Araştırma Makalesi
BibTex RIS Kaynak Göster

Tuz Stresi Altındaki Ekmeklik Buğdayda Bacillus thuringiensis LU3 ile Biyopriming’in Bazı Fizyolojik ve Biyokimyasal Etkileri

Yıl 2023, Cilt: 26 Sayı: 5, 1086 - 1098, 31.10.2023
https://doi.org/10.18016/ksutarimdoga.vi.1174882

Öz

Tuz stresi, dünyada sürdürülebilir tarımsal üretimi sınırlayan başlıca abiyotik streslerden biridir. Biyopriming, tohumların fizyolojik işleyişini iyileştirmek için faydalı ve çevre dostu biyolojik ajanların kullanımını içeren bir tekniktir. Bitki büyümesini teşvik eden rizobakteriler (PGPR), bitkilerin rizosferinde bulunur ve tuzluluk stresi ile başa çıkma potansiyeline sahiptir. Bu çalışmada, tuz stresi altında (0, 100 ve 200 mM NaCl) iki ekmeklik buğday (Triticum aestivum L.) çeşidine (Sultan-95 ve Tosunbey) Bacillus thuringiensis LU3 (Bt LU3) biyopriming uygulamasının fizyolojik (kök ve gövde uzunluğu, biyokütle, kuru ağırlık, spesifik yaprak alanı (SLA)) ve biyokimyasal parametreler (pigment içeriği, toplam protein içeriği, hidrojen peroksit içeriği (H2O2), lipid peroksidasyon içeriği (TBARS) ve antioksidan enzim aktiviteleri (peroksidaz aktivitesi (POX), glutatyon redüktaz aktivitesi (GR))) araştırılarak tuza duyarlı Sultan-95'in Bt LU3 biyopriming ile tuza dayanıklı Tosunbey'e göre daha iyi büyüme ve performans gösterdiği belirlenmiştir.

Kaynakça

  • Abdul-Baki, A.A., & Moore, G.M. (1979). Seed disinfection with hypochlorites a selected literature review of hypochlorite chemistry and definition of terms. Journal of Seed Technology, 4(1): 43-56.
  • Afridi, M.S., Mahmood, T., Salam, A., Mukhtar, T., Mehmood, S., Ali, J., & Chaudhary, H.J. (2019). Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. Plant Physiology and Biochemistry 139, 569-577.
  • Ain, Q., Akhtar, J., Amjad, M., Haq, M.A., & Saqib, Z.A. (2016). Effect of Enhanced Nickel Levels on Wheat Plant Growth and Physiology under Salt Stress. Communications in Soil Science and Plant Analysis 47 (22), 2538-2546.
  • Alam, M.S., Cui, Z., Yamagishi, T., & Ishii, R. (2001). Grain Yield and Related Physiological Characteristics of Rice Plants (Oryza sativa L.) Inoculated with Free-Living Rhizobacteria. Plant Production Science 4 (2), 126-130.
  • Ali, Q., Daud, M.K., Haider, M.Z., Ali, S., Rizwan, M., Aslam, N., Noman, A., Iqbal, A., Shahzad, F., Rizwan, M., Deeba, F., Ali, I., & Zhu, S.J. (2017). Seed priming by sodium nitroprusside improves salt tolerance in common wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiology and Biochemistry 119, 50-58.
  • Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. polyphenol oxidase in Beta vulgaris. Plant Physiology 24, 1-15.
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254.
  • Cheeseman, J.M. (2006). Hydrogen peroxide concentrations in leaves under natural conditions. Journal of Experimental Botany 57 (10), 2435-2444.
  • Desingh, R., & Kanagaraj, G. (2007). Influence of salinity stress on photosynthesis and antioxidative systems in two cotton varieties. General and Applied Plant Physiology 33 (3-4), 221-234.
  • Egamberdieva, D. (2009). Alleviation of salt stress by plant growth regulators and IAA-producing bacteria in wheat. Acta Physiologiae Plantarum 31(4), 861-864.
  • El-Esawi, M.A., Alaraidh, I.A., Alsahli, A.A., Alamri S.A., Ali, H.M., & Alayafi, A.A. (2018). Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems, and stress-responsive gene expression. Plant Physiology and Biochemistry 132, 375-384.
  • Erenstein, O., Jordan Chamberlin, J., & Sonder, K. (2021). Estimating the global number and distribution of maize and wheat farms. Global Food Security 30,100558.
  • Esen, O. (2016). Conservation Biology Studies on Endemic Alyssum Pinifolium (Nyár.) Dudley And Dianthus Ingoldbyi Turril (Thesis no 457068). [Doctor's thesis, Çanakkale Onsekiz Mart University, Graduate School of Natural and Applied Sciences, Department of Biology, Turkey]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • FAO (The Food and Agriculture Organization), (2021). World map of salt-affected soils. In: Global Symposium on Salt-Affected Soils, October 20–22, 2021, Rome, Italy.
  • Foyer, C.H., & Halliwell, B. (1976). Presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 133, 21-25.
  • Gill, S.S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48 (12), 909-930.
  • Hajiabadi, A.A., Arani, A.M., Ghasemi, S., Rad, M.H., Etesami, H., Manshadi, S.S., & Dolati, A. (2021). Mining the rhizosphere of halophytic rangeland plants for halotolerant bacteria to improve growth and yield of salinity-stressed wheat. Plant Physiology and Biochemistry 163, 139-153.
  • Hamaoui, B., Abbadi, J., Burdman, S., Rashid, A., Sarig, S., & Okon, Y. (2001). Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomie 21 (6-7), 553-560.
  • Hoagland, D.R., & Arnon, D.I. (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347 (2nd edit), 32.
  • Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Ashraful Alam, M., & Syed, M.A. (2021). Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy 11, 241.
  • Islam, M.T., Croll, D., Gladieux, P., Soanes, D.M., Persoons, A., & Bhattacharjee, P. (2016). Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biology 14, 84
  • Jacoud, C., Faure, D., Wadoux, P., & Bally, R. (1998). Development of a strain-specific probe to follow inoculated Azospirillum lipoferum CRT1 under field conditions and enhancement of maize root development by inoculation. FEMS Microbiology Ecology 27 (1), 43-51.
  • Kanner, J., & Kinsella, J.E. (1983). Lipid Deterioration Initiated by Phagocytic cells in Muscle foods: β-carotene destruction by a myeloperoxidase-hydrogen peroxide halide system. Journal of Agricultural and Food Chemistry 31, 370-376.
  • Karakaş, İ., Ay, M., Öztürk, F., Kaya, S., & Hacıoğlu Doğru, N. (2022). Determination of Plant Growth Promoting of Bacteria Isolated from Nickel-Rich Soils (Ezine-Çanakkale). Turkish Journal of Agricultural and Natural Sciences 9 (2), 424-431.
  • Kloepper, J.W., & Schroth, M.N. (1978). Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the IVth International Conference on Plant Pathogenic Bacteria. Angers, France, pp, 879-882.
  • Madhava, R.K.M., & Sresty, T.V.S. (2000). Antioxidative Parameters in the Seedlings of Pigeon Pea (Cajanus cajan (L.) Millspaugh) in Response to Zn and Ni Stresses. Plant Science 157 (1), 113-128.
  • Migahid, M.M., Elghobashy, R.M., Bidak, L.M., & Âmin, A.W. (2019). Priming of Silybum marianum (L.) Gaertn Seeds with H2O2 and Magnetic Field Ameliorates Seawater Stress. Heliyon 5 (6), e01886.
  • Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology 59, 651-681.
  • Önay, E. (2019). Effect of Strigolactone on Enzyme System of Ascorbate-Glutathione Cycle in Salt Stress Tolerant and Sensitive Wheat. [Master's thesis, Agricultural Biotechnology Department Namık Kemal University, Tekirdağ, Turkey].
  • Öztürk, F., & Hacıoğlu Doğru, N. (2020). Characterization and Potential Applications of Heterotrophic Bacteria in Habit Nickel Rich Soils in Çanakkale Turkey. Turkish Journal of Bioscience and Collections 4 (1), 7-13.
  • Pandey, C., Bajpai, V.K., Negi, Y.K., Rather, I.A., & Maheshwari, D.K. (2018). Effect of Plant Growth Promoting Bacillus spp. on Nutritional Properties of Amaranthus hypochondriacs Grains. Saudi Journal of Biological Sciences 25, 1066-1071.
  • Parida, A.K., & Das, A.B. (2005). Salt Tolerance and Salinity Effects on Plants. Ecotoxicology and Environmental Safety 60 (3), 324-349.
  • Paul, D., & Nair, S. (2008). Stress Adaptations in A Plant Growth Promoting Rhizobacterium (PGPR) with Increasing Salinity in The Coastal Agricultural Soils. Journal of Basic Microbiology 48 (5), 378-384.
  • Raheem, A., Shaposhnikov, A., Belimov, A.A., Dodd, I.C., & Ali, B. (2018). Auxin Production By Rhizobacteria was Associated with Improved Yield of Wheat (Triticum aestivum L.) under Drought Stress. Archives of Agronomy and Soil Science 64 (4), 574-587.
  • Rahnama, A., James, R.A., Poustini, K., & Munns, R. (2010). Stomatal Conductance as a Screen for Osmotic Stress Tolerance in Durum Wheat Growing in Saline Soil. Functional Plant Biology 37 (3), 255-263.
  • Rahneshan, Z., Nasibi, F., Lakehal, A., & Bellini, C. (2018). Unravelling Salt Stress Responses in Two Pistachio (Pistacia vera L.) Genotypes. Acta Physiologiae Plantarum 40 (9), 1-13.
  • Ramadoss, D., Lakkineni, V.K., Bose P., Ali, S., & Annapurna, K. (2013). Mitigation of Salt Stress in Wheat Seedlings By Halotolerant Bacteria Isolated From Saline Habitats. Springerplus 2 (1), 1-7.
  • Rhaman, M. S., Rauf, F., Tania, S. S., & Khatun, M. (2020). Seed priming methods: Application in field crops and future perspectives. Asian Journal of Research in Crop Science 5 (2), 8-19.
  • Sarig, S., Okon, Y., & Blum, A. (1992). Effect of Azospirillum brasilense Inoculation on Growth Dynamics and Hydraulic Conductivity of Sorghum bicolor Root. Journal of Plant Nutrition 15 (6-7), 805-819.
  • Saubidet, M.I., Fatta, N., & Barneix, A.J. (2002). The Effect of Inoculation with Azospirillum brasilense on Growth and Nitrogen Utilization By Wheat Plants. Plant and Soil 245, 215222.
  • Stefan, M., Munteanu, N., Mihasan M. (2013). Application of Plant Growth-Promoting Rhizobacteria to Runner Bean Increases Seed Carbohydrate and Protein Yield. The Journal of Experimental Biology 14 (1), 29-35.
  • Subramanyam, K., Du Laing, G., & Van Damme, E.J. (2019). Sodium Selenate Treatment Using A Combination of Seed Priming and Foliar Spray Alleviates Salinity Stress in Rice. Frontiers in Plant Science 10, 116.
  • Taie, H.A.A., Abdelhamid, M.T., Dawood, M.G., & Nassar, R.M.A. (2013). Pre-Sowing Seed Treatment with Proline Improves Some Physiological, Biochemical and Anatomical Attributes of Faba Bean Plants under Sea Water Stress. Journal of Applied Sciences Research 9 (4), 2853-2867.
  • Timmusk, S., Abd El-Daim, I.A., Copolovici, L., Tanilas, T., Kännaste, A., Behera, L., & Niinemets, Ü. (2014). Drought-Tolerance of Wheat Improved By Rhizosphere Bacteria From Harsh Environments: Enhanced Biomass Production and Reduced Emissions of Stress Volatiles. Plos One 9 (5), e96086.
  • Wang, Q.Y., Dodd, I.C., Belimov, A.A., & Jiang, F. (2016). Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase the growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Functional Plant Biology 43, 161-172.
  • Wilson, P.J., Thompson, K.E.N., & Hodgson, J.G. (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist 143 (1), 155-162.

Some Physiological and Biochemical Effects of Bacillus thuringiensis LU3 Biopriming in Common Wheat (Triticum aestivum L.) under Salt Stress

Yıl 2023, Cilt: 26 Sayı: 5, 1086 - 1098, 31.10.2023
https://doi.org/10.18016/ksutarimdoga.vi.1174882

Öz

Salt stress is one of the main abiotic stresses limiting sustainable crop production in the world. Biopriming is the technique involving the use of beneficial and environmentally friendly biological agents to improve the physiological functioning of seeds. Plant growth-promoting rhizobacteria (PGPR) are found in the rhizosphere of plants and have the potential to cope with salinity stress. In this study, the effects of Bacillus thuringiensis LU3 (Bt LU3) biopriming application on two common wheat (Triticum aestivum L.) varieties (Sultan-95 and Tosunbey) under salt stress (0, 100 and 200 mM NaCI) on physiological (root and shoot length, biomass, dry weight, specific leaf area (SLA)), and biochemical parameters (pigment content, total protein content, hydrogen peroxide content (H2O2), lipid peroxidation content (TBARS) and antioxidant enzyme activities (peroxidase activity (POX), glutathione reductase activity (GR))) were investigated. As a result, it was determined that salt-sensitive Sultan-95 had better growth with Bt LU3 biopriming compared to salt-tolerant Tosunbey

Kaynakça

  • Abdul-Baki, A.A., & Moore, G.M. (1979). Seed disinfection with hypochlorites a selected literature review of hypochlorite chemistry and definition of terms. Journal of Seed Technology, 4(1): 43-56.
  • Afridi, M.S., Mahmood, T., Salam, A., Mukhtar, T., Mehmood, S., Ali, J., & Chaudhary, H.J. (2019). Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. Plant Physiology and Biochemistry 139, 569-577.
  • Ain, Q., Akhtar, J., Amjad, M., Haq, M.A., & Saqib, Z.A. (2016). Effect of Enhanced Nickel Levels on Wheat Plant Growth and Physiology under Salt Stress. Communications in Soil Science and Plant Analysis 47 (22), 2538-2546.
  • Alam, M.S., Cui, Z., Yamagishi, T., & Ishii, R. (2001). Grain Yield and Related Physiological Characteristics of Rice Plants (Oryza sativa L.) Inoculated with Free-Living Rhizobacteria. Plant Production Science 4 (2), 126-130.
  • Ali, Q., Daud, M.K., Haider, M.Z., Ali, S., Rizwan, M., Aslam, N., Noman, A., Iqbal, A., Shahzad, F., Rizwan, M., Deeba, F., Ali, I., & Zhu, S.J. (2017). Seed priming by sodium nitroprusside improves salt tolerance in common wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiology and Biochemistry 119, 50-58.
  • Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. polyphenol oxidase in Beta vulgaris. Plant Physiology 24, 1-15.
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254.
  • Cheeseman, J.M. (2006). Hydrogen peroxide concentrations in leaves under natural conditions. Journal of Experimental Botany 57 (10), 2435-2444.
  • Desingh, R., & Kanagaraj, G. (2007). Influence of salinity stress on photosynthesis and antioxidative systems in two cotton varieties. General and Applied Plant Physiology 33 (3-4), 221-234.
  • Egamberdieva, D. (2009). Alleviation of salt stress by plant growth regulators and IAA-producing bacteria in wheat. Acta Physiologiae Plantarum 31(4), 861-864.
  • El-Esawi, M.A., Alaraidh, I.A., Alsahli, A.A., Alamri S.A., Ali, H.M., & Alayafi, A.A. (2018). Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems, and stress-responsive gene expression. Plant Physiology and Biochemistry 132, 375-384.
  • Erenstein, O., Jordan Chamberlin, J., & Sonder, K. (2021). Estimating the global number and distribution of maize and wheat farms. Global Food Security 30,100558.
  • Esen, O. (2016). Conservation Biology Studies on Endemic Alyssum Pinifolium (Nyár.) Dudley And Dianthus Ingoldbyi Turril (Thesis no 457068). [Doctor's thesis, Çanakkale Onsekiz Mart University, Graduate School of Natural and Applied Sciences, Department of Biology, Turkey]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • FAO (The Food and Agriculture Organization), (2021). World map of salt-affected soils. In: Global Symposium on Salt-Affected Soils, October 20–22, 2021, Rome, Italy.
  • Foyer, C.H., & Halliwell, B. (1976). Presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 133, 21-25.
  • Gill, S.S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48 (12), 909-930.
  • Hajiabadi, A.A., Arani, A.M., Ghasemi, S., Rad, M.H., Etesami, H., Manshadi, S.S., & Dolati, A. (2021). Mining the rhizosphere of halophytic rangeland plants for halotolerant bacteria to improve growth and yield of salinity-stressed wheat. Plant Physiology and Biochemistry 163, 139-153.
  • Hamaoui, B., Abbadi, J., Burdman, S., Rashid, A., Sarig, S., & Okon, Y. (2001). Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomie 21 (6-7), 553-560.
  • Hoagland, D.R., & Arnon, D.I. (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347 (2nd edit), 32.
  • Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Ashraful Alam, M., & Syed, M.A. (2021). Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy 11, 241.
  • Islam, M.T., Croll, D., Gladieux, P., Soanes, D.M., Persoons, A., & Bhattacharjee, P. (2016). Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biology 14, 84
  • Jacoud, C., Faure, D., Wadoux, P., & Bally, R. (1998). Development of a strain-specific probe to follow inoculated Azospirillum lipoferum CRT1 under field conditions and enhancement of maize root development by inoculation. FEMS Microbiology Ecology 27 (1), 43-51.
  • Kanner, J., & Kinsella, J.E. (1983). Lipid Deterioration Initiated by Phagocytic cells in Muscle foods: β-carotene destruction by a myeloperoxidase-hydrogen peroxide halide system. Journal of Agricultural and Food Chemistry 31, 370-376.
  • Karakaş, İ., Ay, M., Öztürk, F., Kaya, S., & Hacıoğlu Doğru, N. (2022). Determination of Plant Growth Promoting of Bacteria Isolated from Nickel-Rich Soils (Ezine-Çanakkale). Turkish Journal of Agricultural and Natural Sciences 9 (2), 424-431.
  • Kloepper, J.W., & Schroth, M.N. (1978). Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the IVth International Conference on Plant Pathogenic Bacteria. Angers, France, pp, 879-882.
  • Madhava, R.K.M., & Sresty, T.V.S. (2000). Antioxidative Parameters in the Seedlings of Pigeon Pea (Cajanus cajan (L.) Millspaugh) in Response to Zn and Ni Stresses. Plant Science 157 (1), 113-128.
  • Migahid, M.M., Elghobashy, R.M., Bidak, L.M., & Âmin, A.W. (2019). Priming of Silybum marianum (L.) Gaertn Seeds with H2O2 and Magnetic Field Ameliorates Seawater Stress. Heliyon 5 (6), e01886.
  • Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology 59, 651-681.
  • Önay, E. (2019). Effect of Strigolactone on Enzyme System of Ascorbate-Glutathione Cycle in Salt Stress Tolerant and Sensitive Wheat. [Master's thesis, Agricultural Biotechnology Department Namık Kemal University, Tekirdağ, Turkey].
  • Öztürk, F., & Hacıoğlu Doğru, N. (2020). Characterization and Potential Applications of Heterotrophic Bacteria in Habit Nickel Rich Soils in Çanakkale Turkey. Turkish Journal of Bioscience and Collections 4 (1), 7-13.
  • Pandey, C., Bajpai, V.K., Negi, Y.K., Rather, I.A., & Maheshwari, D.K. (2018). Effect of Plant Growth Promoting Bacillus spp. on Nutritional Properties of Amaranthus hypochondriacs Grains. Saudi Journal of Biological Sciences 25, 1066-1071.
  • Parida, A.K., & Das, A.B. (2005). Salt Tolerance and Salinity Effects on Plants. Ecotoxicology and Environmental Safety 60 (3), 324-349.
  • Paul, D., & Nair, S. (2008). Stress Adaptations in A Plant Growth Promoting Rhizobacterium (PGPR) with Increasing Salinity in The Coastal Agricultural Soils. Journal of Basic Microbiology 48 (5), 378-384.
  • Raheem, A., Shaposhnikov, A., Belimov, A.A., Dodd, I.C., & Ali, B. (2018). Auxin Production By Rhizobacteria was Associated with Improved Yield of Wheat (Triticum aestivum L.) under Drought Stress. Archives of Agronomy and Soil Science 64 (4), 574-587.
  • Rahnama, A., James, R.A., Poustini, K., & Munns, R. (2010). Stomatal Conductance as a Screen for Osmotic Stress Tolerance in Durum Wheat Growing in Saline Soil. Functional Plant Biology 37 (3), 255-263.
  • Rahneshan, Z., Nasibi, F., Lakehal, A., & Bellini, C. (2018). Unravelling Salt Stress Responses in Two Pistachio (Pistacia vera L.) Genotypes. Acta Physiologiae Plantarum 40 (9), 1-13.
  • Ramadoss, D., Lakkineni, V.K., Bose P., Ali, S., & Annapurna, K. (2013). Mitigation of Salt Stress in Wheat Seedlings By Halotolerant Bacteria Isolated From Saline Habitats. Springerplus 2 (1), 1-7.
  • Rhaman, M. S., Rauf, F., Tania, S. S., & Khatun, M. (2020). Seed priming methods: Application in field crops and future perspectives. Asian Journal of Research in Crop Science 5 (2), 8-19.
  • Sarig, S., Okon, Y., & Blum, A. (1992). Effect of Azospirillum brasilense Inoculation on Growth Dynamics and Hydraulic Conductivity of Sorghum bicolor Root. Journal of Plant Nutrition 15 (6-7), 805-819.
  • Saubidet, M.I., Fatta, N., & Barneix, A.J. (2002). The Effect of Inoculation with Azospirillum brasilense on Growth and Nitrogen Utilization By Wheat Plants. Plant and Soil 245, 215222.
  • Stefan, M., Munteanu, N., Mihasan M. (2013). Application of Plant Growth-Promoting Rhizobacteria to Runner Bean Increases Seed Carbohydrate and Protein Yield. The Journal of Experimental Biology 14 (1), 29-35.
  • Subramanyam, K., Du Laing, G., & Van Damme, E.J. (2019). Sodium Selenate Treatment Using A Combination of Seed Priming and Foliar Spray Alleviates Salinity Stress in Rice. Frontiers in Plant Science 10, 116.
  • Taie, H.A.A., Abdelhamid, M.T., Dawood, M.G., & Nassar, R.M.A. (2013). Pre-Sowing Seed Treatment with Proline Improves Some Physiological, Biochemical and Anatomical Attributes of Faba Bean Plants under Sea Water Stress. Journal of Applied Sciences Research 9 (4), 2853-2867.
  • Timmusk, S., Abd El-Daim, I.A., Copolovici, L., Tanilas, T., Kännaste, A., Behera, L., & Niinemets, Ü. (2014). Drought-Tolerance of Wheat Improved By Rhizosphere Bacteria From Harsh Environments: Enhanced Biomass Production and Reduced Emissions of Stress Volatiles. Plos One 9 (5), e96086.
  • Wang, Q.Y., Dodd, I.C., Belimov, A.A., & Jiang, F. (2016). Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase the growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Functional Plant Biology 43, 161-172.
  • Wilson, P.J., Thompson, K.E.N., & Hodgson, J.G. (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist 143 (1), 155-162.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Müge Teker Yıldız 0000-0001-7657-9811

Okan Acar 0000-0002-9818-8827

Furkan Öztürk 0000-0002-9752-0584

Nurcihan Hacıoğlu 0000-0002-5812-9398

Erken Görünüm Tarihi 27 Mayıs 2023
Yayımlanma Tarihi 31 Ekim 2023
Gönderilme Tarihi 13 Eylül 2022
Kabul Tarihi 27 Mart 2023
Yayımlandığı Sayı Yıl 2023Cilt: 26 Sayı: 5

Kaynak Göster

APA Teker Yıldız, M., Acar, O., Öztürk, F., Hacıoğlu, N. (2023). Some Physiological and Biochemical Effects of Bacillus thuringiensis LU3 Biopriming in Common Wheat (Triticum aestivum L.) under Salt Stress. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 26(5), 1086-1098. https://doi.org/10.18016/ksutarimdoga.vi.1174882

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149