Araştırma Makalesi
BibTex RIS Kaynak Göster

Enginar Fraksiyonlarının Polifenolleri ve In-Vitro Sindirimi

Yıl 2023, Cilt: 26 Sayı: 2, 339 - 345, 30.04.2023
https://doi.org/10.18016/ksutarimdoga.vi.1080551

Öz

Bu çalışmada, enginar fraksiyonlarından (tabla, dış yapraklar ve sap) farklı çözücüler (%80 etanol, %80 metanol ve su) kullanılarak elde edilen ekstraktların toplam polifenol (TP), toplam flavonoid (TF) ve klorojenik asit (KA) içerikleri ile antioksidan kapasitesi (AK) ve polifenollerin (mide ve bağırsak aşamasında) in-vitro biyoerişilebilirliğini belirlemek amaçlanmıştır. Sonuçlar, enginar fraksiyonunun ve kullanılan çözücünün ölçülen tüm parametreleri önemli ölçüde etkilediğini göstermiştir (P<0.05). Örneklerin TP ve TF içerikleri, sırasıyla 1.74-5.52 mg GAE (gallik asit eşdeğeri) g-1 KM (kuru madde) ve 1.30-7.34 mg RE (rutin eşdeğeri) g-1 KM aralığında bulunmuştur. AK ise 433.73-1243.21 mmol AAE (askorbik asit eşdeğeri) 100g-1 KM arasında değişmiştir. Ekstraktların in-vitro sindirim sonrası TP ve AK’ sı enginar fraksiyonu ve kullanılan çözücüye göre değişim göstermiş ve başlangıç (sindirim öncesi) değerlerinden daha düşük bulunmuştur. Polifenollerin biyoerişilebilirliği %17.36-64.37 aralığında saptanmıştır. KA, enginar tablası (ET) ve enginar sapının (ES) su ekstraktları haricindeki tüm ekstraktlarda tespit edilmiştir. Bu sonuçlar, enginar yan ürünleri olan dış yapraklar ile sapın, ET kadar potansiyel bir doğal antioksidan kaynağı olabileceğini ortaya koymuştur.

Kaynakça

  • Aires, A., Carvalho, R., & Saavedra, M. J. (2016). Valorization of solid wastes from chestnut industry processing: Extraction and optimization of polyphenols, tannins and ellagitannins and its potential for adhesives, cosmetic and pharmaceutical industry. Waste Management, 48, 457–464. https://doi.org/10.1016/j.wasman.2015.11.019
  • Amado, I. R., Franco, D., Sánchez, M., Zapata, C., & Vázquez, J. A. (2014). Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chemistry, 165, 290–299. https://doi.org/10.1016/ j.foodchem.2014.05.103
  • Bouayed, J., Deußer, H., Hoffmann, L., & Bohn, T. (2012). Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chemistry, 131(4), 1466–1472. https://doi.org/10.1016/j.foodchem.2011.10.030
  • Colantuono, A., Ferracane, R., & Vitaglione, P. (2018). Potential bioaccessibility and functionality of polyphenols and cynaropicrin from breads enriched with artichoke stem. Food Chemistry, 245(March 2017), 838–844. https://doi.org/ 10.1016/j.foodchem.2017.11.099
  • D’Antuono, I., Garbetta, A., Linsalata, V., Minervini, F., & Cardinali, A. (2015). Polyphenols from artichoke heads (Cynara cardunculus (L.) subsp. scolymus Hayek): In vitro bio-accessibility, intestinal uptake and bioavailability. Food and Function, 6(4), 1268–1277. https://doi.org/10.1039/ c5fo00137d
  • Dabbou, S., Dabbou, S., Flamini, G., Pandino, G., Gasco, L., & Helal, A. N. (2016). Phytochemical compounds from the crop byproducts of Tunisian globe artichoke cultivars. Chemistry and Biodiversity, 13(11), 1475–1483. https://doi.org/ 10.1002/cbdv.201600046.
  • Dabbou, S., Dabbou, S., Pandino, G., Lombardo, S., Mauromicale, G., Chahdoura, H., Gasco, L., & Helal, A. N. (2015). In vitro antioxidant activities and phenolic content in crop residues of Tunisian globe artichoke. Scientia Horticulturae, 190, 128–136. https://doi.org/10.1016/j.scienta.2015.04.014
  • Ergezer, H., & Serdaroğlu, M. (2018). Antioxidant potential of artichoke (Cynara scolymus L.) byproducts extracts in raw beef patties during refrigerated storage. Journal of Food Measurement and Characterization, 12(2), 982–991. https://doi.org/10.1007/s11694-017-9713-0
  • Figueroa, F., Marhuenda, J., Zafrilla, P., Martínez-Cachá, A., Mulero, J., & Cerdá, B. (2016). Total phenolics content, bioavailability and antioxidant capacity of 10 different genotypes of walnut (Juglans regia L.). Journal of Food and Nutrition Research, 55(3), 229–236.
  • Fratianni, F., Tucci, M., Palma, M. De, Pepe, R., & Nazzaro, F. (2007). Polyphenolic composition in different parts of some cultivars of globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori). Food Chemistry, 104(3), 1282–1286. https:// doi.org/10.1016/j.foodchem.2007.01.044
  • Gaafar, A. A., & Salama, Z. A. (2013). Phenolic compounds from artichoke ( Cynara scolymus L .) by- products and their antimicrobial activities . 3(12).
  • Garbetta, A., Capotorto, I., Cardinali, A., D’Antuono, I., Linsalata, V., Pizzi, F., & Minervini, F. (2014). Antioxidant activity induced by main polyphenols present in edible artichoke heads: Influence of in vitro gastro-intestinal digestion. Journal of Functional Foods, 10, 456–464. https://doi.org/ 10.1016/j.jff.2014.07.019
  • Helal, A., Tagliazucchi, D., Verzelloni, E., & Conte, A. (2014). Bioaccessibility of polyphenols and cinnamaldehyde in cinnamon beverages subjected to in vitro gastro-pancreatic digestion. Journal of Functional Foods, 7(1), 506–516. https://doi.org/ 10.1016/j.jff.2014.01.005
  • Ismail, B. B., Guo, M., Pu, Y., Çavuş, O., Ayub, K. A., Watharkar, R. B., Ding, T., Chen, J., & Liu, D. (2021). Investigating the effect of in vitro gastrointestinal digestion on the stability, bioaccessibility, and biological activities of baobab (Adansonia digitata) fruit polyphenolics. LWT, 145(October 2020). https://doi.org/10.1016/j.lwt. 2021.111348
  • Determination of substances characteristic of green and black tea - Part 1: Content of total polyphenols in tea- Colorimetric method using Folin-Ciocalteu reagent, (2005).
  • Mena-García, A., Rodríguez-Sánchez, S., Ruiz-Matute, A. I., & Sanz, M. L. (2020). Exploitation of artichoke byproducts to obtain bioactive extracts enriched in inositols and caffeoylquinic acids by Microwave Assisted Extraction. Journal of Chromatography A, 1613. https://doi.org/10.1016/ j.chroma.2019.460703
  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., MacIerzanka, A., MacKie, A., … Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food-an international consensus. Food and Function, 5(6), 1113–1124. https://doi.org/10.1039/c3fo60702j
  • Negro, D., Montesano, V., Grieco, S., Crupi, P., Sarli, G., De Lisi, A., & Sonnante, G. (2012). Polyphenol Compounds in Artichoke Plant Tissues and Varieties. Journal of Food Science, 77(2). https://doi.org/10.1111/j.1750-3841.2011.02531.x
  • Pasqualone, A., Punzi, R., Trani, A., Summo, C., Paradiso, V. M., Caponio, F., & Gambacorta, G. (2017). Enrichment of fresh pasta with antioxidant extracts obtained from artichoke canning by-products by ultrasound-assisted technology and quality characterisation of the end product. International Journal of Food Science and Technology, 52(9), 2078–2087. https://doi.org/ 10.1111/ijfs.13486
  • Pinto, J., Spínola, V., Llorent-Martínez, E. J., Fernández-de Córdova, M. L., Molina-García, L., & Castilho, P. C. (2017). Polyphenolic profile and antioxidant activities of Madeiran elderberry (Sambucus lanceolata) as affected by simulated in vitro digestion. Food Research International, 100, 404–410. https://doi.org/10.1016/j.foodres.2017.03. 044
  • Rashidinejad, A., Birch, E. J., & Everett, D. W. (2016). The behaviour of green tea catechins in a full-fat milk system under conditions mimicking the cheesemaking process. International Journal of Food Sciences and Nutrition, 67(6), 624–631. https://doi.org/10.1080/09637486.2016.1195797
  • Rodrigues, M. J., Neves, V., Martins, A., Rauter, A. P., Neng, N. R., Nogueira, J. M. F., Varela, J., Barreira, L., & Custódio, L. (2016). In vitro antioxidant and anti-inflammatory properties of Limonium algarvense flowers’ infusions and decoctions: A comparison with green tea (Camellia sinensis). Food Chemistry, 200, 322–329. https://doi.org/10.1016/j.foodchem.2016.01.048
  • Sanz-Puig, M., Moreno, P., Pina-Pérez, M. C., Rodrigo, D., & Martínez, A. (2017). Combined effect of high hydrostatic pressure (HHP) and antimicrobial from agro-industrial by-products against S. Typhimurium. LWT, 77, 126–133. https://doi.org/10.1016/j.lwt.2016.11.031
  • Tagliazucchi, D., Verzelloni, E., Bertolini, D., & Conte, A. (2010). In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chemistry, 120(2), 599–606. https://doi.org/ 10.1016/j.foodchem.2009.10.030
  • Turkmen, N., Sari, F., & Velioglu, Y. S. (2005). The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chemistry, 93(4), 713–718. https://doi.org/ 10.1016/j.foodchem.2004.12.038
  • Türkmen Erol, N., Sari, F., Çalıkoğlu, E., & Velioglu, Y.S. (2005). Green and roasted mate: phenolic profile and antioxidant activity. Turkish Journal of Agriculture and Forestry, 33(4), 353–362. doi:10.3906/tar-0901-4
  • Vella, F. M., Laratta, B., La Cara, F., & Morana, A. (2018). Recovery of bioactive molecules from chestnut (Castanea sativa Mill.) by-products through extraction by different solvents. Natural Product Research, 32(9), 1022–1032. https:// doi.org/10.1080/14786419.2017.1378199

Polyphenols of Artichoke Fractions and Their In-Vitro Digestion

Yıl 2023, Cilt: 26 Sayı: 2, 339 - 345, 30.04.2023
https://doi.org/10.18016/ksutarimdoga.vi.1080551

Öz

This study was aimed to determine total polyphenols (TP), total flavonoids (TF), chlorogenic acid (CA), antioxidant capacity (AC) and in-vitro bioaccessibility of polyphenols (as gastric and intestinal stages) of the extracts from artichoke fractions (head, bract and stalk) using different solvents (80% ethanol, 80% methanol and water). The results showed that artichoke fraction and solvent used significantly affected all parameters measured (P<0.05). TP and TF contents of the samples varied in the range of 1.74-5.52 mg gallic acid equivalents per gram of dry matter (mg GAE g-1 DM) and 1.30-7.34 mg rutin equivalents per gram of dry matter (mg RE g-1 DM), respectively. AC of the samples varied from 433.73 to 1243.21 mmol of ascorbic acid equivalents per 100g of dry matter (mmol AAE 100g-1 DM).TP and AC of the extracts varied depending on artichoke fraction and solvent used after in-vitro digestion. They were found to be lower than their initial (before digestion) values. Bioaccessibility of the polyphenols was in the range of 17.36-64.37%. CA detected in all extracts except water extracts of artichoke head (AH) and artichoke stalk (AS). These results suggest that artichoke bract (AB) and AS which are artichoke byproducts might represent a potential source of natural antioxidants as well as AH.

Kaynakça

  • Aires, A., Carvalho, R., & Saavedra, M. J. (2016). Valorization of solid wastes from chestnut industry processing: Extraction and optimization of polyphenols, tannins and ellagitannins and its potential for adhesives, cosmetic and pharmaceutical industry. Waste Management, 48, 457–464. https://doi.org/10.1016/j.wasman.2015.11.019
  • Amado, I. R., Franco, D., Sánchez, M., Zapata, C., & Vázquez, J. A. (2014). Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chemistry, 165, 290–299. https://doi.org/10.1016/ j.foodchem.2014.05.103
  • Bouayed, J., Deußer, H., Hoffmann, L., & Bohn, T. (2012). Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chemistry, 131(4), 1466–1472. https://doi.org/10.1016/j.foodchem.2011.10.030
  • Colantuono, A., Ferracane, R., & Vitaglione, P. (2018). Potential bioaccessibility and functionality of polyphenols and cynaropicrin from breads enriched with artichoke stem. Food Chemistry, 245(March 2017), 838–844. https://doi.org/ 10.1016/j.foodchem.2017.11.099
  • D’Antuono, I., Garbetta, A., Linsalata, V., Minervini, F., & Cardinali, A. (2015). Polyphenols from artichoke heads (Cynara cardunculus (L.) subsp. scolymus Hayek): In vitro bio-accessibility, intestinal uptake and bioavailability. Food and Function, 6(4), 1268–1277. https://doi.org/10.1039/ c5fo00137d
  • Dabbou, S., Dabbou, S., Flamini, G., Pandino, G., Gasco, L., & Helal, A. N. (2016). Phytochemical compounds from the crop byproducts of Tunisian globe artichoke cultivars. Chemistry and Biodiversity, 13(11), 1475–1483. https://doi.org/ 10.1002/cbdv.201600046.
  • Dabbou, S., Dabbou, S., Pandino, G., Lombardo, S., Mauromicale, G., Chahdoura, H., Gasco, L., & Helal, A. N. (2015). In vitro antioxidant activities and phenolic content in crop residues of Tunisian globe artichoke. Scientia Horticulturae, 190, 128–136. https://doi.org/10.1016/j.scienta.2015.04.014
  • Ergezer, H., & Serdaroğlu, M. (2018). Antioxidant potential of artichoke (Cynara scolymus L.) byproducts extracts in raw beef patties during refrigerated storage. Journal of Food Measurement and Characterization, 12(2), 982–991. https://doi.org/10.1007/s11694-017-9713-0
  • Figueroa, F., Marhuenda, J., Zafrilla, P., Martínez-Cachá, A., Mulero, J., & Cerdá, B. (2016). Total phenolics content, bioavailability and antioxidant capacity of 10 different genotypes of walnut (Juglans regia L.). Journal of Food and Nutrition Research, 55(3), 229–236.
  • Fratianni, F., Tucci, M., Palma, M. De, Pepe, R., & Nazzaro, F. (2007). Polyphenolic composition in different parts of some cultivars of globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori). Food Chemistry, 104(3), 1282–1286. https:// doi.org/10.1016/j.foodchem.2007.01.044
  • Gaafar, A. A., & Salama, Z. A. (2013). Phenolic compounds from artichoke ( Cynara scolymus L .) by- products and their antimicrobial activities . 3(12).
  • Garbetta, A., Capotorto, I., Cardinali, A., D’Antuono, I., Linsalata, V., Pizzi, F., & Minervini, F. (2014). Antioxidant activity induced by main polyphenols present in edible artichoke heads: Influence of in vitro gastro-intestinal digestion. Journal of Functional Foods, 10, 456–464. https://doi.org/ 10.1016/j.jff.2014.07.019
  • Helal, A., Tagliazucchi, D., Verzelloni, E., & Conte, A. (2014). Bioaccessibility of polyphenols and cinnamaldehyde in cinnamon beverages subjected to in vitro gastro-pancreatic digestion. Journal of Functional Foods, 7(1), 506–516. https://doi.org/ 10.1016/j.jff.2014.01.005
  • Ismail, B. B., Guo, M., Pu, Y., Çavuş, O., Ayub, K. A., Watharkar, R. B., Ding, T., Chen, J., & Liu, D. (2021). Investigating the effect of in vitro gastrointestinal digestion on the stability, bioaccessibility, and biological activities of baobab (Adansonia digitata) fruit polyphenolics. LWT, 145(October 2020). https://doi.org/10.1016/j.lwt. 2021.111348
  • Determination of substances characteristic of green and black tea - Part 1: Content of total polyphenols in tea- Colorimetric method using Folin-Ciocalteu reagent, (2005).
  • Mena-García, A., Rodríguez-Sánchez, S., Ruiz-Matute, A. I., & Sanz, M. L. (2020). Exploitation of artichoke byproducts to obtain bioactive extracts enriched in inositols and caffeoylquinic acids by Microwave Assisted Extraction. Journal of Chromatography A, 1613. https://doi.org/10.1016/ j.chroma.2019.460703
  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., MacIerzanka, A., MacKie, A., … Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food-an international consensus. Food and Function, 5(6), 1113–1124. https://doi.org/10.1039/c3fo60702j
  • Negro, D., Montesano, V., Grieco, S., Crupi, P., Sarli, G., De Lisi, A., & Sonnante, G. (2012). Polyphenol Compounds in Artichoke Plant Tissues and Varieties. Journal of Food Science, 77(2). https://doi.org/10.1111/j.1750-3841.2011.02531.x
  • Pasqualone, A., Punzi, R., Trani, A., Summo, C., Paradiso, V. M., Caponio, F., & Gambacorta, G. (2017). Enrichment of fresh pasta with antioxidant extracts obtained from artichoke canning by-products by ultrasound-assisted technology and quality characterisation of the end product. International Journal of Food Science and Technology, 52(9), 2078–2087. https://doi.org/ 10.1111/ijfs.13486
  • Pinto, J., Spínola, V., Llorent-Martínez, E. J., Fernández-de Córdova, M. L., Molina-García, L., & Castilho, P. C. (2017). Polyphenolic profile and antioxidant activities of Madeiran elderberry (Sambucus lanceolata) as affected by simulated in vitro digestion. Food Research International, 100, 404–410. https://doi.org/10.1016/j.foodres.2017.03. 044
  • Rashidinejad, A., Birch, E. J., & Everett, D. W. (2016). The behaviour of green tea catechins in a full-fat milk system under conditions mimicking the cheesemaking process. International Journal of Food Sciences and Nutrition, 67(6), 624–631. https://doi.org/10.1080/09637486.2016.1195797
  • Rodrigues, M. J., Neves, V., Martins, A., Rauter, A. P., Neng, N. R., Nogueira, J. M. F., Varela, J., Barreira, L., & Custódio, L. (2016). In vitro antioxidant and anti-inflammatory properties of Limonium algarvense flowers’ infusions and decoctions: A comparison with green tea (Camellia sinensis). Food Chemistry, 200, 322–329. https://doi.org/10.1016/j.foodchem.2016.01.048
  • Sanz-Puig, M., Moreno, P., Pina-Pérez, M. C., Rodrigo, D., & Martínez, A. (2017). Combined effect of high hydrostatic pressure (HHP) and antimicrobial from agro-industrial by-products against S. Typhimurium. LWT, 77, 126–133. https://doi.org/10.1016/j.lwt.2016.11.031
  • Tagliazucchi, D., Verzelloni, E., Bertolini, D., & Conte, A. (2010). In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chemistry, 120(2), 599–606. https://doi.org/ 10.1016/j.foodchem.2009.10.030
  • Turkmen, N., Sari, F., & Velioglu, Y. S. (2005). The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chemistry, 93(4), 713–718. https://doi.org/ 10.1016/j.foodchem.2004.12.038
  • Türkmen Erol, N., Sari, F., Çalıkoğlu, E., & Velioglu, Y.S. (2005). Green and roasted mate: phenolic profile and antioxidant activity. Turkish Journal of Agriculture and Forestry, 33(4), 353–362. doi:10.3906/tar-0901-4
  • Vella, F. M., Laratta, B., La Cara, F., & Morana, A. (2018). Recovery of bioactive molecules from chestnut (Castanea sativa Mill.) by-products through extraction by different solvents. Natural Product Research, 32(9), 1022–1032. https:// doi.org/10.1080/14786419.2017.1378199
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Nihal Türkmen Erol 0000-0002-5682-0177

Yayımlanma Tarihi 30 Nisan 2023
Gönderilme Tarihi 28 Şubat 2022
Kabul Tarihi 27 Eylül 2022
Yayımlandığı Sayı Yıl 2023Cilt: 26 Sayı: 2

Kaynak Göster

APA Türkmen Erol, N. (2023). Polyphenols of Artichoke Fractions and Their In-Vitro Digestion. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 26(2), 339-345. https://doi.org/10.18016/ksutarimdoga.vi.1080551

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149