optimum conditions for keratinase production by Micrococcus luteus Y23-18 strain were investigated using Taguchi DOE L9 orthogonal array. For this purpose, the selected environmental factors were initial pH, incubation temperature and time. The optimal conditions were obtained as pH 9.5, temperature 30˚C and 3 days. The obtained results showed that keratinase activity was enhanced approximately 2.3-folds (34.95 U mL-1) when compared with the unoptimized conditions (15.33 U mL-1). As a result, M. luteus Y23-18 is an effective keratinase producer microorganism and Taguchi design of experiment is a useful tool for optimization.

References

  • Abdel-Fattah, A. M., El-Gamal, M. S., Ismail, S. A., Emran, M. A., & Hashem, A. M. (2018). Biodegradation of feather waste by keratinase produced from newly isolated Bacillus licheniformis ALW1. Journal of Genetic Engineering and Biotechnology, 16(2), 311–318. https://doi.org/ 10.1016/j.jgeb.2018.05.005
  • Bockle, B., Galunsky, B., & Muller, R. (1995). Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530. Applied and Environmental Microbiology, 61(10), 3705–3710. https://doi.org/10.1128/aem.61.10.3705-3710.1995
  • Cai, G., Moffitt, K., Navone, L., Zhang, Z., Robins, K., & Speight, R. (2022). Valorisation of keratin waste: Controlled pretreatment enhances enzymatic production of antioxidant peptides. Journal of Environmental Management, 301(July 2021), 113945. https://doi.org/10.1016/j.jenvman.2021. 113945
  • Canlı Taşar, Ö. (2020). Inulinase production capability of a promising medicinal plant: Inula viscosa. Commagene Journal of Biology, 4, 67–73. https://doi.org/10.31594/commagene.747618
  • Canli, O., Tasar, G.E., & Taskin, M. (2013). Inulinase production by Geotrichum candidum OC-7 using migratory locusts as a new substrate and optimization process with Taguchi DOE. Toxicology and Industrial Health, 29(8), 704–710. https://doi.org/10.1177/0748233712442737
  • Canli Tasar, O. (2022). Glucose oxidase production using a medicinal plant: Inula viscosa and optimization with Taguchi DOE. Journal of Food Processing and Preservation, 46(3), e16375. https://doi.org/10.1111/jfpp.16375
  • Chen, Z., Jiang, X. (2014). Microbiological Safety of Chicken Litter or Chicken Litter-based Organic Fertilizers: A Review.”. Agriculture, 4(1), 1–29. https://doi.org/10.3390/agriculture4010001 .
  • Daroit, D. J., & Brandelli, A. (2014). A current assessment on the production of bacterial keratinases. Critical Reviews in Biotechnology, 34(4), 372–384. https://doi.org/10.3109/07388551. 2013.794768
  • Devi, S., Chauhan, A., Bishist, R., Sankhyan, N., Rana, K., & Sharma, N. (2022). Production, partial purification and efficacy of keratinase from Bacillus halotolerans L2EN1 isolated from the poultry farm of Himachal Pradesh as a potential laundry additive. Biocatalysis and Biotransformation, 1–21. https://doi.org/10.1080/10242422.2022.2029851
  • Etemadian, Y., Ghaemi, V., Shaviklo, A.R., Pourashouri, P., Sadeghi Mahoonak, A.R., & Rafipour, F. (2021). Development of animal/ plant-based protein hydrolysate and its application in food, feed and nutraceutical industries: State of the art. Journal of Cleaner Production, 278. https://doi.org/10.1016/j.jclepro.2020.123219
  • Farid, M.A., Ghoneimy, E.A., El-Khawaga, M.A., Negm-Eldein, A., & Awad, G.E.A. (2013). Statistical optimization of glucose oxidase production from Aspergillus niger NRC9 under submerged fermentation using response surface methodology. Annals of Microbiology, 63(2), 523–531. https://doi.org/10.1007/s13213-012-0497-5
  • Gonzalo, M., Espersen, R., Al-Soud, W.A., Cristiano Falco, F., Hägglund, P., Sørensen, S.J., Svensson, B., & Jacquiod, S. (2020). Azo dying of α-keratin material improves microbial keratinase screening and standardization. Microbial Biotechnology, 13(4), 984–996. https://doi.org/10.1111/1751-7915.13541
  • Gupta, R., Sharma, R., & Beg, Q. K. (2013). Revisiting microbial keratinases: Next generation proteases for sustainable biotechnology. Critical Reviews in Biotechnology, 33(2), 216–228. https://doi.org/ 10.3109/07388551.2012.685051
  • Jean, M.D., & Tzeng, Y.F. (2003). Use of Taguchi methods and multiple regression analysis for optimal process development of high energy electron beam case hardening of cast iron. Surface Engineering, 19(2), 150–156. https://doi.org/ 10.1179/026708403225002496
  • Kivak, T. (2014). Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement: Journal of the International Measurement Confederation, 50(1), 19–28. https://doi.org/10.1016/j.measurement.2013.12.017
  • Laba, W., Choinska, A., Rodziewicz, A., & Piegza, M. (2015). Keratinolytic abilities of Micrococcus luteus from poultry waste. Brazilian Journal of Microbiology, 46(3), 691–700. https://doi.org/ 10.1590/S1517-838246320140098
  • Letourneau, F., Soussotte, V., Bressollier, P. & Branland, P.V. (1998). Keratinolytic activity of Streptomyces sp. SK1-02: a new isolated strain. Letters in Applied Microbiology, 26, 77–80.
  • Martinez, J.P.D.O., Cai, G., Nachtschatt, M., Navone, L., Zhang, Z., Robins, K., & Speight, R. (2020). Challenges and opportunities in identifying and characterising keratinases for value-added peptide production. Catalysts, 10(2). https://doi.org/ 10.3390/catal10020184
  • Murray-Tortarolo, G. N., & Jaramillo, V. J. (2020). Precipitation extremes in recent decades impact cattle populations at the global and national scales. Science of the Total Environment, 736, 139557. https://doi.org/10.1016/j.scitotenv.2020.139557
  • Nowak, A.T. Bakuła, K. Matusiak, R. Gałęcki, S. Borowski, & B.G. (2017). Odorous Compounds from Poultry Manure Induce DNA Damage, Nuclear Changes, and Decrease Cell Membrane Integrity in Chicken Liver Hepatocellular Carcinoma Cells. International Journal of Environmental Research and Public Health, 14(8), 933–940. https://doi.org/ 10.3390/ijerph14080933.
  • Prabakaran, R., & Valavan, S.E. (2021). Wealth from poultry waste: an overview. World’s Poultry Science Journal, 77(2), 389–401. https://doi.org/10.1080/ 00439339.2021.1901557
  • Rao, R. S., Kumar, C. G., Prakasham, R. S., & Hobbs, P. J. (2008). The Taguchi methodology as a statistical tool for biotechnological applications: A critical appraisal. Biotechnology Journal, 3(4), 510–523. https://doi.org/10.1002/biot.200700201
  • Scott, J. A., & Untereiner, W.A. (2004). Determination of keratin degradation by fungi using keratin azure. Medical Mycology, 42(3), 239–246. https://doi.org/ 10.1080/13693780310001644680
  • Sharma, I., & Kango, N. (2021). Production and characterization of keratinase by Ochrobactrum intermedium for feather keratin utilization. International Journal of Biological Macromolecules, 166, 1046–1056. https://doi.org/ 10.1016/j.ijbiomac.2020.10.260
  • Sharma, P., Verma, A., Sidhu, R.K., & Pandey, O.P. (2005). Process parameter selection for strontium ferrite sintered magnets using Taguchi L9 orthogonal design. Journal of Materials Processing Technology, 168(1), 147–151. https://doi.org/ 10.1016/j.jmatprotec.2004.12.003
  • Simpson, T. W. (1991). Agronomic Use of Poultry Industry Waste. Poultry Science, 70(5), 1126–1131. https://doi.org/10.3382/ps.0701126
  • Suntornsuk, W., & Suntornsuk, L. (2003). Feather degradation by Bacillus sp. FK 46 in submerged cultivation. Bioresource Technology, 86(3), 239–243. https://doi.org/10.1016/S0960-8524(02)00177-3
  • Tan, O., Zaimoglu, A.S., Hinislioglu, S., & Altun, S. (2005). Taguchi approach for optimization of the bleeding on cement-based grouts. Tunnelling and Underground Space Technology, 20(2), 167–173. https://doi.org/10.1016/j.tust.2004.08.004
  • TUIK Turkey Statistical Institute. (2022). 45692. https://data.tuik.gov.tr/Bulten/Index?p=Kumes-Hayvanciligi-Uretimi-Mart-2022-45692&dil=1
  • Vidmar, B., & Vodovnik, M. (2018). Microbial keratinases: Enzymes with promising biotechnological applications. Food Technology and Biotechnology, 56(3), 312–328. https://doi.org/ 10.17113/ftb.56.03.18.5658
  • Zhang, J., Su, C., Kong, X.L., Gong, J.S., Liu, Y.L., Li, H., Qin, J., Xu, Z.H., & Shi, J.S. (2022). Directed evolution driving the generation of an efficient keratinase variant to facilitate the feather degradation. Bioresources and Bioprocessing, 9(1), 38. https://doi.org/10.1186/s40643-022-00524-4

Micrococcus luteus Tarafından Sentezlenen Keratinaz Enziminin Taguchi DOE Yöntemi Kullanılarak Optimizasyonu

Year 2023, Volume: 26 Issue: 5, 1027 - 1033, 31.10.2023
https://doi.org/10.18016/ksutarimdoga.vi.1128064

Abstract

Keratinaz, keratinöz atıkların, özellikle çevresel kirliliğe yol açan mezbaha ve kümes hayvancılığı kökenli atıkların parçalanmasında kullanılan önemli bir enzimdir. Mevcut çalışmada, Micrococcus luteus Y23-18 suşu tarafından keratinaz enziminin üretiminin Taguchi DOE L9 ortogonal dizisi kullanılarak optimizasyonu araştırılmıştır. Bu amaçla seçilen çevresel faktörler, başlangıç pH değeri, inkübasyon sıcaklığı ve zamandır. Optimal şartlar 9.5 pH değeri, 30˚C sıcaklık ve 3 gün olarak belirlenmiştir. Elde edilen sonuçlar keratinaz aktivitesinin, optimize edilmeyen durumla (15.33 U mL-1) karşılaştırıldığında yaklaşık olarak 2.3 kat (34.95 U mL-1) arttığını göstermiştir. Sonuç olarak, M. luteus Y23-18 etkili bir keratinaz üretici mikroorganizmadır ve Taguchi deney dizaynı optimizasyon için kullanışlı bir araçtır.

References

  • Abdel-Fattah, A. M., El-Gamal, M. S., Ismail, S. A., Emran, M. A., & Hashem, A. M. (2018). Biodegradation of feather waste by keratinase produced from newly isolated Bacillus licheniformis ALW1. Journal of Genetic Engineering and Biotechnology, 16(2), 311–318. https://doi.org/ 10.1016/j.jgeb.2018.05.005
  • Bockle, B., Galunsky, B., & Muller, R. (1995). Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530. Applied and Environmental Microbiology, 61(10), 3705–3710. https://doi.org/10.1128/aem.61.10.3705-3710.1995
  • Cai, G., Moffitt, K., Navone, L., Zhang, Z., Robins, K., & Speight, R. (2022). Valorisation of keratin waste: Controlled pretreatment enhances enzymatic production of antioxidant peptides. Journal of Environmental Management, 301(July 2021), 113945. https://doi.org/10.1016/j.jenvman.2021. 113945
  • Canlı Taşar, Ö. (2020). Inulinase production capability of a promising medicinal plant: Inula viscosa. Commagene Journal of Biology, 4, 67–73. https://doi.org/10.31594/commagene.747618
  • Canli, O., Tasar, G.E., & Taskin, M. (2013). Inulinase production by Geotrichum candidum OC-7 using migratory locusts as a new substrate and optimization process with Taguchi DOE. Toxicology and Industrial Health, 29(8), 704–710. https://doi.org/10.1177/0748233712442737
  • Canli Tasar, O. (2022). Glucose oxidase production using a medicinal plant: Inula viscosa and optimization with Taguchi DOE. Journal of Food Processing and Preservation, 46(3), e16375. https://doi.org/10.1111/jfpp.16375
  • Chen, Z., Jiang, X. (2014). Microbiological Safety of Chicken Litter or Chicken Litter-based Organic Fertilizers: A Review.”. Agriculture, 4(1), 1–29. https://doi.org/10.3390/agriculture4010001 .
  • Daroit, D. J., & Brandelli, A. (2014). A current assessment on the production of bacterial keratinases. Critical Reviews in Biotechnology, 34(4), 372–384. https://doi.org/10.3109/07388551. 2013.794768
  • Devi, S., Chauhan, A., Bishist, R., Sankhyan, N., Rana, K., & Sharma, N. (2022). Production, partial purification and efficacy of keratinase from Bacillus halotolerans L2EN1 isolated from the poultry farm of Himachal Pradesh as a potential laundry additive. Biocatalysis and Biotransformation, 1–21. https://doi.org/10.1080/10242422.2022.2029851
  • Etemadian, Y., Ghaemi, V., Shaviklo, A.R., Pourashouri, P., Sadeghi Mahoonak, A.R., & Rafipour, F. (2021). Development of animal/ plant-based protein hydrolysate and its application in food, feed and nutraceutical industries: State of the art. Journal of Cleaner Production, 278. https://doi.org/10.1016/j.jclepro.2020.123219
  • Farid, M.A., Ghoneimy, E.A., El-Khawaga, M.A., Negm-Eldein, A., & Awad, G.E.A. (2013). Statistical optimization of glucose oxidase production from Aspergillus niger NRC9 under submerged fermentation using response surface methodology. Annals of Microbiology, 63(2), 523–531. https://doi.org/10.1007/s13213-012-0497-5
  • Gonzalo, M., Espersen, R., Al-Soud, W.A., Cristiano Falco, F., Hägglund, P., Sørensen, S.J., Svensson, B., & Jacquiod, S. (2020). Azo dying of α-keratin material improves microbial keratinase screening and standardization. Microbial Biotechnology, 13(4), 984–996. https://doi.org/10.1111/1751-7915.13541
  • Gupta, R., Sharma, R., & Beg, Q. K. (2013). Revisiting microbial keratinases: Next generation proteases for sustainable biotechnology. Critical Reviews in Biotechnology, 33(2), 216–228. https://doi.org/ 10.3109/07388551.2012.685051
  • Jean, M.D., & Tzeng, Y.F. (2003). Use of Taguchi methods and multiple regression analysis for optimal process development of high energy electron beam case hardening of cast iron. Surface Engineering, 19(2), 150–156. https://doi.org/ 10.1179/026708403225002496
  • Kivak, T. (2014). Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement: Journal of the International Measurement Confederation, 50(1), 19–28. https://doi.org/10.1016/j.measurement.2013.12.017
  • Laba, W., Choinska, A., Rodziewicz, A., & Piegza, M. (2015). Keratinolytic abilities of Micrococcus luteus from poultry waste. Brazilian Journal of Microbiology, 46(3), 691–700. https://doi.org/ 10.1590/S1517-838246320140098
  • Letourneau, F., Soussotte, V., Bressollier, P. & Branland, P.V. (1998). Keratinolytic activity of Streptomyces sp. SK1-02: a new isolated strain. Letters in Applied Microbiology, 26, 77–80.
  • Martinez, J.P.D.O., Cai, G., Nachtschatt, M., Navone, L., Zhang, Z., Robins, K., & Speight, R. (2020). Challenges and opportunities in identifying and characterising keratinases for value-added peptide production. Catalysts, 10(2). https://doi.org/ 10.3390/catal10020184
  • Murray-Tortarolo, G. N., & Jaramillo, V. J. (2020). Precipitation extremes in recent decades impact cattle populations at the global and national scales. Science of the Total Environment, 736, 139557. https://doi.org/10.1016/j.scitotenv.2020.139557
  • Nowak, A.T. Bakuła, K. Matusiak, R. Gałęcki, S. Borowski, & B.G. (2017). Odorous Compounds from Poultry Manure Induce DNA Damage, Nuclear Changes, and Decrease Cell Membrane Integrity in Chicken Liver Hepatocellular Carcinoma Cells. International Journal of Environmental Research and Public Health, 14(8), 933–940. https://doi.org/ 10.3390/ijerph14080933.
  • Prabakaran, R., & Valavan, S.E. (2021). Wealth from poultry waste: an overview. World’s Poultry Science Journal, 77(2), 389–401. https://doi.org/10.1080/ 00439339.2021.1901557
  • Rao, R. S., Kumar, C. G., Prakasham, R. S., & Hobbs, P. J. (2008). The Taguchi methodology as a statistical tool for biotechnological applications: A critical appraisal. Biotechnology Journal, 3(4), 510–523. https://doi.org/10.1002/biot.200700201
  • Scott, J. A., & Untereiner, W.A. (2004). Determination of keratin degradation by fungi using keratin azure. Medical Mycology, 42(3), 239–246. https://doi.org/ 10.1080/13693780310001644680
  • Sharma, I., & Kango, N. (2021). Production and characterization of keratinase by Ochrobactrum intermedium for feather keratin utilization. International Journal of Biological Macromolecules, 166, 1046–1056. https://doi.org/ 10.1016/j.ijbiomac.2020.10.260
  • Sharma, P., Verma, A., Sidhu, R.K., & Pandey, O.P. (2005). Process parameter selection for strontium ferrite sintered magnets using Taguchi L9 orthogonal design. Journal of Materials Processing Technology, 168(1), 147–151. https://doi.org/ 10.1016/j.jmatprotec.2004.12.003
  • Simpson, T. W. (1991). Agronomic Use of Poultry Industry Waste. Poultry Science, 70(5), 1126–1131. https://doi.org/10.3382/ps.0701126
  • Suntornsuk, W., & Suntornsuk, L. (2003). Feather degradation by Bacillus sp. FK 46 in submerged cultivation. Bioresource Technology, 86(3), 239–243. https://doi.org/10.1016/S0960-8524(02)00177-3
  • Tan, O., Zaimoglu, A.S., Hinislioglu, S., & Altun, S. (2005). Taguchi approach for optimization of the bleeding on cement-based grouts. Tunnelling and Underground Space Technology, 20(2), 167–173. https://doi.org/10.1016/j.tust.2004.08.004
  • TUIK Turkey Statistical Institute. (2022). 45692. https://data.tuik.gov.tr/Bulten/Index?p=Kumes-Hayvanciligi-Uretimi-Mart-2022-45692&dil=1
  • Vidmar, B., & Vodovnik, M. (2018). Microbial keratinases: Enzymes with promising biotechnological applications. Food Technology and Biotechnology, 56(3), 312–328. https://doi.org/ 10.17113/ftb.56.03.18.5658
  • Zhang, J., Su, C., Kong, X.L., Gong, J.S., Liu, Y.L., Li, H., Qin, J., Xu, Z.H., & Shi, J.S. (2022). Directed evolution driving the generation of an efficient keratinase variant to facilitate the feather degradation. Bioresources and Bioprocessing, 9(1), 38. https://doi.org/10.1186/s40643-022-00524-4
There are 31 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section RESEARCH ARTICLE
Authors

Özden Canlı Taşar 0000-0002-4313-5373

Gani Erhan Taşar 0000-0002-9217-0706

Early Pub Date May 27, 2023
Publication Date October 31, 2023
Submission Date June 8, 2022
Acceptance Date November 13, 2022
Published in Issue Year 2023Volume: 26 Issue: 5

Cite

APA Canlı Taşar, Ö., & Taşar, G. E. (2023). Optimization of Keratinase Enzyme synthesized by Micrococcus luteus using Taguchi DOE Method. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 26(5), 1027-1033. https://doi.org/10.18016/ksutarimdoga.vi.1128064


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149