Araştırma Makalesi
BibTex RIS Kaynak Göster

Genotypic Responses of Some Besni Pepper (Capsicum annuum L.) Genotypes to Anther Culture

Yıl 2025, Cilt: 28 Sayı: 1, 114 - 131
https://doi.org/10.18016/ksutarimdoga.vi.1555480

Öz

In this study, the response of Besni pepper (Capsicum annuum L), one of the local varieties of Turkey, to anther culture was determined. A total of 26 Besni pepper genotypes and 3 control cultivars were examined for their response to anther culture. One hundred and fifty anthers from each pepper genotype were cultured under in vitro conditions. A significant difference (0.0%-45.3%) was found among the genotypes in terms of response to anther culture. The highest embryo formation rate was found in genotype B11 with 45.3% (63 embryos) and the highest transformation rate to plant was found in genotype B15 with 30 plants (68%). Compared to control varieties, Besni pepper genotypes produced significantly more embryos. All genotypes except two out of 26 genotypes used produced more or less (1-68) embryos. B4, B10, B11, B12, B15, and G6 genotypes produced more than 25% of embryos and were separated from the control and other genotypes. The average embryo formation rate of the genotypes collected from Besni and Gölbaşı districts was 13% and 7%, respectively, while the embryo formation rate of the control varieties was only 0.2%. It was concluded that the Besni pepper population was highly responsive to androgenetic haploid. The highly responsive genotypes that form high embryos such as B4, B10, B11, B12, B15, and G6 have the potential to be used in developing new breeding lines and in studies investigating the genetics of anther culture.

Proje Numarası

FYL-2021-10960

Kaynakça

  • Abak, K. (1983). Study on the anther culture in vitro of pepper (Capsicum annuum L.). Capsicum Newsletter 2, 72-73
  • Alremi, F., Taşkın, H., Sönmez, K., Büyükalaca, S. et al (2014). Biber (Capsicum annuum L.)’de Genotip ve Besin ortamının anter kültürüne etkileri. Türk Tarım ve Doğa Bilimleri Dergisi 1(2), 108-116. https://doi.org/10.30910/turkjans.160702
  • Andrews, J. (1985). Peppers. The Domesticated Capsicum. University. of Texas Pres Box 7819 Austin, Texas.
  • Ari, E., Bedir, H., Yildirim, S & Yildirim, T. (2016). Androgenic responses of 64 ornamental pepper (Capsicum annuum L.) genotypes to shed-microspore culture in the autumn season. Turkish Journal of Biology 40, 706-717. 10.3906/biy-1505-41
  • Asif, M. (2013). Progress and Opportunities of Doubled Haploid Production. Springer London.
  • Ata, A., Keles, D., Taskın, H., & Büyükalaca, S. (2019). Effects of season, genotype, and nutrient medium on pepper anther culture and microspore development. Turkish Journal of Agriculture and Forestry 40(2),123–137. https://doi.org/10.3906/tar-1802-35
  • Atasoy, D., Baktemur, G & Taşkın, H. (2021). Bazı biber (Capsicum annuum L.) genotiplerinin anter kültürü performanslarinin belirlenmesi. Yuzuncu Yıl University Journal of Agricultural Sciences 31 (2), 282-293. https://doi.org/10.29133/yyutbd.835106
  • Babaoğlu, M., Yorgancılar, M., & Akbudak, M.A. (2001). Tissue Culture: Basic Laboratory Techniques. Plant Biotechnology Tissue Culture and Applications, S.Ü. Vakfı Yayınları, Konya.
  • Bajaj, Y.P.S. (1980). Enhancement of the in-vitro development of triticale embryos by the endosperm of durum wheat triticum durum. Cereal Research Communications 8(2), 359–364. https://www.jstor.org/stable/23781343
  • Bal, U., Abak, K., Büyükalaca, S., & Comlekcioglu, N. (2003). Development of callus colonies from the isolated microspore culture of Capsicum annuum L. Biotechnology and Biotechnological Equipment 17(2), 38-43. 10.1080/13102818.2003.10817056
  • Barboza, G.E., Carrizo García, C., Leiva González, S., Scaldaferro, M., & Reyes, X. (2019). Four new species of capsicum (solanaceae) from the tropical andes and an update on the phylogeny of the genus. PLoS ONE 14 (1): e0209792. https://doi.org/10.1371/journal.pone.0209792
  • Başay, S., & Ellialtioglu, Ş.Ş. (2013). Effect of genotypical factors on the effectiveness of anther culture in eggplant (Solanum melongena L.). Turkish Journal of Biology 37, 499-505. 10.3906/biy-1210-38
  • Bat, H., Shidfar, M., Comlekcioglu, N., & Ellialtioglu, S.S. (2020). In vitro androgenesis in pepper and the affecting factors on success: I. carbon source and concentrations. Biotech Studies 29(2), 62–68. https://doi.org/10.38042/biost.2020.29.02.02
  • Berenguer, E., Solís M.T., Pérez-Pérez, Y., Minina, Y., Risuenó, M.C., Bozhkov, P., & Testillano P.S. (2017). Metacaspases and autophagy are induced in microspore embryogenesis of Brassica napus. In: Proceedings 2nd meeting WG3 transautophagy Cost Action CA15138, Madrid, 23-24. https://doi.org/10.1093/pcp/pcaa128
  • Büyükalaca, S., Kilic, N., Comlekcioglu, N., Abak, K., & Ekbic, E. (2004). Effects of silver nitrate and donor plant growing conditions on production of pepper (Capsicum annum L.) haploid embryos via anther culture. European Journal of Horticultural Science 69, 206-209.
  • Camacho-Fernández, C., Seguí-Simarro, J.M., Mir, R., Boutilier, K., Corral-Martínez, P. (2021). Cell wall composition and structure define the developmental fate of embryogenic microspores in Brassica napus. Frontiers in Plant Science 12:737139. https://doi.org/10.3389/fpls.2021.737139
  • Cedar, H., & Bergman, Y. (2009). Linking DNA methylation and histone modification: patterns and paradigms. Nat Review Genetics 10, 295–304. https://doi.org/10.1038/nrg2540
  • Chacal G.S. & Gosal, S.S. (2002). Principle and Procedure of Plant Breeding Biotechnological and Conventional Approaches. Alpha Science Pang Bourne, England.
  • Chandra, S., Bandopadhyay, R., Kumar, V. & Chandra, R. (2010). Acclimatization of tissue cultured plantlets: from laboratory to land. Biotechnolgy Letters 32,1199–1205. 10.1007/s10529-010-0290-0
  • Chen, H., Hao, H., Han, C., Wang, H., Wang, Q., Chen, M., Juan, J., Feng, Z., & Zhang, J. (2020). Exogenous L-ascorbic acid regulates the antioxidant system to increase the regeneration of damaged mycelia and induce the development of fruiting bodies in Hypsizygus marmoreus. Fungal Biology 124(6), 551-561 doi: 10.1016/j.funbio.2020.02.010.
  • Chen, W., Zhang, Y., Ren, J., Ma, Y., Liu, Z., & Hui, F. (2019). Effects of methylene blue on microspore embryogenesis and plant regeneration in ornamental kale (Brassica oleracea var. acephala). Scientia Horticulturae 248:1-7. https://doi.org/10.1016/j.scienta.2018.12.048
  • Çiner, D.O., & Tipirdamaz, R. (2001). The effects of cold treatment and charcoal on the ın vitro androgenesis of pepper (Capsicum annuum L.). Turkish Journal of Botany 26(3), 131–139. https://journals.tubitak.gov.tr/botany/vol26/iss3/2
  • Cohen, J. (1988). Statistical power analysis forthe behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum. Comlekcioglu, N., & Ellialtioglu, S. (2018). Review on the research carried out on ın vitro androgenesis of peppers (Capsicum annuum L). Research Journal of Biotechnology 6, 75–84
  • Copetta, A., Mussano, P., Devi, P., Lanteri, A., Cassetti, A., Mascarello, C., Bisio, A & Ruffoni, B. (2023). In vitro micropropagation, rooting and acclimatization of two Agastache species (A. aurantiaca and A. mexicana). Horticulturae 9(10),1065. https://doi.org/10.3390/horticulturae9101065
  • Denli, N., Ata, A., Keleş, D., Mutlu, N.& Taşkın, H. (2022). Inheritance of androgenesis response in pepper. Mol Biol Rep. 2022 Dec;49(12):11601-11609. doi: 10.1007/s11033-022-07876-2.
  • Doğangüzel, E., Altındağ, F. N., Yiğit, M. A., Ellialtıoğlu, Ş. Ş., & Çömlekçioğlu, N. (2021). In vitro androgenesis in pepper (Capsicum annuum L.) and the affecting factors on success: II. carbohydrate source and antioxidants. Biotech Studies 30(2), 92-97. https://doi.org/10.38042/biotechstudies.1000341
  • Dumas de Vaulx, R., & Chambonnet, D. (1982). Culturei in vitro d’anthères d’aubergine (Solanum melongena L.) stimulation de la production de plantes au moyen de traitements à+ 35 c associés à de faibles teneurs en substances de croissance. Agronomie 2, 983-988. https://hal.science/hal-00884339v1
  • Dumas de Vaulx, R., Chambonnet, D., & Pochard, E. (1981). In vitro culture of pepper (Capsicum annuum L.) anthers: high rate plant production from different genotypes by +35 °C treatment. Agronomie 1, 859–864
  • Duruk, Z. (2023). Molecular and Morphological Characterization of Some Elazığ Pepper Genotypes (Capsicum annuum L.) and Determination of Anther Culture Efficiency. Master's Thesis, Erciyes University, Institute of Natural and Applied Science, Department of Horticulture, 73s.
  • Ellialtıoğlu, Ş.Ş., Sönmez, K., & Evcen, F. (2015). The Effect of growth regulator and carbon source combinations on the formation of haploid embryos in eggplant anther cultures. Green Biotechnology Workshop, 21-23 September 2015, Darıca, Kocaeli. http://doi.org/10.38042/biost.2020.29.02.02
  • Ercan, N., & Şensoy, F.A. (2011). Androgenic responses of different pepper (Capsicum annuum L.) cultivars. Biyoloji Bilimleri Araştırma Dergisi 4(2), 59–61.
  • Ercan, N., Sensoy F.A., & Sensoy A.S. (2006). Influence of growing season and donor plant age on anther culture response of some pepper cultivars (Capsicum annuum L.). Scientia Horticulturae 110(1), 16-20. https://doi.org/10.1016/j.scienta.2006.06.007
  • Faostat (2022). https://www.fao.org/faostat/en/#home
  • Genç, I. (2023). Determination of The Fffects of Different Pepper Types on The Number of Embryos Transformed into Plants, Embryo Formation Time and Spontaneous Double Haploid Rate in Anther Culture. Master's Thesis, Selçuk University, Department of Plant Breeding and Genetics.
  • George, L., & Narayanaswamy, S. (1973). Haploid Capsicum through experimental androgenesis. Protoplasma 78(4), 467–470. https://doi.org/10.1007/BF01275781
  • Gönülşen, N. (1987). Plant Tissue Cultures, Methods and Application Areas. Ege Agricultural Research Ent. Dir. Pbl No:78, Menemen-İzmir.
  • Grozeva, S., Pasev, G., Radeva-Ivanova, V., Todorova, V., Ivanova, V., & Nankar, A.N. (2021). Double haploid development and assessment of androgenic competence of balkan pepper core collection in Bulgaria. Plants 10(11), 2414. 10.3390/plants10112414
  • Guha, S., Maheshwari, S.C. (1964). In vitro production of embryos from anthers of datura. Nature 204(495), 497. https://doi.org/10.1038/204497a0
  • Gupta, B., & Huang B. (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics 1:1-18. https://doi.org/10.1155/2014/701596
  • Hale, B., Ferrie, A.M.R., Chellamma, S., Samue,l J.P. & Phillips, G.C. (2022), Androgenesis-based doubledhaploidy: past, present, and future perspectives. Frontiers in Plant Science 12, 751230. doi: 10.3389/fpls.2021.751230
  • Hatipoğlu, R. (1997). Plant Biotechnology. Ç.Ü. Faculty of Agriculture General Publication No: 190. Textbooks Publication No: A-58.
  • Heidari-Zefreh, A.A., Shariatpanahi, M.E., Mousavi, A., & Kalatejari, S. (2018). Enhancement of microspore embryogenesis induction and plantlet regeneration of sweet pepper (Capsicum annuum L.) using putrescine and ascorbic acid. Protoplasma 256(1),13-24. Fungal Biol. 1:1. https://doi.org/ 10.1016/j.funbio.2020.02.010
  • Heiser, C.B., & Smith, P.G. (1953). The cultivated capsicum peppers. Economic Botany 1953, 7:214–227. doi: 10.1007/BF02984948.
  • Heiser, C.B.J.R. (1976). Peppers-Capsicum (Solanaceae), p. 265-268. In N. W. Simmonds, ed, Evolution of Crop Plants. Longman, London. Ifas (2021) https://edis.ifas.ufl.edu/publication/CV216
  • İlhan, M., & Kurtar, E.S. (2022). Double haploidization efficiency of selected pepper genotypes via in vitro anther culture. Selcuk Journal of Agriculture and Food Sciences 36 (2), 253-259. 10.15316/SJAFS.2022.033
  • Irikova, T., & Rodeva, V. (2004). Anther culture of pepper (Capsicum annuum L.): comparative study on effect of the genotype. Biotechnology & Biotechnolgical Equipment 18 (3), 34-38. https://doi.org/10.1080/13102818.2004.10817117
  • Irikova, T., Grozeva, S., & Rodeva, V. (2011a) Anther culture in pepper (Capsicum annuum L.) in vitro. Acta Physiologiae Plantarum 33(5),1559–1570. 10.1007/s11738-011-0736-6
  • Irikova, T., Grozeva, S., Popov, P., Rodeva, V., & Todorovska, E. (2011b). In vitro response of pepper anther culture (Capsicum annuum L.) depending on genotype, nutrient medium and duration of cultivation. Biotechnology & Biotechnolgical Equipment 25, 2604–2609. https://doi.org/10.5504/BBEQ.2011.0090
  • Irikova, T.P., Kintzios, S., Grozeva, S., & Rodeva, V. (2016). Pepper (Capsicum annuum L.) anther culture: fundamental research and practical applications. Turkish Journal of Biology 40, 719-726, doi:10.3906/biy-1506-79
  • Kara, Z & Yazar, K. (2020). Bazı üzüm ceşitlerinde in vitro poliploidi uyarımı. Anadolu Journal of Agricultural Science 35, 410–418. https://doi.org/10.7161/omuanajas.768710
  • Keleş. D., Pınar, H., Ata, A., Taşkın, H., & Büyükalaca, S. (2015). Effect of pepper types on obtaining spontaneous doubled haploid plants via anther culture. Hortscience 50(11),1671–1676. https://doi.org/10.21273/HORTSCI.50.11.1671
  • Khalafalla, M.M., Daffalla, H.M., Abdellatef, E., Agabna, E & El-Shemy, H.A. (2011). Establishment of an in vitro micropropagation protocol for Boscia senegalensis (Pers.) Lam. ex Poir. Journal of Zhejiang University-Science B 12(4), 303-12. doi: 10.1631/jzus.B1000205.
  • Khan, N., Bano, A., Ali, S., Babar, M.A. (2020). Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regulator 1, 1-15. https://doi.org/10.1007/s10725-020-00571-x
  • Kim M, Kim J, Yoon M, Choi DI, Lee KM (2004) Origin of multicellular pollen and pollen embryos in cultured anthers of pepper (Capsicum annuum). Plant Cell Tissue Organ Culture 77(1), 63–72. https://doi.org/10.1023/B:TICU.0000016506.02796.6a
  • Krishna, H., Singh, S., Sharma, R., Khawale, R., Grover, M & Patel, V. (2005). Biochemical changes in micropropagated grape (Vitis vinifera L.) plantlets due to arbuscular-mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization. Scientia Horticulturae 106, 554–567. https://doi.org/10.1016/j.scienta.2005.05.00
  • Kristiansen, K., & Andersen, S.B. (1993). Effects of donör plant, temperature, photoperiod and age on anther culture response of Capsicum annuum L. Euphytica 67, 105-109. https://doi.org/10.1007/BF00022732
  • Küçük, A. (2001) Collecting Solanaceae in Turkey. Solanaceae Genetic Resources in Europe. European Cooperative Programme for Crop Genetic Resources Networks. Nijmegen, The Netherlands p. 39–43.
  • Küçük, A., Mutlu, S., Gürpınar, A., Balkan, C., & İçer, B. (2003). Sebze Genetik Kaynakları Araştırma Projesi. TAGEM/TA/BB/98–17–02–003. Bitki Genetik Kaynakları Program Değerlendirme Toplantısı. Tekirdağ.
  • Kumar, K & Rao, I. (2012). Morphophysiologicals problems in acclimatization of micropropagated plants in-ex vitro conditions a reviews. Journal of Ornamental Horticultural Plants 2, 271–283.
  • Lang, F. ( 2007). Mechanisms and significance of cell volume regulation. Journal of the American College of Nutrition. 26, 613–623. doi:10.1080/07315724.2007.10719667
  • Lantos C., Juhasz A.G., Vagi P., Mihaly R., Kristof Z., & Pauk J. (2012). Androgenesis induction in microspore culture of sweet pepper (Capsicum annuum L.). Plant Biotechnology Reports 6, 123-132. https://doi.org/10.1007/s11816-011-0205-0
  • Makowska, K., Kału-zniak, M., Oleszczuk, S., Zimny, J., Czaplicki, A., & Konieczny, R. (2017). Arabinogalactan proteins improve plant regeneration in barley (Hordeum vulgare L.) anther culture. Plant Cell Tissue Organ Culture 131(2), 247-257. https://doi.org/10.1007/s11240-017-1280-x
  • Mangal, M., & Srivasatava, A. (2019). Exploitation of morphological features of bud and anther development for prediction of stages of microsporogenesis and microgametogenesis in pepper. Indian Journalof Expermental Biology 57, 368–371.
  • Mehta, D., & Vyas, S. (2023). Comparative bio-accumulation of osmoprotectants in saline stress tolerating plants: A review. Plant Stress 9, 100177 https://doi.org/10.1016/j.stress.2023.100177
  • Niazian, M., Shariatpanahi, M.E., Abdipour, M., & Oroojloo, M. (2019). Modeling callus induction and regeneration in anther culture of tomato (Lycopersicon esculentum L.) using image processing and artificial neural network method. Protoplasma 56(5), 1317-1332.10.1007/s00709-019-01379-x
  • Niazian, N.M., & Shariatpanahi, E. (2020). In vitro-based doubled haploid production: recent improvements. Euphytica 216, 69 https://doi.org/10.1007/s10681-020-02609-7(0123456789.
  • Niklas-Nowak, A., Olszewska, D., Kisiała, A., & Nowaczyk, P. (2012.) Study of individual plant responsiveness in anther cultures of selected pepper (Capsicum spp.) genotypes. Folia Horticulturae 24(2), 141-146. https://doi.org/10.2478/v10245-012-0017-x.
  • Niu, L., Shi, F., Feng, H., & Zhang, Y. (2019). Efficient doubled haploid production in microspore culture of Zengcheng flowering Chinese cabbage (Brassica campestris L. ssp. chinensis L.] Makino var. utilis Tsen et Lee). Scientia Horticulture 245, 57-64. https://doi.org/10.1016/j.scienta.2018.09.07
  • Nowaczyk, P, Kisiała, A., & Olszewska, D. (2006). Induced androgenesis of Capsicum frutescens L. Acta Physiologiae Plantarum 28(1), 35-39. https://doi.org/10.1007/s11738-006-0066-2
  • Nowaczyk, P., & Kisiała, A. (2006). Effect of selected factors on the effectiveness of capsicum annuum l. anther culture. Journal of Applied Genetics 47(2):113–117. https://doi.org/10.1007/BF03194609
  • Nowaczyk, P., Olszewska, D., & Kisiała, A. (2009). Individual reaction of Capsicum F2 hybrid genotypes in anther cultures. Euphytica 168, 225-233. 10.1007/s10681-009-9909-4
  • Ozsan, T., & Onus, N. (2017.) In vitro pepper (Capsicum annuum L.) anther culture: can be affected via vitamins B?. Biotechnology Journal International 20(1), 1-13. 10.9734/BJI/2017/37102
  • Özsoy, B. (2019.) Effects of Genotype, Nutritional Environment and Stress Applications on Androgenesis in Pepper. Master Thesis, Tokat Gaziosmanpaşa University.
  • Parra-Vega, V., Gonzalez-Garcia, B., & Segui-Simarro, J.M. (2013). Morphological markers to correlate bud and anther development with microsporogenesis and microgametogenesis in pepper (Capsicum annuum L.). Acta Physiologiae Plantarum 35(2), 627–633. https://doi.org/10.1007/s11738-012-1104-x
  • Pérez-Pérez, Y., Carneros, E., Berenguer, E., Solís, M.T., Bárány, I., Pintos, B., Gómez-Garay, A., Risuenõ, M.C., & Testillano, P.S. (2019). Pectin de-methylesterification and AGP increase promote cell wall remodeling and are required during somatic embryogenesis of Quercus suber. Frontiers in Plant Science 9, 1915. 10.3389/fpls.2018.01915
  • Phippen, C., & Ockendon, D.J. (1990). Genotype, plant, bud size and media factors affecting anther culture of cauliflowers ( Brassica oleracea var botrytis). Theorical and Applied Genetics 79(1), 33–38. 10.1007/BF00223783
  • Pınar, H., Mutlu, N., Yildiz, S., Simsek, D., & Shams, M. (2020). Transferring the cultured anther to a medium without activated charcoal overcomes the recalcitrance in pepper genotypes. Canadian Journal of Plant Science 101(2), 151-156. https://doi.org/10.1139/cjps-2020-0050
  • Rodeva V.N., Irikova T.P., & Todorova V.J. (2004). Anther culture of pepper (Capsicum annuum L.): comparative study on effect of the genotype. Biotechnology & Biotechnolgical Equipment 18(3), 34-38. https://doi.org/10.1080/13102818.2004.10817117
  • Rodeva, V., & Cholakov, T. (2006). Influence of some climatic factors in the period of donor plants growing on responsiveness of pepper anthers to embryogenesis. The International Conference Haploids in Higher Plants III. Austria, Vienna, pp 12–15
  • Rodríguez-Sanz, H., Moreno-Romero, J., Solís, M.T., Kohler, C., Risuenó, M.C., & Testillano, P.S., (2014). Changes in histone methylation and acetylation during microspore reprogramming to embryo-genesis occur concomitantly with Bn HKMT and Bn HAT expression and are associated with cell totipotency, proliferation, and differentiation in Brassica napus. Cytogenetic and Genome Research 143, 209-218.10.1159/000365261
  • Shana, K.P., Srivastava, A., Khar, A. Jain, N., Jain, P.K., Bharti, H., Harun, M. & Mangal, M. (2024). Anther-derived microspore embryogenesis in pepper hybrids Orobelle and Bomby. Botanical Studies 65, 1. https://doi.org/10.1186/s40529-023-00408-6
  • Şahin, M., Yetişir, H., & Pinar, H. (2022). Morphological characterization of some besni pepper (Capsicum annuum l.) genotypes in kayseri conditions. International Journal of Agriculture Environment and Food Sciences 6(1), 152-164. https://doi.org/10.31015/jaefs.2022.1.20
  • Samos, A., & Kundt, A. (1984). The paprika. Kultura Hungarian Foreign Trade Company and Academica Kiado Budapest.
  • Saskin, N., Ak, B.E & Ekinci, H. (2022). The usage of node culture in vitro conditions. In: Kirca L, Bak T, Guler E, Dogru-Cokran B, Kılıc D (eds) Proceeding Book. 5th Intl Agric Cong, Denizli, Turkey, 90–99.
  • Schober, P., Boer, C., & Schwarte, L.A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia & Analgesia 126:1763–1768. https://doi.org/10.1213/ANE.0000000000002864
  • Segui-Simarro, J.M. (2016.) Androgenesis in Solanaceae. In: Germana MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Humana Press, New York.
  • Shimira, F., Yıldız, S., Baktemur, G., Keleş, D., Aydın, M.Z., Büyükalaca, S., & Taşkın, H. (2019). Ruanda’dan temin edilen pili-pili çeşidinin androgenesis kapasitesinin Türkiye’de araştırılması. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24(3): 170-175.
  • Supena, E.D.J., Suharsono, S., Jacobsen, E & Custers, J.B.M. (2006). Successful development of a shed-microspore culture protocol for doubled haploid production in Indonesian hot pepper (Capsicum annuum L.). Plant Cell Reports 25(1), 1–10. 10.1007/s00299-005-0028-y
  • Taskin, H., Buyukalaca, S., Keles, D., & Ekbic, E. (2011). Induction of microspore derived embryos by anther culture in selected pepper genotypes. African Journal of Biotechnology 10(75), 17116-17121. 10.5897/AJB11.2023
  • Testillano, P.S., Coronado, M.J., Thierry, A.M., Matthys-Rochon, E., & Risuen˜o, M.C. (2010). In situ detection of Esr proteins secretion during maize microspore embryogenesis and their secretion blockage show effects on the culture progression. Functional Plant Biology 37, 985-994. https://doi.org/10.1071/FP10066
  • Testillano, P. S. (2019). Microspore embryogenesis: targeting the determinant factors of stress-induced cell reprogramming for crop improvement. J. Exp. Bot. 70, 2965–2978. doi: 10.1093/jxb/ery464
  • Velasco M.H., & Mattsson, A. (2020). Light shock stress after outdoor sunlight exposure in seedlings of Picea abies (L.) Karst. and Pinus sylvestris L. pre-cultivated under LEDs—possible mitigation treatments and their energy consumption. Forests 11, 354; doi:10.3390/f11030354.
  • Vural, H., Eşiyok, D., & Duman, İ. (2000). Cultivated Vegetables (Vegetable Growing), Ege University, Faculty of Agriculture, Department of Horticulture, Bornova, Izmir.
  • Wang, Y.Y., Sun, C.S., Wang, C.C., & Chien, N.J. (1973). The induction of pollen plantlets of triticale and Capsicum annuum anther culture. Scientia Sinica 16(1): 147-15.10.1186/s40529-023-00408-6SciSin
  • Xie, L., Wang, X., Peng, M., Meng, F., Zhou, Y., Chen. L., Liu, L., Gao, Y., & Guo, Y. (2014). isolation and detection of differential genes in hot pepper (Capsicum annuum L.) after space flight using AFLP markers. Biochemical Systematics and Ecology 57, 27-32. https://doi.org/10.1016/j.bse.2014.07.020
  • Yılmaz, G., & Karan, T. (2023). Current Applications and Evaluations in Plant Biotechnology. Livre de Lyon, Liyon.
  • Zeng, A., Song, L., Cui, Y., & Yan, J. (2017). Reduced ascorbate and reduced glutathione improve embryogenesis in broccoli microspore culture. South African Journal of Botany 109, 275–280. https://doi.org/10.1016/j.sajb.2017.01.005

Bazı Besni Biberi (Capsicum annuum L.) Genotiplerinin Anter Kültürüne Karşı Tepkileri

Yıl 2025, Cilt: 28 Sayı: 1, 114 - 131
https://doi.org/10.18016/ksutarimdoga.vi.1555480

Öz

Bu çalışmada, Türkiye'nin yerel çeşitlerinden biri olan Besni biberinin (Capsium annuum L.) anter kültürüne cevabı belirlenmiştir. Toplam 26 Besni biber genotipi ve 3 kontrol çeşidi anter kültürüne cevapları açısından incelenmiştir. Her biber genotipinden 150 anter in vitro koşullarda kültüre alınmıştır. Anter kültürüne cevap açısından genotipler arasında anlamlı bir fark (%0,0-%45,3) bulunmuştur. En yüksek embriyo oluşum oranı %45,3 (63 embriyo) ile B11 genotipinde, en yüksek bitkiye dönüşüm oranı ise 30 bitki (%68) ile B15 genotipinde bulunmuştur. Kontrol çeşitleriyle karşılaştırıldığında, Besni biber genotipleri anlamlı olarak daha fazla embriyo üretmiştir. Kullanılan 26 genotipten ikisi hariç tüm genotipler daha fazla veya daha az (1-68) embriyo üretmiştir. B4, B10, B11, B12, B15 ve G6 genotipleri %25'ten fazla embriyo üretmiş ve kontrol ve diğer genotiplerden ayrılmıştır. Besni ve Gölbaşı ilçelerinden toplanan genotiplerin ortalama embriyo oluşum oranı sırasıyla %13 ve %7 iken, kontrol çeşitlerinin embriyo oluşum oranı sadece %0,2'dir. Besni biber popülasyonunun androgenetik haploide oldukça duyarlı olduğu sonucuna varılmıştır. Yüksek embriyo oluşturan B4, B10, B11, B12, B15 ve G6 gibi oldukça duyarlı genotipler yeni ıslah hatlarının geliştirilmesinde ve anter kültürünün genetiğinin araştırıldığı çalışmalarda kullanılma potansiyeline sahiptir.

Etik Beyan

Makale yazarları, bu makalede sunulan verilerin, bilgilerin ve dokümanların akademik ve etik kurallar çerçevesinde elde edildiğini, tüm bilgi, belge, değerlendirme ve sonuçlarının bilimsel etik ve ahlak kurallarına uygun olarak sunulduğunu beyan ederler

Destekleyen Kurum

Erciyes University Scientific Research Projects Coordinating Office

Proje Numarası

FYL-2021-10960

Teşekkür

The authors would like to thank Erciyes University Scientific Research Coordination Unit for its financial support and Erciyes University Agricultural Research and Application Center for the space and material support it provided.

Kaynakça

  • Abak, K. (1983). Study on the anther culture in vitro of pepper (Capsicum annuum L.). Capsicum Newsletter 2, 72-73
  • Alremi, F., Taşkın, H., Sönmez, K., Büyükalaca, S. et al (2014). Biber (Capsicum annuum L.)’de Genotip ve Besin ortamının anter kültürüne etkileri. Türk Tarım ve Doğa Bilimleri Dergisi 1(2), 108-116. https://doi.org/10.30910/turkjans.160702
  • Andrews, J. (1985). Peppers. The Domesticated Capsicum. University. of Texas Pres Box 7819 Austin, Texas.
  • Ari, E., Bedir, H., Yildirim, S & Yildirim, T. (2016). Androgenic responses of 64 ornamental pepper (Capsicum annuum L.) genotypes to shed-microspore culture in the autumn season. Turkish Journal of Biology 40, 706-717. 10.3906/biy-1505-41
  • Asif, M. (2013). Progress and Opportunities of Doubled Haploid Production. Springer London.
  • Ata, A., Keles, D., Taskın, H., & Büyükalaca, S. (2019). Effects of season, genotype, and nutrient medium on pepper anther culture and microspore development. Turkish Journal of Agriculture and Forestry 40(2),123–137. https://doi.org/10.3906/tar-1802-35
  • Atasoy, D., Baktemur, G & Taşkın, H. (2021). Bazı biber (Capsicum annuum L.) genotiplerinin anter kültürü performanslarinin belirlenmesi. Yuzuncu Yıl University Journal of Agricultural Sciences 31 (2), 282-293. https://doi.org/10.29133/yyutbd.835106
  • Babaoğlu, M., Yorgancılar, M., & Akbudak, M.A. (2001). Tissue Culture: Basic Laboratory Techniques. Plant Biotechnology Tissue Culture and Applications, S.Ü. Vakfı Yayınları, Konya.
  • Bajaj, Y.P.S. (1980). Enhancement of the in-vitro development of triticale embryos by the endosperm of durum wheat triticum durum. Cereal Research Communications 8(2), 359–364. https://www.jstor.org/stable/23781343
  • Bal, U., Abak, K., Büyükalaca, S., & Comlekcioglu, N. (2003). Development of callus colonies from the isolated microspore culture of Capsicum annuum L. Biotechnology and Biotechnological Equipment 17(2), 38-43. 10.1080/13102818.2003.10817056
  • Barboza, G.E., Carrizo García, C., Leiva González, S., Scaldaferro, M., & Reyes, X. (2019). Four new species of capsicum (solanaceae) from the tropical andes and an update on the phylogeny of the genus. PLoS ONE 14 (1): e0209792. https://doi.org/10.1371/journal.pone.0209792
  • Başay, S., & Ellialtioglu, Ş.Ş. (2013). Effect of genotypical factors on the effectiveness of anther culture in eggplant (Solanum melongena L.). Turkish Journal of Biology 37, 499-505. 10.3906/biy-1210-38
  • Bat, H., Shidfar, M., Comlekcioglu, N., & Ellialtioglu, S.S. (2020). In vitro androgenesis in pepper and the affecting factors on success: I. carbon source and concentrations. Biotech Studies 29(2), 62–68. https://doi.org/10.38042/biost.2020.29.02.02
  • Berenguer, E., Solís M.T., Pérez-Pérez, Y., Minina, Y., Risuenó, M.C., Bozhkov, P., & Testillano P.S. (2017). Metacaspases and autophagy are induced in microspore embryogenesis of Brassica napus. In: Proceedings 2nd meeting WG3 transautophagy Cost Action CA15138, Madrid, 23-24. https://doi.org/10.1093/pcp/pcaa128
  • Büyükalaca, S., Kilic, N., Comlekcioglu, N., Abak, K., & Ekbic, E. (2004). Effects of silver nitrate and donor plant growing conditions on production of pepper (Capsicum annum L.) haploid embryos via anther culture. European Journal of Horticultural Science 69, 206-209.
  • Camacho-Fernández, C., Seguí-Simarro, J.M., Mir, R., Boutilier, K., Corral-Martínez, P. (2021). Cell wall composition and structure define the developmental fate of embryogenic microspores in Brassica napus. Frontiers in Plant Science 12:737139. https://doi.org/10.3389/fpls.2021.737139
  • Cedar, H., & Bergman, Y. (2009). Linking DNA methylation and histone modification: patterns and paradigms. Nat Review Genetics 10, 295–304. https://doi.org/10.1038/nrg2540
  • Chacal G.S. & Gosal, S.S. (2002). Principle and Procedure of Plant Breeding Biotechnological and Conventional Approaches. Alpha Science Pang Bourne, England.
  • Chandra, S., Bandopadhyay, R., Kumar, V. & Chandra, R. (2010). Acclimatization of tissue cultured plantlets: from laboratory to land. Biotechnolgy Letters 32,1199–1205. 10.1007/s10529-010-0290-0
  • Chen, H., Hao, H., Han, C., Wang, H., Wang, Q., Chen, M., Juan, J., Feng, Z., & Zhang, J. (2020). Exogenous L-ascorbic acid regulates the antioxidant system to increase the regeneration of damaged mycelia and induce the development of fruiting bodies in Hypsizygus marmoreus. Fungal Biology 124(6), 551-561 doi: 10.1016/j.funbio.2020.02.010.
  • Chen, W., Zhang, Y., Ren, J., Ma, Y., Liu, Z., & Hui, F. (2019). Effects of methylene blue on microspore embryogenesis and plant regeneration in ornamental kale (Brassica oleracea var. acephala). Scientia Horticulturae 248:1-7. https://doi.org/10.1016/j.scienta.2018.12.048
  • Çiner, D.O., & Tipirdamaz, R. (2001). The effects of cold treatment and charcoal on the ın vitro androgenesis of pepper (Capsicum annuum L.). Turkish Journal of Botany 26(3), 131–139. https://journals.tubitak.gov.tr/botany/vol26/iss3/2
  • Cohen, J. (1988). Statistical power analysis forthe behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum. Comlekcioglu, N., & Ellialtioglu, S. (2018). Review on the research carried out on ın vitro androgenesis of peppers (Capsicum annuum L). Research Journal of Biotechnology 6, 75–84
  • Copetta, A., Mussano, P., Devi, P., Lanteri, A., Cassetti, A., Mascarello, C., Bisio, A & Ruffoni, B. (2023). In vitro micropropagation, rooting and acclimatization of two Agastache species (A. aurantiaca and A. mexicana). Horticulturae 9(10),1065. https://doi.org/10.3390/horticulturae9101065
  • Denli, N., Ata, A., Keleş, D., Mutlu, N.& Taşkın, H. (2022). Inheritance of androgenesis response in pepper. Mol Biol Rep. 2022 Dec;49(12):11601-11609. doi: 10.1007/s11033-022-07876-2.
  • Doğangüzel, E., Altındağ, F. N., Yiğit, M. A., Ellialtıoğlu, Ş. Ş., & Çömlekçioğlu, N. (2021). In vitro androgenesis in pepper (Capsicum annuum L.) and the affecting factors on success: II. carbohydrate source and antioxidants. Biotech Studies 30(2), 92-97. https://doi.org/10.38042/biotechstudies.1000341
  • Dumas de Vaulx, R., & Chambonnet, D. (1982). Culturei in vitro d’anthères d’aubergine (Solanum melongena L.) stimulation de la production de plantes au moyen de traitements à+ 35 c associés à de faibles teneurs en substances de croissance. Agronomie 2, 983-988. https://hal.science/hal-00884339v1
  • Dumas de Vaulx, R., Chambonnet, D., & Pochard, E. (1981). In vitro culture of pepper (Capsicum annuum L.) anthers: high rate plant production from different genotypes by +35 °C treatment. Agronomie 1, 859–864
  • Duruk, Z. (2023). Molecular and Morphological Characterization of Some Elazığ Pepper Genotypes (Capsicum annuum L.) and Determination of Anther Culture Efficiency. Master's Thesis, Erciyes University, Institute of Natural and Applied Science, Department of Horticulture, 73s.
  • Ellialtıoğlu, Ş.Ş., Sönmez, K., & Evcen, F. (2015). The Effect of growth regulator and carbon source combinations on the formation of haploid embryos in eggplant anther cultures. Green Biotechnology Workshop, 21-23 September 2015, Darıca, Kocaeli. http://doi.org/10.38042/biost.2020.29.02.02
  • Ercan, N., & Şensoy, F.A. (2011). Androgenic responses of different pepper (Capsicum annuum L.) cultivars. Biyoloji Bilimleri Araştırma Dergisi 4(2), 59–61.
  • Ercan, N., Sensoy F.A., & Sensoy A.S. (2006). Influence of growing season and donor plant age on anther culture response of some pepper cultivars (Capsicum annuum L.). Scientia Horticulturae 110(1), 16-20. https://doi.org/10.1016/j.scienta.2006.06.007
  • Faostat (2022). https://www.fao.org/faostat/en/#home
  • Genç, I. (2023). Determination of The Fffects of Different Pepper Types on The Number of Embryos Transformed into Plants, Embryo Formation Time and Spontaneous Double Haploid Rate in Anther Culture. Master's Thesis, Selçuk University, Department of Plant Breeding and Genetics.
  • George, L., & Narayanaswamy, S. (1973). Haploid Capsicum through experimental androgenesis. Protoplasma 78(4), 467–470. https://doi.org/10.1007/BF01275781
  • Gönülşen, N. (1987). Plant Tissue Cultures, Methods and Application Areas. Ege Agricultural Research Ent. Dir. Pbl No:78, Menemen-İzmir.
  • Grozeva, S., Pasev, G., Radeva-Ivanova, V., Todorova, V., Ivanova, V., & Nankar, A.N. (2021). Double haploid development and assessment of androgenic competence of balkan pepper core collection in Bulgaria. Plants 10(11), 2414. 10.3390/plants10112414
  • Guha, S., Maheshwari, S.C. (1964). In vitro production of embryos from anthers of datura. Nature 204(495), 497. https://doi.org/10.1038/204497a0
  • Gupta, B., & Huang B. (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics 1:1-18. https://doi.org/10.1155/2014/701596
  • Hale, B., Ferrie, A.M.R., Chellamma, S., Samue,l J.P. & Phillips, G.C. (2022), Androgenesis-based doubledhaploidy: past, present, and future perspectives. Frontiers in Plant Science 12, 751230. doi: 10.3389/fpls.2021.751230
  • Hatipoğlu, R. (1997). Plant Biotechnology. Ç.Ü. Faculty of Agriculture General Publication No: 190. Textbooks Publication No: A-58.
  • Heidari-Zefreh, A.A., Shariatpanahi, M.E., Mousavi, A., & Kalatejari, S. (2018). Enhancement of microspore embryogenesis induction and plantlet regeneration of sweet pepper (Capsicum annuum L.) using putrescine and ascorbic acid. Protoplasma 256(1),13-24. Fungal Biol. 1:1. https://doi.org/ 10.1016/j.funbio.2020.02.010
  • Heiser, C.B., & Smith, P.G. (1953). The cultivated capsicum peppers. Economic Botany 1953, 7:214–227. doi: 10.1007/BF02984948.
  • Heiser, C.B.J.R. (1976). Peppers-Capsicum (Solanaceae), p. 265-268. In N. W. Simmonds, ed, Evolution of Crop Plants. Longman, London. Ifas (2021) https://edis.ifas.ufl.edu/publication/CV216
  • İlhan, M., & Kurtar, E.S. (2022). Double haploidization efficiency of selected pepper genotypes via in vitro anther culture. Selcuk Journal of Agriculture and Food Sciences 36 (2), 253-259. 10.15316/SJAFS.2022.033
  • Irikova, T., & Rodeva, V. (2004). Anther culture of pepper (Capsicum annuum L.): comparative study on effect of the genotype. Biotechnology & Biotechnolgical Equipment 18 (3), 34-38. https://doi.org/10.1080/13102818.2004.10817117
  • Irikova, T., Grozeva, S., & Rodeva, V. (2011a) Anther culture in pepper (Capsicum annuum L.) in vitro. Acta Physiologiae Plantarum 33(5),1559–1570. 10.1007/s11738-011-0736-6
  • Irikova, T., Grozeva, S., Popov, P., Rodeva, V., & Todorovska, E. (2011b). In vitro response of pepper anther culture (Capsicum annuum L.) depending on genotype, nutrient medium and duration of cultivation. Biotechnology & Biotechnolgical Equipment 25, 2604–2609. https://doi.org/10.5504/BBEQ.2011.0090
  • Irikova, T.P., Kintzios, S., Grozeva, S., & Rodeva, V. (2016). Pepper (Capsicum annuum L.) anther culture: fundamental research and practical applications. Turkish Journal of Biology 40, 719-726, doi:10.3906/biy-1506-79
  • Kara, Z & Yazar, K. (2020). Bazı üzüm ceşitlerinde in vitro poliploidi uyarımı. Anadolu Journal of Agricultural Science 35, 410–418. https://doi.org/10.7161/omuanajas.768710
  • Keleş. D., Pınar, H., Ata, A., Taşkın, H., & Büyükalaca, S. (2015). Effect of pepper types on obtaining spontaneous doubled haploid plants via anther culture. Hortscience 50(11),1671–1676. https://doi.org/10.21273/HORTSCI.50.11.1671
  • Khalafalla, M.M., Daffalla, H.M., Abdellatef, E., Agabna, E & El-Shemy, H.A. (2011). Establishment of an in vitro micropropagation protocol for Boscia senegalensis (Pers.) Lam. ex Poir. Journal of Zhejiang University-Science B 12(4), 303-12. doi: 10.1631/jzus.B1000205.
  • Khan, N., Bano, A., Ali, S., Babar, M.A. (2020). Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regulator 1, 1-15. https://doi.org/10.1007/s10725-020-00571-x
  • Kim M, Kim J, Yoon M, Choi DI, Lee KM (2004) Origin of multicellular pollen and pollen embryos in cultured anthers of pepper (Capsicum annuum). Plant Cell Tissue Organ Culture 77(1), 63–72. https://doi.org/10.1023/B:TICU.0000016506.02796.6a
  • Krishna, H., Singh, S., Sharma, R., Khawale, R., Grover, M & Patel, V. (2005). Biochemical changes in micropropagated grape (Vitis vinifera L.) plantlets due to arbuscular-mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization. Scientia Horticulturae 106, 554–567. https://doi.org/10.1016/j.scienta.2005.05.00
  • Kristiansen, K., & Andersen, S.B. (1993). Effects of donör plant, temperature, photoperiod and age on anther culture response of Capsicum annuum L. Euphytica 67, 105-109. https://doi.org/10.1007/BF00022732
  • Küçük, A. (2001) Collecting Solanaceae in Turkey. Solanaceae Genetic Resources in Europe. European Cooperative Programme for Crop Genetic Resources Networks. Nijmegen, The Netherlands p. 39–43.
  • Küçük, A., Mutlu, S., Gürpınar, A., Balkan, C., & İçer, B. (2003). Sebze Genetik Kaynakları Araştırma Projesi. TAGEM/TA/BB/98–17–02–003. Bitki Genetik Kaynakları Program Değerlendirme Toplantısı. Tekirdağ.
  • Kumar, K & Rao, I. (2012). Morphophysiologicals problems in acclimatization of micropropagated plants in-ex vitro conditions a reviews. Journal of Ornamental Horticultural Plants 2, 271–283.
  • Lang, F. ( 2007). Mechanisms and significance of cell volume regulation. Journal of the American College of Nutrition. 26, 613–623. doi:10.1080/07315724.2007.10719667
  • Lantos C., Juhasz A.G., Vagi P., Mihaly R., Kristof Z., & Pauk J. (2012). Androgenesis induction in microspore culture of sweet pepper (Capsicum annuum L.). Plant Biotechnology Reports 6, 123-132. https://doi.org/10.1007/s11816-011-0205-0
  • Makowska, K., Kału-zniak, M., Oleszczuk, S., Zimny, J., Czaplicki, A., & Konieczny, R. (2017). Arabinogalactan proteins improve plant regeneration in barley (Hordeum vulgare L.) anther culture. Plant Cell Tissue Organ Culture 131(2), 247-257. https://doi.org/10.1007/s11240-017-1280-x
  • Mangal, M., & Srivasatava, A. (2019). Exploitation of morphological features of bud and anther development for prediction of stages of microsporogenesis and microgametogenesis in pepper. Indian Journalof Expermental Biology 57, 368–371.
  • Mehta, D., & Vyas, S. (2023). Comparative bio-accumulation of osmoprotectants in saline stress tolerating plants: A review. Plant Stress 9, 100177 https://doi.org/10.1016/j.stress.2023.100177
  • Niazian, M., Shariatpanahi, M.E., Abdipour, M., & Oroojloo, M. (2019). Modeling callus induction and regeneration in anther culture of tomato (Lycopersicon esculentum L.) using image processing and artificial neural network method. Protoplasma 56(5), 1317-1332.10.1007/s00709-019-01379-x
  • Niazian, N.M., & Shariatpanahi, E. (2020). In vitro-based doubled haploid production: recent improvements. Euphytica 216, 69 https://doi.org/10.1007/s10681-020-02609-7(0123456789.
  • Niklas-Nowak, A., Olszewska, D., Kisiała, A., & Nowaczyk, P. (2012.) Study of individual plant responsiveness in anther cultures of selected pepper (Capsicum spp.) genotypes. Folia Horticulturae 24(2), 141-146. https://doi.org/10.2478/v10245-012-0017-x.
  • Niu, L., Shi, F., Feng, H., & Zhang, Y. (2019). Efficient doubled haploid production in microspore culture of Zengcheng flowering Chinese cabbage (Brassica campestris L. ssp. chinensis L.] Makino var. utilis Tsen et Lee). Scientia Horticulture 245, 57-64. https://doi.org/10.1016/j.scienta.2018.09.07
  • Nowaczyk, P, Kisiała, A., & Olszewska, D. (2006). Induced androgenesis of Capsicum frutescens L. Acta Physiologiae Plantarum 28(1), 35-39. https://doi.org/10.1007/s11738-006-0066-2
  • Nowaczyk, P., & Kisiała, A. (2006). Effect of selected factors on the effectiveness of capsicum annuum l. anther culture. Journal of Applied Genetics 47(2):113–117. https://doi.org/10.1007/BF03194609
  • Nowaczyk, P., Olszewska, D., & Kisiała, A. (2009). Individual reaction of Capsicum F2 hybrid genotypes in anther cultures. Euphytica 168, 225-233. 10.1007/s10681-009-9909-4
  • Ozsan, T., & Onus, N. (2017.) In vitro pepper (Capsicum annuum L.) anther culture: can be affected via vitamins B?. Biotechnology Journal International 20(1), 1-13. 10.9734/BJI/2017/37102
  • Özsoy, B. (2019.) Effects of Genotype, Nutritional Environment and Stress Applications on Androgenesis in Pepper. Master Thesis, Tokat Gaziosmanpaşa University.
  • Parra-Vega, V., Gonzalez-Garcia, B., & Segui-Simarro, J.M. (2013). Morphological markers to correlate bud and anther development with microsporogenesis and microgametogenesis in pepper (Capsicum annuum L.). Acta Physiologiae Plantarum 35(2), 627–633. https://doi.org/10.1007/s11738-012-1104-x
  • Pérez-Pérez, Y., Carneros, E., Berenguer, E., Solís, M.T., Bárány, I., Pintos, B., Gómez-Garay, A., Risuenõ, M.C., & Testillano, P.S. (2019). Pectin de-methylesterification and AGP increase promote cell wall remodeling and are required during somatic embryogenesis of Quercus suber. Frontiers in Plant Science 9, 1915. 10.3389/fpls.2018.01915
  • Phippen, C., & Ockendon, D.J. (1990). Genotype, plant, bud size and media factors affecting anther culture of cauliflowers ( Brassica oleracea var botrytis). Theorical and Applied Genetics 79(1), 33–38. 10.1007/BF00223783
  • Pınar, H., Mutlu, N., Yildiz, S., Simsek, D., & Shams, M. (2020). Transferring the cultured anther to a medium without activated charcoal overcomes the recalcitrance in pepper genotypes. Canadian Journal of Plant Science 101(2), 151-156. https://doi.org/10.1139/cjps-2020-0050
  • Rodeva V.N., Irikova T.P., & Todorova V.J. (2004). Anther culture of pepper (Capsicum annuum L.): comparative study on effect of the genotype. Biotechnology & Biotechnolgical Equipment 18(3), 34-38. https://doi.org/10.1080/13102818.2004.10817117
  • Rodeva, V., & Cholakov, T. (2006). Influence of some climatic factors in the period of donor plants growing on responsiveness of pepper anthers to embryogenesis. The International Conference Haploids in Higher Plants III. Austria, Vienna, pp 12–15
  • Rodríguez-Sanz, H., Moreno-Romero, J., Solís, M.T., Kohler, C., Risuenó, M.C., & Testillano, P.S., (2014). Changes in histone methylation and acetylation during microspore reprogramming to embryo-genesis occur concomitantly with Bn HKMT and Bn HAT expression and are associated with cell totipotency, proliferation, and differentiation in Brassica napus. Cytogenetic and Genome Research 143, 209-218.10.1159/000365261
  • Shana, K.P., Srivastava, A., Khar, A. Jain, N., Jain, P.K., Bharti, H., Harun, M. & Mangal, M. (2024). Anther-derived microspore embryogenesis in pepper hybrids Orobelle and Bomby. Botanical Studies 65, 1. https://doi.org/10.1186/s40529-023-00408-6
  • Şahin, M., Yetişir, H., & Pinar, H. (2022). Morphological characterization of some besni pepper (Capsicum annuum l.) genotypes in kayseri conditions. International Journal of Agriculture Environment and Food Sciences 6(1), 152-164. https://doi.org/10.31015/jaefs.2022.1.20
  • Samos, A., & Kundt, A. (1984). The paprika. Kultura Hungarian Foreign Trade Company and Academica Kiado Budapest.
  • Saskin, N., Ak, B.E & Ekinci, H. (2022). The usage of node culture in vitro conditions. In: Kirca L, Bak T, Guler E, Dogru-Cokran B, Kılıc D (eds) Proceeding Book. 5th Intl Agric Cong, Denizli, Turkey, 90–99.
  • Schober, P., Boer, C., & Schwarte, L.A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia & Analgesia 126:1763–1768. https://doi.org/10.1213/ANE.0000000000002864
  • Segui-Simarro, J.M. (2016.) Androgenesis in Solanaceae. In: Germana MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Humana Press, New York.
  • Shimira, F., Yıldız, S., Baktemur, G., Keleş, D., Aydın, M.Z., Büyükalaca, S., & Taşkın, H. (2019). Ruanda’dan temin edilen pili-pili çeşidinin androgenesis kapasitesinin Türkiye’de araştırılması. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24(3): 170-175.
  • Supena, E.D.J., Suharsono, S., Jacobsen, E & Custers, J.B.M. (2006). Successful development of a shed-microspore culture protocol for doubled haploid production in Indonesian hot pepper (Capsicum annuum L.). Plant Cell Reports 25(1), 1–10. 10.1007/s00299-005-0028-y
  • Taskin, H., Buyukalaca, S., Keles, D., & Ekbic, E. (2011). Induction of microspore derived embryos by anther culture in selected pepper genotypes. African Journal of Biotechnology 10(75), 17116-17121. 10.5897/AJB11.2023
  • Testillano, P.S., Coronado, M.J., Thierry, A.M., Matthys-Rochon, E., & Risuen˜o, M.C. (2010). In situ detection of Esr proteins secretion during maize microspore embryogenesis and their secretion blockage show effects on the culture progression. Functional Plant Biology 37, 985-994. https://doi.org/10.1071/FP10066
  • Testillano, P. S. (2019). Microspore embryogenesis: targeting the determinant factors of stress-induced cell reprogramming for crop improvement. J. Exp. Bot. 70, 2965–2978. doi: 10.1093/jxb/ery464
  • Velasco M.H., & Mattsson, A. (2020). Light shock stress after outdoor sunlight exposure in seedlings of Picea abies (L.) Karst. and Pinus sylvestris L. pre-cultivated under LEDs—possible mitigation treatments and their energy consumption. Forests 11, 354; doi:10.3390/f11030354.
  • Vural, H., Eşiyok, D., & Duman, İ. (2000). Cultivated Vegetables (Vegetable Growing), Ege University, Faculty of Agriculture, Department of Horticulture, Bornova, Izmir.
  • Wang, Y.Y., Sun, C.S., Wang, C.C., & Chien, N.J. (1973). The induction of pollen plantlets of triticale and Capsicum annuum anther culture. Scientia Sinica 16(1): 147-15.10.1186/s40529-023-00408-6SciSin
  • Xie, L., Wang, X., Peng, M., Meng, F., Zhou, Y., Chen. L., Liu, L., Gao, Y., & Guo, Y. (2014). isolation and detection of differential genes in hot pepper (Capsicum annuum L.) after space flight using AFLP markers. Biochemical Systematics and Ecology 57, 27-32. https://doi.org/10.1016/j.bse.2014.07.020
  • Yılmaz, G., & Karan, T. (2023). Current Applications and Evaluations in Plant Biotechnology. Livre de Lyon, Liyon.
  • Zeng, A., Song, L., Cui, Y., & Yan, J. (2017). Reduced ascorbate and reduced glutathione improve embryogenesis in broccoli microspore culture. South African Journal of Botany 109, 275–280. https://doi.org/10.1016/j.sajb.2017.01.005
Toplam 97 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Biyoteknolojisi
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Mirac Şahin 0000-0002-7699-6380

Halit Yetişir 0000-0001-6955-9513

Hasan Pinar 0000-0002-0811-8228

Alim Aydın 0000-0002-9424-5556

Proje Numarası FYL-2021-10960
Erken Görünüm Tarihi 30 Ocak 2025
Yayımlanma Tarihi
Gönderilme Tarihi 25 Eylül 2024
Kabul Tarihi 3 Ocak 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 1

Kaynak Göster

APA Şahin, M., Yetişir, H., Pinar, H., Aydın, A. (2025). Genotypic Responses of Some Besni Pepper (Capsicum annuum L.) Genotypes to Anther Culture. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(1), 114-131. https://doi.org/10.18016/ksutarimdoga.vi.1555480

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149