Araştırma Makalesi
BibTex RIS Kaynak Göster

Evercion Sarı Tekstil Boyasına Maruz Kalan Lemna minor L. Üzerinde Hesperidin ve Salisilik Asit'in Koruyucu Etkileri

Yıl 2025, Cilt: 28 Sayı: 2, 351 - 363, 27.03.2025
https://doi.org/10.18016/ksutarimdoga.vi.1501836

Öz

Hesperidin (HES), turunçgil türlerinde bulunan flavonoid ailesinden bir flavonon glikozittir. Güçlü anti-oksidan ve anti-kanser özelliklere sahiptir. Stres zamanlarında, bitki hormonu olarak da bilinen fenolik kimyasal salisilik asit (SA) bir sinyal molekülü olarak işlev görür, bitkinin tepkisini kontrol eder ve hayatta kalmasını sağlar. Çok sayıda zararlı kimyasalın ortadan kaldırılması için, bazen yeşil ıslah olarak da adlandırılan fitoremediasyon, verimli, uygun maliyetli, çevreye zarar vermeyen ve basit bir prosedürdür. Su mercimeği (Lemna minor L.) fitoremediasyon çalışmalarında önemli bir biyoindikatör türdür. Bu çalışmada, 75 ppm, 150 ppm ve 300 ppm reaktif boya Evercion yellow 1X uygulamasının ardından, 0.5 mM SA ve 0.5 mM HES’in su mercimeği (L. minor L.) üzerindeki etkileri incelenmiştir. Strese karşı 0,5 mM SA kullanımı peroksidaz (POD), askorbat peroksidaz (APX), glutatyon S-transferaz (GST), glutatyon redüktaz (GR), süperoksit dismutaz (SOD) ve katalaz (CAT) aktivitelerini artırmıştır. Ayrıca, toplam gutatyon (GSH), toplam klorofil ve karotenoid içeriği SA uygulaması ile değişmiştir. Malondialdehit (MDA) içeriği olarak ölçülen lipid peroksidasyon düzeyi, kontrol gruplarına göre daha yüksek bulunmuştur.

Kaynakça

  • Akerboom, T.P.M., & Sies, H. (1981). Assay of glutathione, glutathione disülfide and glutathione mixed disulfides in biological samples. Method Enzymol, 77, 373-382. https://doi.org/10.1016/S0076-6879(81)77050-2.
  • Alkimin, G. D., Daniel, D., Dionísio, R., Soares, A. M. V. M., Barata, C., & Nunes, B. (2019). Effects of diclofenac and salicylic acid exposure on Lemna minor: Is time a factor? Environmental Research, 177, 1-15. https://doi.org/10.1016/j.envres.2019.108609.
  • Alp, F. N., Arikan, B., Ozfidan-Konakci, C., Ekim, R., Yildiztugay, E., & Turan, M. (2023). Rare earth element scandium mitigates the chromium toxicity in Lemna minor by regulating photosynthetic performance, hormonal balance and antioxidant machinery. Environmental Pollution, 316, 1-13. https://doi.org/10.1016/j.envpol.2022.120636.
  • Al-Snai, A. E., (2019). Lemna minor :Traditional uses, chemical constituents and pharmacological effects-A review. IOSR Journal of Pharmacy, 9(8), 6-11. (e)-ISSN: 2250-3013, (p)-ISSN: 2319-4219.
  • Arikan, B., Ozfidan-Konakci, C., Yildiztugay, E., Zengin, G., Alp, F. N., & Elbasan, F. (2022). Exogenous hesperidin and chlorogenic acid alleviate oxidative damage induced by arsenic toxicity in Zea mays through regulating the water status, antioxidant capacity, redox balance and fatty acid composition. Environmental Pollution, 292, 1-15. https://doi.org/10.1016/j.envpol.2021.118389.
  • Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174, 714-727. https://doi.org/10.1016/j.ecoenv.2019.02.068.
  • Aziz, A., Kapoor, D., 2018. Salicylic Acid: It’s physiological role and interactions. Research Journal of Pharmacy and Technology, 11(7), 3171-3177. https://doi.org/10.5958/0974-360X.2018.00583.8.
  • Bansal, N., & Kanwar, S. S. (2013). Peroxidase (s) in environment protection. The Scientific World Journal. 1-9. https://doi.org/10.1155/2013/714639.
  • Beker Akbulut, G., Turhan, D. Ö., & Yiğit, E. (2020). Alleviation of Everzol Red LFB toxicity in duckweed (Lemna minor L.) by exogenous salicylic Acid. KSU J. Agric Nat, 23(4), 876-884. https://doi.org/10.18016/ksutarimdoga.vi.683962.
  • Beker Akbulut, G., Özhan Turhan, D. (2021). Role of salicylic acid in resistance to everzol navy ED in Lemna minor L.(Duckweed). International Journal of Pure and Applied Sciences 7(1), 185-195. https://doi.org/10.29132/ijpas.894056.
  • Basiglini, E., Pintore, M., & Forni, C. (2018). Effects of treated industrial wastewaters and temperatures on growth and enzymatic activities of duckweed (Lemna minor L.). Ecotoxicology and Environmental Safety, 153, 54-59. https://doi.org/10.1016/j.ecoenv.2018.01.053.
  • Bozbuga, R. (2020). Expressions of pathogenesis related 1 (PR1) gene in Solanum lycopersicum and Influence of salicylic acid exposures on host-Meloidogyne incognita interactions. In Doklady. Biochemistry and Biophysics. Pleiades Publishing. 494(1), 266-269. https://doi.org/10.1134/S1607672920050038.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3.
  • Buttar, Z. A., Wu, S. N., Arnao, M. B., Wang, C., Ullah, I., & Wang, C. (2020). Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants, 9(7), 809. https://doi.org/10.3390/plants9070809.
  • Can-Terzi, B., Goren, A. Y., Okten, H. E., & Sofuoglu, S. C. (2021). Biosorption of methylene blue from water by live Lemna minor. Environmental Technology & Innovation, 22, 1-12. https://doi.org/10.1016/j.eti.2021.101432.
  • Carlberg, I. & Mannervik, B. (1985). Glutathione reductase. Methods in Enzymology. 113, 484-490. https://doi.org/10.1016/S0076-6879(85)13062-4.
  • Ceschin, S., Crescenzi, M., & Iannelli, M. A. (2020). Phytoremediation potential of the duckweeds Lemna minuta and Lemna minor to remove nutrients from treated waters. Environmental Science and Pollution Research, 27(13), 15806-15814. https://doi.org/10.1007/s11356-020-08045-3.
  • Chavoushi, M., Najafi, F., Salimi, A., & Angaji, S. A. (2020). Effect of salicylic acid and sodium nitroprusside on growth parameters, photosynthetic pigments and secondary metabolites of safflower under drought stress. Scientia Horticulturae, 259, 1-6. https://doi.org/10.1016/j.scienta.2019.108823.
  • Cicerali, N. I. (2004). Effect of stress on antioxidant defense systems of sensitive and resistant cultivars of lentil (Lens culinaris M.) (Thesis number 153433). Master's Thesis, ODTÜ, Ankara. Council of High Education Thesis Center.
  • Cohen, S. P. & Leach, J. E. (2019). Abiotic and biotic stresses induce a core transcriptome response in rice. Scientific Reports, 9(1), 1-11. https://doi.org/10.1038/s41598-019-42731-8.
  • De Kok, L. & Graham, M. (1989). Levels of pigments, soluble proteins, amino acids and sulhydryl compounds in foliar tissue of Arabidopsis thaliana during dark-induced and natural senescence. Plant Physiology and Biochemistry (Paris), 27(2), 203-209. ISSN/ISBN: 0981-9428.
  • Demirci, T., Ascı, Ö. A., & Baydar, N. G. (2021). Influence of salicylic acid and L-phenylalanine on the accumulation of anthraquinone and phenolic compounds in adventitious root cultures of madder (Rubia tinctorum L.). Plant Cell, Tissue and Organ Culture, 144(2), 313-324. https://doi.org/10.1007/s11240-020-01952-w.
  • Di, X., Gomila, J. & Takken, F. L. (2017). Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum. Molecular Plant Pathology, 18(7), 1024-1035. https://doi.org/10.1111/mpp.12559.
  • Dorina, S., Judith, S., Björn, W., Julia, S., Andrea, S., Muffler, K., & Roland, U. (2020). A new strategy for a combined isolation of EPS and pigments from cyanobacteria. Journal of Applied Phycology, 32, 1-12. https://doi.org/10.1007/s10811-020-02063-x.
  • Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11(1),1-42. http://dx.doi.org/10.2307/3001478.
  • Feng, J., Zhang, M., Yang, K. N., & Zheng, C. X. (2020). Salicylic acid-primed defence response in octoploid strawberry ‘Benihoppe’leaves induces resistance against Podosphaera aphanis through enhanced accumulation of proanthocyanidins and upregulation of pathogenesis-related genes. BMC Plant Biology, 20, 1-18. https://doi.org/10.21203/rs.2.16580/v1.
  • Gong, H., Jiao, Y., Hu, W. W., & Pua, E. C. (2005). Expression of glutathione-S-transferase and its role in plant growth and development in vivo and shoot morphogenesis in vitro. Plant Molecular Biology, 57(1), 53–66. https://doi.org/ 10.1007/s11103-004-4516-1.
  • Habig, W., Pabst, M., & Jakoby, W. (1974). The first enzymatic step in mercapturic acid formation. Glutathione-S-transferase. J. Biol. Chem., 249:7130-7139. https://doi.org/10.1016/S0021-9258(19)42083-8.
  • Hasanuzzaman, M., Nahar, K., Anee, T. I., & Fujita, M. (2017). Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiology and Molecular Biology of Plants, 23(2), 249-268. https://doi.org/10.1007/s12298-017-0422-2.
  • Havaux, M. (2014). Carotenoid oxidation products as stress signals in plants. The Plant Journal, 79(4), 597-606. https://doi.org/10.1111/tpj.12386.
  • Heath, R. L. & Packer, L., 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. https://doi.org/10.1016/0003-9861(68)90654-1.
  • Hernández-Ruiz, J. & Arnao, M. B. (2018). Relationship of melatonin and salicylic acid in biotic/abiotic plant stress responses. Agronomy, 8(4):33. https://doi.org/10.3390/agronomy8040033.
  • Hoagland, D. R., Arnon, D. I. (1950). The water culture method for growing plants without soil. UC College of Agriculture, Ag. Exp. Station, Berkeley, CA. Circular. 347, 1-32. https://www.nutricaodeplantas.agr.br/site/downloads/hoagland_arnon.pdf
  • Hossen, M. S., Karim, M. F., Fujita, M., Bhuyan, M. B., Nahar, K., Masud, A. A. C., Mahmud J. A., & Hasanuzzaman, M. (2022). Comparative physiology of indica and japonica rice under salinity and drought stress: An intrinsic study on osmotic adjustment, oxidative stress, antioxidant defense and methylglyoxal detoxification. Stresses, 2(2), 156-178. https://doi.org/10.3390/stresses2020012.
  • Huang, L., Lu, Y., Gao, X., Du, G., Ma, X., Liu, M., & Chen, Y. (2013). Ammonium-induced oxidative stress on plant growth and antioxidative response of duckweed (Lemna minor L.). Ecological Engineering, 58, 355-362. https://doi.org/10.1016/j.ecoleng.2013.06.031.
  • Iatrou, E. I., Kora, E., & Stasinakis, A. S. (2018). Investigation of biomass production, crude protein and starch content in laboratory wastewater treatment systems planted with Lemna minor and Lemna gibba. Environmental Technology, 40(20), 2649-2656. https://doi.org/10.1080/09593330.2018.1448002.
  • Janigashvili, G., Chkhikvishvili, I., Ratiani, L., Maminaishvili, T., Chkhikvishvili, D., & Sanikidze, T. (2024). Effects and medical application of plant-origin polyphenols: A narrative review. Bioactive Compounds in Health and Disease-Online ISSN: 2574-0334; Print ISSN: 2769-2426, 7(8), 375-385. https://doi.org/10.31989/bchd.v7i8.1414.
  • Ji, Z., Deng, W., Chen, D., Liu, Z., Shen, Y., Dai, J., Zhou H., Zhang, M., Xu, H., & Dai, B. (2024). Recent understanding of the mechanisms of the biological activities of hesperidin and hesperidin and their therapeutic effects on diseases. Heliyon. 10 (5), https://doi.org/10.1016/j.heliyon.2024.e26862.
  • Li, Z., Xu, X., Leng, X., He, M., Wang, J., Cheng, S., & Wu, H. (2017). Roles of reactive oxygen species in cell signaling pathways and immune responses to viral infections. Archives of Virology, 162(3), 603-610. https://doi.org/10.1007/s00705-016-3130-2.
  • Li, C., Ji, J., Wang, G., Li, Z., Wang, Y., & Fan, Y. (2020). Over-expression of LcPDS, LcZDS, and LcCRTISO, genes from wolfberry for carotenoid biosynthesis, enhanced carotenoid accumulation, and salt tolerance in tobacco. Frontiers in Plant Science, 11:119. https://doi.org/10.3389/fpls.2020.00119.
  • Lichtenthaler, H. K. & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents: Portland Press Ltd. https://doi.org/10.1042/bst0110591.
  • Lo, W. J., Chiou, Y. C., Hsu, Y. T., Lam, W. S., Chang, M. Y., Jao, S. C., & Li, W. S. (2007). Enzymatic and nonenzymatic synthesis of glutathione conjugates: application to the understanding of a parasite’s defense system and alternative to the discovery of potent glutathione s-transferase ınhibitors, Bioconjugate Chem., 18, 109-120. https://doi.org/10.1021/bc0601727.
  • Luck H. (1965) Catalase. Methods of enzymatic analysis, 885-894. http://dx.doi.org/10.1016/B978-0-12-395630-9.50158-4.
  • MacAdam, J. W., Nelson, C. J., & Sharp, R. E. (1992). Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology, 99(3), 872-878. http://dx.doi.org/10.1104/pp.99.3.872.
  • McCord J.M. & Fridovich I. (1969). Superoxide dismutase: An enzymic function for erytreoeuprein (hemoeuprein), J. Biol. Chem, 244(22), 6049-6055. https://doi.org/10.1016/S0021-9258(18)63504-5.
  • Nakano, Y. & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232.
  • Parlak, K. U. & Yilmaz, D. D. (2012). Response of antioxidant defences to Zn stress in three duckweed species. Ecotoxicology and Environmental Safety, 85, 52-58. https://doi.org/10.1016/j.ecoenv.2012.08.023.
  • Peters, J. L., Castillo, F. J., & Heath, R. L. (1989). Alteration of extracellular enzymes in pinto bean leaves upon exposure to air pollutants, ozone and sulfur dioxide. Plant Physiology, 89(1), 159-164. https://doi.org/10.1104/pp.89.1.159.
  • Sackey, L. N., Kočí, V., & van Gestel, C. A. (2020). Ecotoxicological effects on Lemna minor and Daphnia magna of leachates from differently aged landfills of Ghana. Science of the Total Environment, 698, 1-7. https://doi.org/10.1016/j.scitotenv.2019.134295.
  • Sarker, U. & Oba, S. (2020). The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Frontiers in Plant Science, 11, 1-14. https://doi.org/10.3389/fpls.2020.559876.
  • Sharma, G., & Mathur, V. (2020). Modulation of insect-induced oxidative stress responses by microbial fertilizers in Brassica juncea. FEMS Microbiology Ecology, 96(4), 1-10. https://doi.org/10.1093/femsec/fiaa040.
  • Sies, H., Belousov, V. V., Chandel, N. S., Davies, M. J., Jones, D. P., Mann, G. E., Murphy M. P., Yamamoto, M. & Winterbourn, C. (2022). Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nature Reviews Molecular Cell Biology, 23(7), 499-515. https://doi.org/10.1038/s41580-022-00456-z.
  • Singh, H., Kumar, D., & Soni, V. (2022). Performance of chlorophyll a fluorescence parameters in Lemna minor under heavy metal stress induced by various concentration of copper. Scientific Reports, 12, 1-14. https://doi.org/10.1038/s41598-022-14985-2.
  • Singh, A., & Satheeshkumar, P. K. (2024). Reactive Oxygen Species (ROS) and ROS Scavengers in Plant Abiotic Stress Response. In Stress Biology in Photosynthetic Organisms: Molecular Insights and Cellular Responses (pp. 41-63). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-1883-2_3
  • Souza, L. R. R., Bernardes, L. E., Barbetta, M. F. S., & da Veiga, M. A. M. S. (2019). Iron oxide nanoparticle phytotoxicity to the aquatic plant Lemna minor: effect on reactive oxygen species (ROS) production and chlorophyll a/chlorophyll b ratio, Environmental Science and Pollution Research, 26(23), 24121-24131. https://doi.org/10.1007/s11356-019-05713-x.
  • Stephenie, S., Chang, Y. P., Gnanasekaran, A., Esa, N. M., Gnanaraj, C. (2020). An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. Journal of Functional Foods, 68, 1-10. https://doi.org/10.1016/j.jff.2020.103917.
  • Strzałka, K., Kostecka-Gugała, A., & Latowski, D. (2003). Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russian Journal of Plant Physiology, 50(2), 168-173. https://doi.org/10.1023/A:1022960828050.
  • Sun, S., Li, X., Sun, C., Cao, W., Hu, C., Zhao, Y., & Yang, A. (2019). Effects of ZnO nanoparticles on the toxicity of cadmium to duckweed Lemna minor. Science of the Total Environment, 662, 697-702. https://doi.org/10.1016/j.scitotenv.2019.01.275.
  • Tamilselvam, K., Braidy, N., Manivasagam, T., Essa, M. M., Prasad, N. R., Karthikeyan, S., Thenmozhi, A. J. & Guillemin, G. J. (2013). Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease. Oxidative medicine and cellular longevity. 1, 1-11. https://doi.org/10.1155/2013/102741.
  • Teixeira, G. C. M., de Mello Prado, R., Oliveira, K. S., D’Amico-Damião, V., & Junior, G. D. S. S. (2020). Silicon increases leaf chlorophyll content and iron nutritional efficiency and reduces iron deficiency in Sorghum plants. Journal of Soil Science and Plant Nutrition, 20, 1311-1320. https://doi.org/10.1007/s42729-020-00214-0.
  • Wani, A. B., Chadar, H., Wani, A. H., Singh, S., & Upadhyay, N. (2017). Salicylic acid to decrease plant stress. Environmental Chemistry Letters, 15(1), 101-123. https://doi.org/10.1007/s10311-016-0584-0.
  • Wang, Y., Cui, X., Yang, B., Xu, S., Wei, X., Zhao, P., Niu, F., Sun, M., Wang, C., Chieng, H., & Jiang, Y. Q. (2020). WRKY55 transcription factor positively regulates leaf senescence and the defense response by modulating the transcription of genes implicated in the biosynthesis of reactive oxygen species and salicylic acid in Arabidopsis. Development, The Company of Biologists, 147, 1-15. https://doi.org/10.1242/dev.189647.
  • Yu, J., Cang, J., Lu, Q., Fan, B., Xu, Q., Li, W., & Wang, X. (2020). ABA enhanced cold tolerance of wheat ‘dn1’via increasing ROS scavenging system. Plant Signaling and Behavior, 15(8),1-11. https://doi.org/10.1080/15592324.2020.1780403.

Protective Effects of Hesperidin and Salicylic Acid on Lemna minor L. Exposed to Evercion Yellow Textile Dye

Yıl 2025, Cilt: 28 Sayı: 2, 351 - 363, 27.03.2025
https://doi.org/10.18016/ksutarimdoga.vi.1501836

Öz

Hesperidin (HES) is a flavonone glycoside from the flavonoid family that is present in citrus species. It has potent anti-oxidant and anti-cancer properties. In times of stress, the phenolic chemical salicylic acid (SA), also known as a plant hormone, functions as a signal molecule, controlling the plant's reaction and maintaining its survival. For the removal of numerous harmful chemicals, phytoremediation, sometimes referred to as green reclamation, is an efficient, affordable, environmentally benign, and simple procedure. Duckweed (Lemna minor L.) is an important bioindicator species in phytoremediation study. Following the application of 75 ppm, 150 ppm, and 300 ppm reactive dye Evercion yellow 1X, the effects of 0.5 mM SA and 0.5 mM hesperidin on duckweed (L. minor L.) were examined in this study. The use of 0.5 mM SA against stress boosted the activities of peroxidase (POD), ascorbate peroxidase (APX), glutathione S-transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT). Additionally, total glutathione (GSH), total chlorophyll, and carotenoid content were altered by SA treatment. Similar to the SA application, the application of HES was effective in lowering stress. Lipid peroxidation content measured as malondialdehyde (MDA) content was found to be higher than the control groups. Results suggest that SA plays a positive role in L. minor against Evercion yellow 1X.

Kaynakça

  • Akerboom, T.P.M., & Sies, H. (1981). Assay of glutathione, glutathione disülfide and glutathione mixed disulfides in biological samples. Method Enzymol, 77, 373-382. https://doi.org/10.1016/S0076-6879(81)77050-2.
  • Alkimin, G. D., Daniel, D., Dionísio, R., Soares, A. M. V. M., Barata, C., & Nunes, B. (2019). Effects of diclofenac and salicylic acid exposure on Lemna minor: Is time a factor? Environmental Research, 177, 1-15. https://doi.org/10.1016/j.envres.2019.108609.
  • Alp, F. N., Arikan, B., Ozfidan-Konakci, C., Ekim, R., Yildiztugay, E., & Turan, M. (2023). Rare earth element scandium mitigates the chromium toxicity in Lemna minor by regulating photosynthetic performance, hormonal balance and antioxidant machinery. Environmental Pollution, 316, 1-13. https://doi.org/10.1016/j.envpol.2022.120636.
  • Al-Snai, A. E., (2019). Lemna minor :Traditional uses, chemical constituents and pharmacological effects-A review. IOSR Journal of Pharmacy, 9(8), 6-11. (e)-ISSN: 2250-3013, (p)-ISSN: 2319-4219.
  • Arikan, B., Ozfidan-Konakci, C., Yildiztugay, E., Zengin, G., Alp, F. N., & Elbasan, F. (2022). Exogenous hesperidin and chlorogenic acid alleviate oxidative damage induced by arsenic toxicity in Zea mays through regulating the water status, antioxidant capacity, redox balance and fatty acid composition. Environmental Pollution, 292, 1-15. https://doi.org/10.1016/j.envpol.2021.118389.
  • Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174, 714-727. https://doi.org/10.1016/j.ecoenv.2019.02.068.
  • Aziz, A., Kapoor, D., 2018. Salicylic Acid: It’s physiological role and interactions. Research Journal of Pharmacy and Technology, 11(7), 3171-3177. https://doi.org/10.5958/0974-360X.2018.00583.8.
  • Bansal, N., & Kanwar, S. S. (2013). Peroxidase (s) in environment protection. The Scientific World Journal. 1-9. https://doi.org/10.1155/2013/714639.
  • Beker Akbulut, G., Turhan, D. Ö., & Yiğit, E. (2020). Alleviation of Everzol Red LFB toxicity in duckweed (Lemna minor L.) by exogenous salicylic Acid. KSU J. Agric Nat, 23(4), 876-884. https://doi.org/10.18016/ksutarimdoga.vi.683962.
  • Beker Akbulut, G., Özhan Turhan, D. (2021). Role of salicylic acid in resistance to everzol navy ED in Lemna minor L.(Duckweed). International Journal of Pure and Applied Sciences 7(1), 185-195. https://doi.org/10.29132/ijpas.894056.
  • Basiglini, E., Pintore, M., & Forni, C. (2018). Effects of treated industrial wastewaters and temperatures on growth and enzymatic activities of duckweed (Lemna minor L.). Ecotoxicology and Environmental Safety, 153, 54-59. https://doi.org/10.1016/j.ecoenv.2018.01.053.
  • Bozbuga, R. (2020). Expressions of pathogenesis related 1 (PR1) gene in Solanum lycopersicum and Influence of salicylic acid exposures on host-Meloidogyne incognita interactions. In Doklady. Biochemistry and Biophysics. Pleiades Publishing. 494(1), 266-269. https://doi.org/10.1134/S1607672920050038.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3.
  • Buttar, Z. A., Wu, S. N., Arnao, M. B., Wang, C., Ullah, I., & Wang, C. (2020). Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants, 9(7), 809. https://doi.org/10.3390/plants9070809.
  • Can-Terzi, B., Goren, A. Y., Okten, H. E., & Sofuoglu, S. C. (2021). Biosorption of methylene blue from water by live Lemna minor. Environmental Technology & Innovation, 22, 1-12. https://doi.org/10.1016/j.eti.2021.101432.
  • Carlberg, I. & Mannervik, B. (1985). Glutathione reductase. Methods in Enzymology. 113, 484-490. https://doi.org/10.1016/S0076-6879(85)13062-4.
  • Ceschin, S., Crescenzi, M., & Iannelli, M. A. (2020). Phytoremediation potential of the duckweeds Lemna minuta and Lemna minor to remove nutrients from treated waters. Environmental Science and Pollution Research, 27(13), 15806-15814. https://doi.org/10.1007/s11356-020-08045-3.
  • Chavoushi, M., Najafi, F., Salimi, A., & Angaji, S. A. (2020). Effect of salicylic acid and sodium nitroprusside on growth parameters, photosynthetic pigments and secondary metabolites of safflower under drought stress. Scientia Horticulturae, 259, 1-6. https://doi.org/10.1016/j.scienta.2019.108823.
  • Cicerali, N. I. (2004). Effect of stress on antioxidant defense systems of sensitive and resistant cultivars of lentil (Lens culinaris M.) (Thesis number 153433). Master's Thesis, ODTÜ, Ankara. Council of High Education Thesis Center.
  • Cohen, S. P. & Leach, J. E. (2019). Abiotic and biotic stresses induce a core transcriptome response in rice. Scientific Reports, 9(1), 1-11. https://doi.org/10.1038/s41598-019-42731-8.
  • De Kok, L. & Graham, M. (1989). Levels of pigments, soluble proteins, amino acids and sulhydryl compounds in foliar tissue of Arabidopsis thaliana during dark-induced and natural senescence. Plant Physiology and Biochemistry (Paris), 27(2), 203-209. ISSN/ISBN: 0981-9428.
  • Demirci, T., Ascı, Ö. A., & Baydar, N. G. (2021). Influence of salicylic acid and L-phenylalanine on the accumulation of anthraquinone and phenolic compounds in adventitious root cultures of madder (Rubia tinctorum L.). Plant Cell, Tissue and Organ Culture, 144(2), 313-324. https://doi.org/10.1007/s11240-020-01952-w.
  • Di, X., Gomila, J. & Takken, F. L. (2017). Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum. Molecular Plant Pathology, 18(7), 1024-1035. https://doi.org/10.1111/mpp.12559.
  • Dorina, S., Judith, S., Björn, W., Julia, S., Andrea, S., Muffler, K., & Roland, U. (2020). A new strategy for a combined isolation of EPS and pigments from cyanobacteria. Journal of Applied Phycology, 32, 1-12. https://doi.org/10.1007/s10811-020-02063-x.
  • Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11(1),1-42. http://dx.doi.org/10.2307/3001478.
  • Feng, J., Zhang, M., Yang, K. N., & Zheng, C. X. (2020). Salicylic acid-primed defence response in octoploid strawberry ‘Benihoppe’leaves induces resistance against Podosphaera aphanis through enhanced accumulation of proanthocyanidins and upregulation of pathogenesis-related genes. BMC Plant Biology, 20, 1-18. https://doi.org/10.21203/rs.2.16580/v1.
  • Gong, H., Jiao, Y., Hu, W. W., & Pua, E. C. (2005). Expression of glutathione-S-transferase and its role in plant growth and development in vivo and shoot morphogenesis in vitro. Plant Molecular Biology, 57(1), 53–66. https://doi.org/ 10.1007/s11103-004-4516-1.
  • Habig, W., Pabst, M., & Jakoby, W. (1974). The first enzymatic step in mercapturic acid formation. Glutathione-S-transferase. J. Biol. Chem., 249:7130-7139. https://doi.org/10.1016/S0021-9258(19)42083-8.
  • Hasanuzzaman, M., Nahar, K., Anee, T. I., & Fujita, M. (2017). Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiology and Molecular Biology of Plants, 23(2), 249-268. https://doi.org/10.1007/s12298-017-0422-2.
  • Havaux, M. (2014). Carotenoid oxidation products as stress signals in plants. The Plant Journal, 79(4), 597-606. https://doi.org/10.1111/tpj.12386.
  • Heath, R. L. & Packer, L., 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. https://doi.org/10.1016/0003-9861(68)90654-1.
  • Hernández-Ruiz, J. & Arnao, M. B. (2018). Relationship of melatonin and salicylic acid in biotic/abiotic plant stress responses. Agronomy, 8(4):33. https://doi.org/10.3390/agronomy8040033.
  • Hoagland, D. R., Arnon, D. I. (1950). The water culture method for growing plants without soil. UC College of Agriculture, Ag. Exp. Station, Berkeley, CA. Circular. 347, 1-32. https://www.nutricaodeplantas.agr.br/site/downloads/hoagland_arnon.pdf
  • Hossen, M. S., Karim, M. F., Fujita, M., Bhuyan, M. B., Nahar, K., Masud, A. A. C., Mahmud J. A., & Hasanuzzaman, M. (2022). Comparative physiology of indica and japonica rice under salinity and drought stress: An intrinsic study on osmotic adjustment, oxidative stress, antioxidant defense and methylglyoxal detoxification. Stresses, 2(2), 156-178. https://doi.org/10.3390/stresses2020012.
  • Huang, L., Lu, Y., Gao, X., Du, G., Ma, X., Liu, M., & Chen, Y. (2013). Ammonium-induced oxidative stress on plant growth and antioxidative response of duckweed (Lemna minor L.). Ecological Engineering, 58, 355-362. https://doi.org/10.1016/j.ecoleng.2013.06.031.
  • Iatrou, E. I., Kora, E., & Stasinakis, A. S. (2018). Investigation of biomass production, crude protein and starch content in laboratory wastewater treatment systems planted with Lemna minor and Lemna gibba. Environmental Technology, 40(20), 2649-2656. https://doi.org/10.1080/09593330.2018.1448002.
  • Janigashvili, G., Chkhikvishvili, I., Ratiani, L., Maminaishvili, T., Chkhikvishvili, D., & Sanikidze, T. (2024). Effects and medical application of plant-origin polyphenols: A narrative review. Bioactive Compounds in Health and Disease-Online ISSN: 2574-0334; Print ISSN: 2769-2426, 7(8), 375-385. https://doi.org/10.31989/bchd.v7i8.1414.
  • Ji, Z., Deng, W., Chen, D., Liu, Z., Shen, Y., Dai, J., Zhou H., Zhang, M., Xu, H., & Dai, B. (2024). Recent understanding of the mechanisms of the biological activities of hesperidin and hesperidin and their therapeutic effects on diseases. Heliyon. 10 (5), https://doi.org/10.1016/j.heliyon.2024.e26862.
  • Li, Z., Xu, X., Leng, X., He, M., Wang, J., Cheng, S., & Wu, H. (2017). Roles of reactive oxygen species in cell signaling pathways and immune responses to viral infections. Archives of Virology, 162(3), 603-610. https://doi.org/10.1007/s00705-016-3130-2.
  • Li, C., Ji, J., Wang, G., Li, Z., Wang, Y., & Fan, Y. (2020). Over-expression of LcPDS, LcZDS, and LcCRTISO, genes from wolfberry for carotenoid biosynthesis, enhanced carotenoid accumulation, and salt tolerance in tobacco. Frontiers in Plant Science, 11:119. https://doi.org/10.3389/fpls.2020.00119.
  • Lichtenthaler, H. K. & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents: Portland Press Ltd. https://doi.org/10.1042/bst0110591.
  • Lo, W. J., Chiou, Y. C., Hsu, Y. T., Lam, W. S., Chang, M. Y., Jao, S. C., & Li, W. S. (2007). Enzymatic and nonenzymatic synthesis of glutathione conjugates: application to the understanding of a parasite’s defense system and alternative to the discovery of potent glutathione s-transferase ınhibitors, Bioconjugate Chem., 18, 109-120. https://doi.org/10.1021/bc0601727.
  • Luck H. (1965) Catalase. Methods of enzymatic analysis, 885-894. http://dx.doi.org/10.1016/B978-0-12-395630-9.50158-4.
  • MacAdam, J. W., Nelson, C. J., & Sharp, R. E. (1992). Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology, 99(3), 872-878. http://dx.doi.org/10.1104/pp.99.3.872.
  • McCord J.M. & Fridovich I. (1969). Superoxide dismutase: An enzymic function for erytreoeuprein (hemoeuprein), J. Biol. Chem, 244(22), 6049-6055. https://doi.org/10.1016/S0021-9258(18)63504-5.
  • Nakano, Y. & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232.
  • Parlak, K. U. & Yilmaz, D. D. (2012). Response of antioxidant defences to Zn stress in three duckweed species. Ecotoxicology and Environmental Safety, 85, 52-58. https://doi.org/10.1016/j.ecoenv.2012.08.023.
  • Peters, J. L., Castillo, F. J., & Heath, R. L. (1989). Alteration of extracellular enzymes in pinto bean leaves upon exposure to air pollutants, ozone and sulfur dioxide. Plant Physiology, 89(1), 159-164. https://doi.org/10.1104/pp.89.1.159.
  • Sackey, L. N., Kočí, V., & van Gestel, C. A. (2020). Ecotoxicological effects on Lemna minor and Daphnia magna of leachates from differently aged landfills of Ghana. Science of the Total Environment, 698, 1-7. https://doi.org/10.1016/j.scitotenv.2019.134295.
  • Sarker, U. & Oba, S. (2020). The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Frontiers in Plant Science, 11, 1-14. https://doi.org/10.3389/fpls.2020.559876.
  • Sharma, G., & Mathur, V. (2020). Modulation of insect-induced oxidative stress responses by microbial fertilizers in Brassica juncea. FEMS Microbiology Ecology, 96(4), 1-10. https://doi.org/10.1093/femsec/fiaa040.
  • Sies, H., Belousov, V. V., Chandel, N. S., Davies, M. J., Jones, D. P., Mann, G. E., Murphy M. P., Yamamoto, M. & Winterbourn, C. (2022). Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nature Reviews Molecular Cell Biology, 23(7), 499-515. https://doi.org/10.1038/s41580-022-00456-z.
  • Singh, H., Kumar, D., & Soni, V. (2022). Performance of chlorophyll a fluorescence parameters in Lemna minor under heavy metal stress induced by various concentration of copper. Scientific Reports, 12, 1-14. https://doi.org/10.1038/s41598-022-14985-2.
  • Singh, A., & Satheeshkumar, P. K. (2024). Reactive Oxygen Species (ROS) and ROS Scavengers in Plant Abiotic Stress Response. In Stress Biology in Photosynthetic Organisms: Molecular Insights and Cellular Responses (pp. 41-63). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-1883-2_3
  • Souza, L. R. R., Bernardes, L. E., Barbetta, M. F. S., & da Veiga, M. A. M. S. (2019). Iron oxide nanoparticle phytotoxicity to the aquatic plant Lemna minor: effect on reactive oxygen species (ROS) production and chlorophyll a/chlorophyll b ratio, Environmental Science and Pollution Research, 26(23), 24121-24131. https://doi.org/10.1007/s11356-019-05713-x.
  • Stephenie, S., Chang, Y. P., Gnanasekaran, A., Esa, N. M., Gnanaraj, C. (2020). An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. Journal of Functional Foods, 68, 1-10. https://doi.org/10.1016/j.jff.2020.103917.
  • Strzałka, K., Kostecka-Gugała, A., & Latowski, D. (2003). Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russian Journal of Plant Physiology, 50(2), 168-173. https://doi.org/10.1023/A:1022960828050.
  • Sun, S., Li, X., Sun, C., Cao, W., Hu, C., Zhao, Y., & Yang, A. (2019). Effects of ZnO nanoparticles on the toxicity of cadmium to duckweed Lemna minor. Science of the Total Environment, 662, 697-702. https://doi.org/10.1016/j.scitotenv.2019.01.275.
  • Tamilselvam, K., Braidy, N., Manivasagam, T., Essa, M. M., Prasad, N. R., Karthikeyan, S., Thenmozhi, A. J. & Guillemin, G. J. (2013). Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease. Oxidative medicine and cellular longevity. 1, 1-11. https://doi.org/10.1155/2013/102741.
  • Teixeira, G. C. M., de Mello Prado, R., Oliveira, K. S., D’Amico-Damião, V., & Junior, G. D. S. S. (2020). Silicon increases leaf chlorophyll content and iron nutritional efficiency and reduces iron deficiency in Sorghum plants. Journal of Soil Science and Plant Nutrition, 20, 1311-1320. https://doi.org/10.1007/s42729-020-00214-0.
  • Wani, A. B., Chadar, H., Wani, A. H., Singh, S., & Upadhyay, N. (2017). Salicylic acid to decrease plant stress. Environmental Chemistry Letters, 15(1), 101-123. https://doi.org/10.1007/s10311-016-0584-0.
  • Wang, Y., Cui, X., Yang, B., Xu, S., Wei, X., Zhao, P., Niu, F., Sun, M., Wang, C., Chieng, H., & Jiang, Y. Q. (2020). WRKY55 transcription factor positively regulates leaf senescence and the defense response by modulating the transcription of genes implicated in the biosynthesis of reactive oxygen species and salicylic acid in Arabidopsis. Development, The Company of Biologists, 147, 1-15. https://doi.org/10.1242/dev.189647.
  • Yu, J., Cang, J., Lu, Q., Fan, B., Xu, Q., Li, W., & Wang, X. (2020). ABA enhanced cold tolerance of wheat ‘dn1’via increasing ROS scavenging system. Plant Signaling and Behavior, 15(8),1-11. https://doi.org/10.1080/15592324.2020.1780403.
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Biyokimyası
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Gülçin Beker Akbulut 0000-0003-3529-5999

Duygu Özhan Turhan 0000-0002-7111-4289

Fadime Nülüfer Kıvılcım 0000-0002-6017-5326

Ahmet Gultek 0000-0002-4980-1568

Emel Yiğit 0000-0001-6333-8437

Erken Görünüm Tarihi 20 Mart 2025
Yayımlanma Tarihi 27 Mart 2025
Gönderilme Tarihi 15 Haziran 2024
Kabul Tarihi 7 Şubat 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 2

Kaynak Göster

APA Beker Akbulut, G., Özhan Turhan, D., Kıvılcım, F. N., Gultek, A., vd. (2025). Protective Effects of Hesperidin and Salicylic Acid on Lemna minor L. Exposed to Evercion Yellow Textile Dye. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(2), 351-363. https://doi.org/10.18016/ksutarimdoga.vi.1501836

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149