Araştırma Makalesi
BibTex RIS Kaynak Göster

Bitki Ekstraktı Bazlı AgNP Sentez Optimizasyonu için Plackett–Burman ve Box–Behnken Tasarımlarının Kullanımı: Phytophthora Türlerine Karşı Antifungal Potansiyelinin Ortaya Çıkarılması

Yıl 2025, Cilt: 28 Sayı: 2, 516 - 534, 27.03.2025
https://doi.org/10.18016/ksutarimdoga.vi.1523681

Öz

Bu çalışma, siyah çay, ıhlamur, karayemiş, yaprak lahana ve melocan sulu ekstraktları kullanılarak gümüş nanoparçacıklar (AgNP’ler) için deneysel bir istatistiksel tasarım ile yeşil bir sentez yöntemini optimize etmiştir. Bu bitki ekstraktları biyo-indirgeyici ajanlar olarak işlev görmüştür. Ekstraktlardaki toplam ve bireysel fenolik bileşikler ultraviyole-görünür (UV–Vis) spektroskopi ve ultra yüksek performansli sivi kromatografisi (UHPLC) kullanılarak ölçülmüştür. AgNP verimleri, Plackett‒Burman ve Box‒Behnken tasarımlarının bir kombinasyonu ile maksimize edilmiştir. Sentezlenen AgNP’ler UV‒Vis spektroskopisi, Fourier dönüşümlü kizilötesi (FT–IR) spektroskopisi, taramali elektron mikroskobu (SEM)-enerji dağilimli X-ışını spektroskopisi (EDS) ve geçirimli elektron mikroskopisi (TEM) ile karakterize edilmiştir. Optimum AgNP üretimi aşağıdaki koşullar altında elde edilmiştir (yanıt yüzey metodolojisi, RSM ile belirlenmiştir): 9.6 g bitki materyali, 80°C’de 20 dakika ekstraksiyon ısıtma, 10 mM AgNO3, 2.5 mL ekstrakt, 800 W mikrodalga irritasyonu ve 90 saniyelik reaksiyon süresi. FT–IR analizi, fenolik bileşiklerin AgNP indirgenmesi ve stabilize edilmesindeki rolünü göstermiştir. Elde edilen AgNP’ler 5.30 nm (siyah çay), 8.74 nm (ıhlamur), 7.20 nm (karayemiş), 6.32 nm (yaprak lahana) ve 9.44 nm (melocan) ortalama partikül boyutları ile tek tip küresel morfoloji sergilemiştir. Beş Phytophthora türüne karşı yapılan antifungal deneyler, yaprak lahana türevi AgNP’lerin sırasıyla 9.28-30.84 µg mL−1, 200-300 µg mL−1 ve 200-400 µg mL−1 arasında değişen EC50, MIC ve MFC değerleri ile en güçlü olduğunu ortaya koymuştur. Bu sonuçlar, bitki ekstraktı ile sentezlenen AgNP’lerin Phytophthora hastalıkların yönetiminde sürdürülebilir bir yaklaşım sunduğunu ve daha fazla araştırılması gerektiğini göstermektedir.

Destekleyen Kurum

Ordu Üniversitesi BAP

Proje Numarası

B2209

Teşekkür

The author is grateful to Dr. İlker Kurbetli for supplying the Phytophthora isolates, Dr. Umut Ateş for performing high-performance liquid chromatography (HPLC) analysis of the total phenolic content and individual phenolic compounds in the plant extracts, and Dr. Hamdi Güray Kutbay for confirming the identification of melocan (Smilax excelsa L.).

Kaynakça

  • Adnan, M., Azad, M. O. K., Madhusudhan, A., Saravanakumar, K., Hu, X., Wang, M. H. & Ha, C. D. (2020). Simple and cleaner system of silver nanoparticle synthesis using kenaf seed and revealing its anticancer and antimicrobial potential. Nanotechnology, 31(26), 265101. https://doi.org/10.1088/1361-6528/ab7d72
  • Ahmad, N. & Sharma, S. (2012). Green Synthesis of silver nanoparticles using extracts of Ananas comosus. Green and Sustainable Chemistry, 2(4), 1-7. https://doi.org/10.4236/gsc.2012.24020
  • Akyuz, E., Şahin, H., Islamoglu, F., Kolayli, S. & Sandra, P. (2014). Evaluation of phenolic compounds in Tilia rubra subsp. caucasica by HPLC–UV and HPLC–UV–MS/MS. International Journal of Food Properties, 17, 331-343. https://doi.org/10.1080/10942912.2011.631252
  • Ali, M., Kim, B., Belfield, K. D., Norman, D., Brennan, M. & Ali, G. S. (2015). Inhibition of Phytophthora parasitica and P. capsici by silver nanoparticles synthesized using aqueous extract of Artemisia absinthium. Phytopathology, 105(9), 1183-1190. https://doi.org/10.1094/PHYTO-01-15-0006-R
  • Baytop, T. (1999). Therapy with medicinal plants in Turkey (past and present). Publication of the Istanbul University, 312.
  • Box, G. E. P. & Behnken, D. W. (1960). Simplex-sum designs: a class of second order rotatable designs derivable from those of first order. The Annals of Mathematical Statistics, 31(4), 838-864. https://doi.org/10.1214/aoms/1177705661
  • Buzea, C., Pacheco, I. I. & Robbie, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4), MR17-MR71. https://doi.org/10.1116/1.2815690
  • Cai, Y., Piao, X., Gao, W., Zhang, Z., Nie, E. & Sun, Z. (2017). Large-scale and facile synthesis of silver nanoparticles via a microwave method for a conductive pen. RSC Advances, 7(54), 34041-34048. https://doi.org/10.1039/C7RA05125E
  • Chowdhury, S., Yusof, F., Faruck, M. O. & Sulaiman, N. (2016). Process optimization of silver nanoparticle synthesis using response surface methodology. Procedia Engineering, 148, 992-999. https://doi.org/10.1016/j.proeng.2016.06.552
  • Davis, P., Tan, K. & Mill, R.R. (1988). Flora of Turkey and the East Aegean Islands and Supplement I. Edinburgh University Press, Edinburgh.
  • El-Sawaf, A. K., El-Moslamy, S. H., Kamoun, E. A., & Hossain, K. (2024). Green synthesis of trimetallic CuO/Ag/ZnO nanocomposite using Ziziphus spina-christi plant extract: characterization, statistically experimental designs, and antimicrobial assessment. Scientific Reports, 14(1), 19718. https://doi.org/10.1038/s41598-024-67579-5
  • Encu, S. (2010). Lahana çeşitlerinin antioksidan kapasiteleri ve bileşenleri açısından değerlendirilmesi (Tez no 282642). [Yüksek Lisans Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü Kimya Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Günal, N. (2013). Türkiye’de iklimin doğal bitki örtüsü üzerindeki etkileri. Acta Turcıca Çevrimiçi Tematik Türkoloji Dergisi, V(1), 1-22.
  • Fazil, M. M., Gul, A. & Jawed, H. (2024). Optimization of silver nanoparticles synthesis via Plackett–Burman experimental design: in vitro assessment of their efficacy against oxidative stress-induced disorders. RSC Advances, 14(29), 20809-20823. https://doi.org/10.1039/d4ra02774d
  • Firoozi, S., Jamzad, M. & Yari, M. (2016). Biologically synthesized silver nanoparticles by aqueous extract of Satureja intermedia C.A. Mey and the evaluation of total phenolic and flavonoid contents and antioxidant activity. Journal of Nanostructure in Chemistry, 6, 357-364. https://doi.org/10.1007/s40097-016-0207-0
  • Gevrek, C., Yiğit, U. & Türkkan, M. (2023). Optimization and antifungal activity of silver nanoparticles synthesized using the leaf extract of Corylus colurna L. (Turkish hazelnut). Akademik Ziraat Dergisi, 12(Özel Sayı), 159-172. https://doi.org/10.29278/azd.1335259
  • Halima, R., Narula, A. & Sravanthi, V. (2021). Optimization of process parameters for the green synthesis of silver nanoparticles using Plackett‒Burman and 3-level Box–Behnken Design. Journal of Huazhong University of Science and Technology, 50(3), 1-17.
  • İslam, A. & Deligöz, H. (2012). Ordu ilinde karayemiş (Laurocerasus officinalis L.) seleksiyonu. Akademik Ziraat Dergisi, 1(1), 37-44.
  • Jyoti, K., Baunthiyal, M. & Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9(3), 217-227. https://doi.org/10.1016/j.jrras.2015.10.002
  • Kale, R., Barwar, S., Kane, P. & More, S. (2018). Green synthesis of silver nanoparticles using papaya seed and its characterization. International Journal for Research in Applied Science & Engineering Technology, 6, 168-174. https://doi.org/10.22214/ijraset.2018.2026
  • Karabegović, I.T., Stojicevi´c, S.S., Velickovic, D.T., Zoran B. Todorovic, Z.B., Nada C. Nikolic, N.C., Miodrag L. & Lazic, M.L. (2014). The effect of different extraction techniques on the compositionand antioxidant activity of cherry laurel (Prunus laurocerasus) leaf and fruit extracts. Industrial Crops and Products, 54, 142-148. https://doi.org/10.1016/j.indcrop.2013.12.047
  • Karakaş, İ., Hacıoğlu, N. & Özdemir, B. E. (2024). Green synthesis and antibiofilm activity of silver nanoparticles by Camellia sinensis L. (White tea leaf). Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 27(2), 285-292. https://doi.org/10.18016/ksutarimdoga.1297130
  • Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B, 107(3), 668-677. https://doi.org/10.1021/jp026731y
  • Kolaylı, S., Kucuk, M., Duran, C., Candan, F. & Dinçer, B. (2003). Chemical and antioxidant properties of Laurocerasus officinalis Roem. (Cherry laurel) fruit grown in the Black Sea Region. Journal of Agricultural and Food Chemistry, 51, 7489-94. https://doi.org/10.1021/jf0344486
  • Konwarh, R., Karak, N., Sawian, C. E., Baruah, S. & Mandal, M. (2011). Effect of sonication and aging on the templating attribute of starch for “green” silver nanoparticles and their interactions at biointerface. Carbohydrate Polymers, 83(3), 1245-1252. https://doi.org/10.1016/j.carbpol.2010.09.031
  • Kumar, K. M., Sinha, M., Mandal, B. K., Ghosh, A. R., Kumar, K. S. & Reddy, P. S. (2012). Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 91, 228-233. https://doi.org/10.1016/j.saa.2012.02.001
  • Laime-Oviedo, L. A., Soncco-Ccahui, A. A., Peralta-Alarcon, G., Arenas-Chávez, C. A., Pineda-Tapia, J. L., Díaz-Rosado, J. C. & Vera-Gonzales, C. (2022). Optimization of synthesis of silver nanoparticles conjugated with Lepechinia meyenii (Salvia) using Plackett‒Burman Design and Response Surface Methodology—preliminary antibacterial activity. Processes, 10(9), 1727. https://doi.org/10.3390/pr10091727
  • Laime-Oviedo, L. A., Arenas-Chávez, C. A., Yáñez, J. A. & Vera-Gonzáles, C. A. (2023). Plackett‒Burman design in the biosynthesis of silver nanoparticles with Mutisia acuminatta (Chinchircoma) and preliminary evaluation of its antibacterial activity. F1000Research, 12. https://doi.org/10.12688/f1000research.140883.1
  • Magudapathy, P., Gangopadhyay, P., Panigrahi, B. K., Nair, K. G. M. & Dhara, S. (2001). Electrical transport studies of Ag nanoclusters embedded in glass matrix. Physica B: Condensed Matter, 299(1-2), 142-146. https://doi.org/10.1016/S0921-4526(00)00580-9
  • Naveed M., BiBi J., Kamboh A. A., Suheryani I., Kakar, I., Fazlani, S. A., FangFang, X., Kalhoro, S. A., Yunjuan L, Kakar, M. U, Abd El-Hack, M. E., Noreldin, A. E., Zhixiang, S., LiXia, C. & XiaoHui, Z. (2018). Pharmacological values and therapeutic properties of black tea (Camellia sinensis): A comprehensive overview. Biomed Pharmacotherapy, 100, 521-531. https://doi.org/10.1016/j.biopha.2018.02.048
  • Nikaeen, G., Yousefinejad, S., Rahmdel, S., Samari, F. & Mahdavinia, S. (2020). Central composite design for optimizing the biosynthesis of silver nanoparticles using Plantago major extract and investigating antibacterial, antifungal and antioxidant activity. Scientific Reports, 10(1), 9642. https://doi.org/10.1038/s41598-020-66357-3
  • Noroozi, M., Zakaria, A., Moksin, M. M., Wahab, Z. A. & Abedini, A. (2012). Green formation of spherical and dendritic silver nanostructures under microwave irradiation without reducing agent. International Journal of Molecular Sciences, 13(7), 8086-8096. https://doi.org/10.3390/ijms13078086
  • Othman, L., Sleiman, A., & Abdel-Massih, R. M. (2019). Antimicrobial activity of polyphenols and alkaloids in Middle eastern plants. Frontiers in Microbiology,10, 911. https://doi.org/10.3389/fmicb.2019.00911.
  • Ovais, M., Khalil, A. T., Islam, N. U., Ahmad, I., Ayaz, M., Saravanan, M. & Mukherjee, S. (2018). Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Applied Microbiology and Biotechnology, 102, 6799-6814. https://doi.org/10.1007/s00253-018-9146-7
  • Öz, M. (2022). Tilia rubra DC. subsp. caucasica V.Engler (Kafkas Ihlamuru) yaprak uçucu yağının kimyasal bileşimi. III. International Siirt Scientific Research Congress, Siirt, Türkiye, 18-19 November 2022, ss.14.
  • Özsoy, N., Can, A., Yanardag, R. & Akev, N. (2008). Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chemistry, 110(3), 571-583. https://doi.org/10.1016/j.foodchem.2008.02.037
  • Özturk, B., Yıldız, K. & Küçüker, E. (2015). Effect of pre‐harvest methyl jasmonate treatments on ethylene production, water‐soluble phenolic compounds and fruit quality of Japanese plums. Journal of the Science of Food and Agriculture, 95(3), 583-591. https://doi.org/10.1002/jsfa.6787
  • Plackett, R. L. & Burman, J. P. (1946). The design of optimum multifactorial experiments. Biometrika, 33(4), 305-325. https://doi.org/10.1093/biomet/33.4.305
  • Reddy, L. V. A., Wee, Y. J., Yun, J. S. & Ryu, H. W. (2008). Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett–Burman and response surface methodological approaches. Bioresource Technology, 99 (7), 2242-2249. https://doi.org/10.1016/j.biortech.2007.05.006
  • Sahan, Y. (2011). Effect of Prunus laurocerasus L. (Cherry laurel) leaf extracts on growth of bread spoilage fungi. Bulgarian Journal of Agricultural Science, 17 (1), 83-92.
  • Šamec, D., Urlić, B. & Salopek-Sondi, B. (2018). Kale (Brassica oleracea var. acephala) as a superfood: Review of the scientific evidence behind the statement. Critical Reviews in Food Science and Nutrition, 59(15), 2411-2422. https://doi.org/10.1080/10408398.2018.1454400
  • Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K. & Poinern, G. E. J. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8(11), 7278-7308. https://doi.org/10.3390/ma8115377
  • Shameli, K., Bin Ahmad, M., Jaffar Al-Mulla, E. A., Ibrahim, N. A., Shabanzadeh, P., Rustaiyan, A. & Zidan, M. (2012). Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules, 17(7), 8506-8517. https://doi.org/10.3390/molecules17078506
  • Sharma, N. K., Vishwakarma, J., Rai, S., Alomar, T. S., AlMasoud, N. & Bhattarai, A. (2022). Green route synthesis and characterization techniques of silver nanoparticles and their biological adeptness. ACS Omega, 7(31), 27004-27020. https://doi.org/10.1021/acsomega.2c01400
  • Siddiqi, K.S., Husen, A. & Rao, R.A.K. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology, 16, 14. https://doi.org/10.1186/s12951-018-0334-5
  • Siddiqui, A., Gul, A., Khan, H., Anjum, F. & Hussain, T. (2024). Bio-inspired synthesis of silver nanoparticles using Salsola imbricata and its application as antibacterial additive in glass ionomer cement. Nanotechnology, 35(35), 355101. https://doi.org/10.1088/1361-6528/ad50e4
  • Singleton, V. L. & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Singleton, V.L. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-178.
  • Stepanov, A. L. (2004). Optical properties of metal nanoparticles synthesized in a polymer by ion implantation: a review. Technical Physics, 49, 143-153. https://doi.org/10.1134/1.1648948
  • Trivedi, P., Khandelwal, M. & Srivastava, P. (2014). Statistically optimized synthesis of silver nanocubes from peel extracts of Citrus limetta and potential application in waste water treatment. Journal of Microbial & Biochemical Technology, 4(004). https://doi.org/10.4172/1948-5948.S4-004
  • Tuttu, G., Ursavaş, S. & Söyler, R. (2017). Ihlamur çiçeğinin Türkiye’deki hasat miktarları ve etnobotanik kullanımı. Anadolu Orman Araştırmaları Dergisi, 3(1), 60-66
  • Türkkan, M. & Gürel, Y. (2024). Plackett‒Burman and Box‒Behnken Designs for optimizing Polygonum cognatum Meissn-mediated AgNP synthesis: Antifungal activity against diverse Phytophthora spp. Akademik Ziraat Dergisi, 13(2), 272-286. https://doi.org/10.29278/azd.1522321
  • Vijayaraghavan, K., Nalini, S. K., Prakash, N. U. & Madhankumar, D. J. M. L. (2012). Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum. Materials Letters, 75, 33-35. https://doi.org/10.1016/j.matlet.2012.01.083
  • Ye, M., Yang, W., Zhang, M., Huang, H., Huang, A. & Qiu, B. (2023). Biosynthesis, characterization, and antifungal activity of plant-mediated silver nanoparticles using Cnidium monnieri fruit extract. Frontiers in Microbiology, 14, 1291030. https://doi.org/10.3389/fmicb.2023.1291030
  • Yeşilada, E., Sezik, E., Honda, G., Takasihi, Y., Takeda, Y. & Tanaka, T. (1999). Traditional medicine in Turkey IX. Folk Medicine in Noth-West Anatolia. Journal of Ethnopharmacology, 64, 195- 210
  • Yiğit, U. & Türkkan, M. (2023). Antifungal activity and optimization procedure of microwave-synthesized silver nanoparticles using linden (Tilia rubra subsp. caucasica) flower extract. International Journal of Chemistry and Technology, 7(1), 25-37. https://doi.org/10.32571/ijct.1194356
  • Yi̇ği̇t, U., Gürel, Y., Ilhan, H. & Türkkan, M. (2023). Antifungal activity and optimization procedure of silver nanoparticles green synthesized with Prunus laurocerasus L. (Cherry laurel) leaf extract. International Journal of Life Sciences and Biotechnology, 6 (1), 1–20. https://doi.org/10.38001/ijlsb.1168628
  • Yilmaz, M., Yilmaz, A., Karaman, A., Aysin, F. & Aksakal, O. (2021). Monitoring chemically and green-synthesized silver nanoparticles in maize seedlings via surface-enhanced Raman spectroscopy (SERS) and their phytotoxicity evaluation. Talanta, 225, 121952. https://doi.org/10.1016/j.talanta.2020.121952

Utilizing Plackett–Burman and Box–Behnken Designs for Plant Extract–Based AgNP Synthesis Optimization: Unveiling Antifungal Potential Against Phytophthora Species

Yıl 2025, Cilt: 28 Sayı: 2, 516 - 534, 27.03.2025
https://doi.org/10.18016/ksutarimdoga.vi.1523681

Öz

This study optimized a green synthesis method for silver nanoparticles (AgNPs) using aqueous extracts of black tea, linden, cherry laurel, kale, and melocan, employing a statistical design of experiments. The plant extracts acted as bio-reducing agents. Total and individual phenolic compounds in the extracts were quantified using ultraviolet-visible (UV–Vis) spectroscopy and ultra-high-performance liquid chromatography (UHPLC). AgNP yields were maximized through a combination of Plackett–Burman and Box–Behnken designs. The synthesized AgNPs were characterized by UV–Vis spectroscopy, Fourier transform infrared (FT–IR) spectroscopy, scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). Optimal AgNP production was achieved under the following conditions (determined by response surface methodology, RSM): 9.6 g of plant material, extraction heating at 80°C for 20 minutes, 10 mM AgNO3, 2.5 mL of extract, 800 W microwave irradiation, and a 90-second reaction time. FT–IR analysis confirmed the role of phenolic compounds in reducing and stabilizing AgNPs. The resulting AgNPs exhibited uniform spherical morphology, with average particle sizes of 5.30 nm (black tea), 8.74 nm (linden), 7.20 nm (cherry laurel), 6.32 nm (kale), and 9.44 nm (melocan). Antifungal assays against five Phytophthora species revealed that kale-derived AgNPs were most potent, with EC50, MIC, and MFC values ranging from 9.28–30.84 µg mL−1, 200–300 µg mL−1, and 200–400 µg mL−1, respectively. These results suggest that plant-extract-synthesized AgNPs offer a sustainable approach to managing Phytophthora diseases, warranting further research.

Proje Numarası

B2209

Kaynakça

  • Adnan, M., Azad, M. O. K., Madhusudhan, A., Saravanakumar, K., Hu, X., Wang, M. H. & Ha, C. D. (2020). Simple and cleaner system of silver nanoparticle synthesis using kenaf seed and revealing its anticancer and antimicrobial potential. Nanotechnology, 31(26), 265101. https://doi.org/10.1088/1361-6528/ab7d72
  • Ahmad, N. & Sharma, S. (2012). Green Synthesis of silver nanoparticles using extracts of Ananas comosus. Green and Sustainable Chemistry, 2(4), 1-7. https://doi.org/10.4236/gsc.2012.24020
  • Akyuz, E., Şahin, H., Islamoglu, F., Kolayli, S. & Sandra, P. (2014). Evaluation of phenolic compounds in Tilia rubra subsp. caucasica by HPLC–UV and HPLC–UV–MS/MS. International Journal of Food Properties, 17, 331-343. https://doi.org/10.1080/10942912.2011.631252
  • Ali, M., Kim, B., Belfield, K. D., Norman, D., Brennan, M. & Ali, G. S. (2015). Inhibition of Phytophthora parasitica and P. capsici by silver nanoparticles synthesized using aqueous extract of Artemisia absinthium. Phytopathology, 105(9), 1183-1190. https://doi.org/10.1094/PHYTO-01-15-0006-R
  • Baytop, T. (1999). Therapy with medicinal plants in Turkey (past and present). Publication of the Istanbul University, 312.
  • Box, G. E. P. & Behnken, D. W. (1960). Simplex-sum designs: a class of second order rotatable designs derivable from those of first order. The Annals of Mathematical Statistics, 31(4), 838-864. https://doi.org/10.1214/aoms/1177705661
  • Buzea, C., Pacheco, I. I. & Robbie, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4), MR17-MR71. https://doi.org/10.1116/1.2815690
  • Cai, Y., Piao, X., Gao, W., Zhang, Z., Nie, E. & Sun, Z. (2017). Large-scale and facile synthesis of silver nanoparticles via a microwave method for a conductive pen. RSC Advances, 7(54), 34041-34048. https://doi.org/10.1039/C7RA05125E
  • Chowdhury, S., Yusof, F., Faruck, M. O. & Sulaiman, N. (2016). Process optimization of silver nanoparticle synthesis using response surface methodology. Procedia Engineering, 148, 992-999. https://doi.org/10.1016/j.proeng.2016.06.552
  • Davis, P., Tan, K. & Mill, R.R. (1988). Flora of Turkey and the East Aegean Islands and Supplement I. Edinburgh University Press, Edinburgh.
  • El-Sawaf, A. K., El-Moslamy, S. H., Kamoun, E. A., & Hossain, K. (2024). Green synthesis of trimetallic CuO/Ag/ZnO nanocomposite using Ziziphus spina-christi plant extract: characterization, statistically experimental designs, and antimicrobial assessment. Scientific Reports, 14(1), 19718. https://doi.org/10.1038/s41598-024-67579-5
  • Encu, S. (2010). Lahana çeşitlerinin antioksidan kapasiteleri ve bileşenleri açısından değerlendirilmesi (Tez no 282642). [Yüksek Lisans Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü Kimya Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Günal, N. (2013). Türkiye’de iklimin doğal bitki örtüsü üzerindeki etkileri. Acta Turcıca Çevrimiçi Tematik Türkoloji Dergisi, V(1), 1-22.
  • Fazil, M. M., Gul, A. & Jawed, H. (2024). Optimization of silver nanoparticles synthesis via Plackett–Burman experimental design: in vitro assessment of their efficacy against oxidative stress-induced disorders. RSC Advances, 14(29), 20809-20823. https://doi.org/10.1039/d4ra02774d
  • Firoozi, S., Jamzad, M. & Yari, M. (2016). Biologically synthesized silver nanoparticles by aqueous extract of Satureja intermedia C.A. Mey and the evaluation of total phenolic and flavonoid contents and antioxidant activity. Journal of Nanostructure in Chemistry, 6, 357-364. https://doi.org/10.1007/s40097-016-0207-0
  • Gevrek, C., Yiğit, U. & Türkkan, M. (2023). Optimization and antifungal activity of silver nanoparticles synthesized using the leaf extract of Corylus colurna L. (Turkish hazelnut). Akademik Ziraat Dergisi, 12(Özel Sayı), 159-172. https://doi.org/10.29278/azd.1335259
  • Halima, R., Narula, A. & Sravanthi, V. (2021). Optimization of process parameters for the green synthesis of silver nanoparticles using Plackett‒Burman and 3-level Box–Behnken Design. Journal of Huazhong University of Science and Technology, 50(3), 1-17.
  • İslam, A. & Deligöz, H. (2012). Ordu ilinde karayemiş (Laurocerasus officinalis L.) seleksiyonu. Akademik Ziraat Dergisi, 1(1), 37-44.
  • Jyoti, K., Baunthiyal, M. & Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9(3), 217-227. https://doi.org/10.1016/j.jrras.2015.10.002
  • Kale, R., Barwar, S., Kane, P. & More, S. (2018). Green synthesis of silver nanoparticles using papaya seed and its characterization. International Journal for Research in Applied Science & Engineering Technology, 6, 168-174. https://doi.org/10.22214/ijraset.2018.2026
  • Karabegović, I.T., Stojicevi´c, S.S., Velickovic, D.T., Zoran B. Todorovic, Z.B., Nada C. Nikolic, N.C., Miodrag L. & Lazic, M.L. (2014). The effect of different extraction techniques on the compositionand antioxidant activity of cherry laurel (Prunus laurocerasus) leaf and fruit extracts. Industrial Crops and Products, 54, 142-148. https://doi.org/10.1016/j.indcrop.2013.12.047
  • Karakaş, İ., Hacıoğlu, N. & Özdemir, B. E. (2024). Green synthesis and antibiofilm activity of silver nanoparticles by Camellia sinensis L. (White tea leaf). Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 27(2), 285-292. https://doi.org/10.18016/ksutarimdoga.1297130
  • Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B, 107(3), 668-677. https://doi.org/10.1021/jp026731y
  • Kolaylı, S., Kucuk, M., Duran, C., Candan, F. & Dinçer, B. (2003). Chemical and antioxidant properties of Laurocerasus officinalis Roem. (Cherry laurel) fruit grown in the Black Sea Region. Journal of Agricultural and Food Chemistry, 51, 7489-94. https://doi.org/10.1021/jf0344486
  • Konwarh, R., Karak, N., Sawian, C. E., Baruah, S. & Mandal, M. (2011). Effect of sonication and aging on the templating attribute of starch for “green” silver nanoparticles and their interactions at biointerface. Carbohydrate Polymers, 83(3), 1245-1252. https://doi.org/10.1016/j.carbpol.2010.09.031
  • Kumar, K. M., Sinha, M., Mandal, B. K., Ghosh, A. R., Kumar, K. S. & Reddy, P. S. (2012). Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 91, 228-233. https://doi.org/10.1016/j.saa.2012.02.001
  • Laime-Oviedo, L. A., Soncco-Ccahui, A. A., Peralta-Alarcon, G., Arenas-Chávez, C. A., Pineda-Tapia, J. L., Díaz-Rosado, J. C. & Vera-Gonzales, C. (2022). Optimization of synthesis of silver nanoparticles conjugated with Lepechinia meyenii (Salvia) using Plackett‒Burman Design and Response Surface Methodology—preliminary antibacterial activity. Processes, 10(9), 1727. https://doi.org/10.3390/pr10091727
  • Laime-Oviedo, L. A., Arenas-Chávez, C. A., Yáñez, J. A. & Vera-Gonzáles, C. A. (2023). Plackett‒Burman design in the biosynthesis of silver nanoparticles with Mutisia acuminatta (Chinchircoma) and preliminary evaluation of its antibacterial activity. F1000Research, 12. https://doi.org/10.12688/f1000research.140883.1
  • Magudapathy, P., Gangopadhyay, P., Panigrahi, B. K., Nair, K. G. M. & Dhara, S. (2001). Electrical transport studies of Ag nanoclusters embedded in glass matrix. Physica B: Condensed Matter, 299(1-2), 142-146. https://doi.org/10.1016/S0921-4526(00)00580-9
  • Naveed M., BiBi J., Kamboh A. A., Suheryani I., Kakar, I., Fazlani, S. A., FangFang, X., Kalhoro, S. A., Yunjuan L, Kakar, M. U, Abd El-Hack, M. E., Noreldin, A. E., Zhixiang, S., LiXia, C. & XiaoHui, Z. (2018). Pharmacological values and therapeutic properties of black tea (Camellia sinensis): A comprehensive overview. Biomed Pharmacotherapy, 100, 521-531. https://doi.org/10.1016/j.biopha.2018.02.048
  • Nikaeen, G., Yousefinejad, S., Rahmdel, S., Samari, F. & Mahdavinia, S. (2020). Central composite design for optimizing the biosynthesis of silver nanoparticles using Plantago major extract and investigating antibacterial, antifungal and antioxidant activity. Scientific Reports, 10(1), 9642. https://doi.org/10.1038/s41598-020-66357-3
  • Noroozi, M., Zakaria, A., Moksin, M. M., Wahab, Z. A. & Abedini, A. (2012). Green formation of spherical and dendritic silver nanostructures under microwave irradiation without reducing agent. International Journal of Molecular Sciences, 13(7), 8086-8096. https://doi.org/10.3390/ijms13078086
  • Othman, L., Sleiman, A., & Abdel-Massih, R. M. (2019). Antimicrobial activity of polyphenols and alkaloids in Middle eastern plants. Frontiers in Microbiology,10, 911. https://doi.org/10.3389/fmicb.2019.00911.
  • Ovais, M., Khalil, A. T., Islam, N. U., Ahmad, I., Ayaz, M., Saravanan, M. & Mukherjee, S. (2018). Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Applied Microbiology and Biotechnology, 102, 6799-6814. https://doi.org/10.1007/s00253-018-9146-7
  • Öz, M. (2022). Tilia rubra DC. subsp. caucasica V.Engler (Kafkas Ihlamuru) yaprak uçucu yağının kimyasal bileşimi. III. International Siirt Scientific Research Congress, Siirt, Türkiye, 18-19 November 2022, ss.14.
  • Özsoy, N., Can, A., Yanardag, R. & Akev, N. (2008). Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chemistry, 110(3), 571-583. https://doi.org/10.1016/j.foodchem.2008.02.037
  • Özturk, B., Yıldız, K. & Küçüker, E. (2015). Effect of pre‐harvest methyl jasmonate treatments on ethylene production, water‐soluble phenolic compounds and fruit quality of Japanese plums. Journal of the Science of Food and Agriculture, 95(3), 583-591. https://doi.org/10.1002/jsfa.6787
  • Plackett, R. L. & Burman, J. P. (1946). The design of optimum multifactorial experiments. Biometrika, 33(4), 305-325. https://doi.org/10.1093/biomet/33.4.305
  • Reddy, L. V. A., Wee, Y. J., Yun, J. S. & Ryu, H. W. (2008). Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett–Burman and response surface methodological approaches. Bioresource Technology, 99 (7), 2242-2249. https://doi.org/10.1016/j.biortech.2007.05.006
  • Sahan, Y. (2011). Effect of Prunus laurocerasus L. (Cherry laurel) leaf extracts on growth of bread spoilage fungi. Bulgarian Journal of Agricultural Science, 17 (1), 83-92.
  • Šamec, D., Urlić, B. & Salopek-Sondi, B. (2018). Kale (Brassica oleracea var. acephala) as a superfood: Review of the scientific evidence behind the statement. Critical Reviews in Food Science and Nutrition, 59(15), 2411-2422. https://doi.org/10.1080/10408398.2018.1454400
  • Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K. & Poinern, G. E. J. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8(11), 7278-7308. https://doi.org/10.3390/ma8115377
  • Shameli, K., Bin Ahmad, M., Jaffar Al-Mulla, E. A., Ibrahim, N. A., Shabanzadeh, P., Rustaiyan, A. & Zidan, M. (2012). Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules, 17(7), 8506-8517. https://doi.org/10.3390/molecules17078506
  • Sharma, N. K., Vishwakarma, J., Rai, S., Alomar, T. S., AlMasoud, N. & Bhattarai, A. (2022). Green route synthesis and characterization techniques of silver nanoparticles and their biological adeptness. ACS Omega, 7(31), 27004-27020. https://doi.org/10.1021/acsomega.2c01400
  • Siddiqi, K.S., Husen, A. & Rao, R.A.K. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology, 16, 14. https://doi.org/10.1186/s12951-018-0334-5
  • Siddiqui, A., Gul, A., Khan, H., Anjum, F. & Hussain, T. (2024). Bio-inspired synthesis of silver nanoparticles using Salsola imbricata and its application as antibacterial additive in glass ionomer cement. Nanotechnology, 35(35), 355101. https://doi.org/10.1088/1361-6528/ad50e4
  • Singleton, V. L. & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Singleton, V.L. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-178.
  • Stepanov, A. L. (2004). Optical properties of metal nanoparticles synthesized in a polymer by ion implantation: a review. Technical Physics, 49, 143-153. https://doi.org/10.1134/1.1648948
  • Trivedi, P., Khandelwal, M. & Srivastava, P. (2014). Statistically optimized synthesis of silver nanocubes from peel extracts of Citrus limetta and potential application in waste water treatment. Journal of Microbial & Biochemical Technology, 4(004). https://doi.org/10.4172/1948-5948.S4-004
  • Tuttu, G., Ursavaş, S. & Söyler, R. (2017). Ihlamur çiçeğinin Türkiye’deki hasat miktarları ve etnobotanik kullanımı. Anadolu Orman Araştırmaları Dergisi, 3(1), 60-66
  • Türkkan, M. & Gürel, Y. (2024). Plackett‒Burman and Box‒Behnken Designs for optimizing Polygonum cognatum Meissn-mediated AgNP synthesis: Antifungal activity against diverse Phytophthora spp. Akademik Ziraat Dergisi, 13(2), 272-286. https://doi.org/10.29278/azd.1522321
  • Vijayaraghavan, K., Nalini, S. K., Prakash, N. U. & Madhankumar, D. J. M. L. (2012). Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum. Materials Letters, 75, 33-35. https://doi.org/10.1016/j.matlet.2012.01.083
  • Ye, M., Yang, W., Zhang, M., Huang, H., Huang, A. & Qiu, B. (2023). Biosynthesis, characterization, and antifungal activity of plant-mediated silver nanoparticles using Cnidium monnieri fruit extract. Frontiers in Microbiology, 14, 1291030. https://doi.org/10.3389/fmicb.2023.1291030
  • Yeşilada, E., Sezik, E., Honda, G., Takasihi, Y., Takeda, Y. & Tanaka, T. (1999). Traditional medicine in Turkey IX. Folk Medicine in Noth-West Anatolia. Journal of Ethnopharmacology, 64, 195- 210
  • Yiğit, U. & Türkkan, M. (2023). Antifungal activity and optimization procedure of microwave-synthesized silver nanoparticles using linden (Tilia rubra subsp. caucasica) flower extract. International Journal of Chemistry and Technology, 7(1), 25-37. https://doi.org/10.32571/ijct.1194356
  • Yi̇ği̇t, U., Gürel, Y., Ilhan, H. & Türkkan, M. (2023). Antifungal activity and optimization procedure of silver nanoparticles green synthesized with Prunus laurocerasus L. (Cherry laurel) leaf extract. International Journal of Life Sciences and Biotechnology, 6 (1), 1–20. https://doi.org/10.38001/ijlsb.1168628
  • Yilmaz, M., Yilmaz, A., Karaman, A., Aysin, F. & Aksakal, O. (2021). Monitoring chemically and green-synthesized silver nanoparticles in maize seedlings via surface-enhanced Raman spectroscopy (SERS) and their phytotoxicity evaluation. Talanta, 225, 121952. https://doi.org/10.1016/j.talanta.2020.121952
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fitopatoloji
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Muharrem Türkkan 0000-0001-7779-9365

Proje Numarası B2209
Erken Görünüm Tarihi 20 Mart 2025
Yayımlanma Tarihi 27 Mart 2025
Gönderilme Tarihi 28 Temmuz 2024
Kabul Tarihi 17 Şubat 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 2

Kaynak Göster

APA Türkkan, M. (2025). Utilizing Plackett–Burman and Box–Behnken Designs for Plant Extract–Based AgNP Synthesis Optimization: Unveiling Antifungal Potential Against Phytophthora Species. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(2), 516-534. https://doi.org/10.18016/ksutarimdoga.vi.1523681

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149