Araştırma Makalesi
BibTex RIS Kaynak Göster

Mısır (Zea mays) Bitkisinin Çimlenmesi Sırasında Fungal Patojen Fusarium verticillioides’in Patojenitesini Azaltmak için Fungal CYP51 Geninin Agroenfeksiyon Aracılığı ile Virüs Kaynaklı Gen Susturulması

Yıl 2025, Cilt: 28 Sayı: 2, 306 - 319, 27.03.2025
https://doi.org/10.18016/ksutarimdoga.vi.1573791

Öz

Fusarium verticillioides, tahıllarda özellikle mısır (Zea mays) bitkisinde yıkıcı hastalıklara neden olan ve tarımda büyük ekonomik kayıplara yol açan bir fungal patojendir. Günümüzde, F. verticillioides enfeksiyonları ile mücadelede başlıca, sitokrom P450 lanosterol C-14α-demetilazı (CYP51) hedef alan azol içerikli kimyasal fungisitler kullanılmaktadır. Buna alternatif olarak, bu çalışmada, patojenin kontrolü için endojen RNA interferans (RNAi) mekanizmasına dayanan ve agroenfeksiyon aracılıklı Virüs Kaynaklı Gen Susturma (VIGS) yaklaşımının potansiyeli değerlendirilmiştir. Bu amaçla, Agrobacterium tumefaciens, F. verticillioides’in üç CYP51 geninde ortak olan 313 nükleotidlik fragmenti taşıyan Brome Mozaik Virüs (BMV3) türevi bir vektörle transforme edildikten sonra fungal patojen ile birlikte kültüre alınmıştır. Sonuçlar, benzer şekilde fakat boş vektörle muamele edilmiş kontrol grubuyla morfolojik, biyokimyasal ve transkripsiyonel olarak karşılaştırmalı olarak analiz edilmiştir. Buna göre, CYP51A, CYP51B ve CYP51C genlerinin ifade seviyelerinde, sırasıyla, %49, %65 ve %51 oranında azalış saptanmıştır. Fungal büyüme oranının %13 oranında azaldığı; çimlenme oranının %20 ve ROS miktarının %56 oranında kontrole göre daha yüksek olduğu tespit edilmiştir. Bu bulgular, CYP51'in susturulmasının hücrelerde ROS birikimine neden olarak F. verticillioides'in patojenitesinin inhibisyonuna yol açtığını göstermektedir. Bu çalışma, F. verticillioides kaynaklı bitki hastalıklarını kontrol etmek için tarımsal olarak sürdürülebilir ve çevre dostu bir alternatif yöntem olarak agroenfeksiyon aracılı VIGS uygulamasıyla CYP51 geninin hedeflenmesinin potansiyelini ortaya koymuştur.

Proje Numarası

TÜBİTAK 221O321 ve COST CA20110

Kaynakça

  • Akanmu, A.O., Sobowale, A.A., Abiala, M.A., Olawuyi, O.J. & Odebode, A.C. (2020). Efficacy of biochar in the management of Fusarium verticillioides SACC. causing ear rot in Zea mays L. Biotechnology Reports, 26, e00474. https://doi.org/10.1016/j.btre.2020.e00474
  • Akgul, B., & Aydinoglu, F. (2025). Evaluation of ZMA-MIR408 and its target genes function on maize (Zea mays) leaf growth response to cold stress by VIGS-based STTM approach. Gene, 938, 149-161. https://doi.org/10.1016/j.gene.2024.149161
  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2.
  • Aydinoglu, F., Gultekin, Y., Gül, E. Y., & Ecik, E. T. (2024). Bodipy-mediated photosensitization approach to control maize (Zea mays) pathogenic fungus Fusarium verticillioides. Journal of Plant Pathology, 107(1), 511–523. https://doi.org/10.1007/s42161-024-01792-z
  • Blacutt, A.A., Gold, S.E., Voss, K.A., Gao, M. & Glenn, A.E. (2018). Fusarium verticillioides: Advancements in understanding the toxicity, virulence, and niche adaptations of a model mycotoxigenic pathogen of maize. Phytopathology, 108(3), 312–326. https://doi.org/10.1094/phyto-06-17-0203-rvw
  • Buchon, N., & Vaury, C. (2005). RNAi: A defensive RNA-silencing against viruses and transposable elements. Heredity, 96(2), 195–202. https://doi.org/10.1038/sj.hdy.6800789
  • Bundock, P., Dulk-Ras, A., Beijersbergen, A. & Hooykaas, P.J. (1995). Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO Journal, 14, 3206–3214. https://doi.org/ 10.1002/j.1460-2075.1995.tb07323.x
  • Chen, X., Abdallah, M.F., Landschoot, S., Audenaert, K., De Saeger, S., Chen, X. & Rajkovic, A. (2023). Aspergillus flavus and Fusarium verticillioides and their main mycotoxins: Global Distribution and scenarios of interactions in maize. Toxins, 15(9), 577. https://doi.org/10.3390/toxins15090577
  • Chen, X., Zhong, Z., Xu, Z., Chen, L. & Wang, Y. (2010). 2′, 7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radical Research, 44(6), 587-604. https://doi.org/10.3109/10715761003709802
  • Collin, F. (2019). Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. International Journal of Molecular Sciences, 20(10), 2407. https://doi.org/10.3390/ijms20102407
  • de Groot, M.J., Bundock, P., Hooykaas, P.J., & Beijersbergen, A.G. (1998). Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotechnology, 16, 839–842. https://doi.org/10.1038/nbt0998-839
  • de Haan, L.R., Reiniers, M.J., Reeskamp, L.F., Belkouz, A., Ao, L., Cheng, S., Ding, B., van Golen, R.F., & Heger, M. (2022). Experimental conditions that influence the utility of 2′7′-dichlorodihydrofluorescein diacetate (DCFH2-DA) as a fluorogenic biosensor for mitochondrial redox status. Antioxidants, 11(8), 1424. https://doi.org/10.3390/antiox11081424
  • Ding, X.S., Mannas, S.W., Bishop, B.A., Rao, X., Lecoultre, M., Kwon, S., & Nelson, R.S. (2017). An improved brome mosaic virus silencing vector: Greater insert stability and more extensive VIGS. Plant Physiology, 176(1), 496–510. https://doi.org/10.1104/pp.17.00905
  • Dong, Y.H., Meng, X.L., Wang, Y.N., Hu, T.L., Wang, S.T. & Cao, K.Q. (2020). Screening of pathogenicity-deficient Fusarium oxysporum mutants established by Agrobacterium tumefaciens-mediated transformation. Canadian Journal of Plant Pathology, 43(1), 140–154. https://doi.org/10.1080/07060661.2020.1746402
  • Doughty, K.J., Sierotzki, H., Semar, M. & Goertz, A. (2021). Selection and amplification of fungicide resistance in Aspergillus fumigatus in relation to DMI fungicide use in agronomic settings: Hotspots versus coldspots. Microorganisms, 9(12), 2439. https://doi.org/10.3390/microorganisms9122439
  • Draskau, M.K. & Svingen, T. (2022). Azole fungicides and their endocrine disrupting properties: Perspectives on sex hormone-dependent reproductive development. Frontiers in Toxicology, 4. https://doi.org/ 10.3389/ftox.2022.883254
  • Fan, J., Urban, M., Parker, J.E., Brewer, H.C., Kelly, S.L., Hammond‐Kosack, K.E., Fraaije, B.A., Liu, X. & Cools, H.J. (2013). Characterization of the sterol 14α‐demethylases of Fusarium graminearum identifies a novel genus‐specific CYP51 function. New Phytologist, 198(3), 821–835. https://doi.org/10.1111/nph.12193
  • Halder, K., Chaudhuri, A., Abdin, M.Z., Majee, M. & Datta, A. (2022). RNA interference for improving disease resistance in plants and its relevance in this clustered regularly interspaced short palindromic repeats-dominated era in terms of dsrna-based biopesticides. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.885128
  • He, D., Feng, Z., Gao, S., Wei, Y., Han, S. & Wang, L. (2021). Contribution of NADPH-cytochrome P450 reductase to azole resistance in Fusarium oxysporum. Frontiers in Microbiology, 12. https://doi.org/10.3389/ fmicb.2021.709942
  • He, F., Zhang, R., Zhao, J., Qi, T., Kang, Z., & Guo, J. (2019). Host-induced silencing of Fusarium graminearum genes enhances the resistance of Brachypodium distachyon to fusarium head blight. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01362
  • Hooykaas, P.J. (2023). The ti plasmid, driver of Agrobacterium pathogenesis. Phytopathology, 113(4), 594–604. https://doi.org/10.1094/phyto-11-22-0432-ia
  • Hoppe, K., Chełkowski, J., Błaszczyk, L. & Bocianowski, J. (2024). Observation of changes in fusarium mycotoxin profiles in maize grain over the last decade in Poland. Food Control, 158, 110248. https://doi.org/10.1016/j.foodcont.2023.110248
  • Höfle, L., Biedenkopf, D., Werner, B. T., Shrestha, A., Jelonek, L., & Koch, A. (2020). Study on the efficiency of dsrnas with increasing length in RNA-based silencing of the Fusarium cyp51 genes. RNA Biology, 17(4), 463–473. https://doi.org/10.1080/15476286.2019.1700033
  • Huang, C.Y., Wang, H., Hu, P., Hamby, R. & Jin, H. (2019). Small RNAS–big players in plant-microbe interactions. Cell Host & Microbe, 26(2), 173–182. https://doi.org/10.1016/j.chom.2019.07.021
  • Jørgensen, L.N. & Heick, T.M. (2021). Azole use in agriculture, horticulture, and Wood Preservation – is it indispensable? Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/fcimb.2021.730297
  • Kannan, K. & Jain, S.K. (2000). Oxidative stress and apoptosis. Pathophysiology, 7(3), 153–163. https://doi.org/ 10.1016/s0928-4680(00)00053-5
  • Kılınç, S., Karademir, Ç., & Ekin, Z. (2018). Bazı Mısır (Zea mays L.) çeşitlerinde Verim ve kalite özelliklerinin Belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 21(6), 809–816. doi:10.18016/ ksutarimdoga.vi.463813
  • Kim, H. & Xue, X. (2020). Detection of total reactive oxygen species in adherent cells by 2’,7’-Dichlorodihydrofluorescein diacetate staining. Journal of Visualized Experiments, 160, e60682. https://doi.org/10.3791/60682
  • Khaeim, H., Kende, Z., Jolánkai, M., Kovács, G. P., Gyuricza, C., & Tarnawa, Á. (2022). Impact of temperature and water on seed germination and seedling growth of maize (Zea mays L.). Agronomy, 12(2), 397. https://doi.org/10.3390/agronomy12020397
  • Kobayashi, D., Kondo, K., Uehara, N., Otokozawa, S., Tsuji, N., Yagihashi, A. & Watanabe, N. (2002). Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrobial Agents and Chemotherapy, 46(10), 3113–3117. https://doi.org/10.1128/aac.46.10.3113-3117.2002
  • Koch, A., Stein, E., & Kogel, K.H. (2018). RNA-based disease control as a complementary measure to fight fusarium fungi through silencing of the azole target cytochrome P450 lanosterol C-14 α-demethylase. European Journal of Plant Pathology, 152(4), 1003–1010. https://doi.org/10.1007/s10658-018-1518-4
  • Koch, A., Höfle, L., Werner, B. T., Imani, J., Schmidt, A., Jelonek, L., & Kogel, K. (2019). SIGS vs HIGS: A study on the efficacy of two dsRNA delivery strategies to silence Fusarium fgcyp51 genes in infected host and non‐host plants. Molecular Plant Pathology, 20(12), 1636–1644. https://doi.org/10.1111/mpp.12866
  • Koeppe, S., Kawchuk, L., & Kalischuk, M. (2023). RNA interference past and future applications in plants. International Journal of Molecular Sciences, 24(11), 9755. https://doi.org/10.3390/ijms24119755
  • Lanubile, A., Maschietto, V., Borrelli, V.M., Stagnati, L., Logrieco, A.F., & Marocco, A. (2017). Molecular Basis of Resistance to Fusarium Ear Rot in Maize. Frontiers in Plant Science, 8, 1774. doi: 10.3389/fpls.2017.01774.
  • Mao, C.X., Luo, J., Zhang, Y., & Zhang, C.Q. (2023). Targeted deletion of three CYP51s in Fusarium fujikuroi and their different roles in determining sensitivity to 14α-demethylase inhibitor fungicides. Pest Management Science, 79(4), 1324-1330. https://doi.org/10.1002/ps.7304
  • Mascia, T., Gallitelli, D. & Palukaitis, P. (2014). Something new to explore: Plant viruses infecting and inducing gene silencing in filamentous fungi. Mobile Genetic Elements, 4(4). https://doi.org/10.4161/mge.29782
  • Omotayo, O.P., Omotayo, A.O., Mwanza, M. & Babalola, O.O. (2019). Prevalence of mycotoxins and their consequences on human health. Toxicological Research, 35(1), 1–7. https://doi.org/10.5487/tr.2019.35.1.001
  • Padilla-Roji, I., Ruiz-Jiménez, L., Bakhat, N., Vielba-Fernández, A., Pérez-García, A., & Fernández-Ortuño, D. (2023). RNAi technology: A new path for the research and management of obligate biotrophic phytopathogenic fungi. International Journal of Molecular Sciences, 24(10), 9082. https://doi.org/10.3390/ijms24109082
  • Padmanabhan, M. & Dinesh-Kumar, S.P. (2009). Virus-induced gene silencing as a tool for delivery of dsRNA into plants. Cold Spring Harbor Protocols, 2009(2). https://doi.org/10.1101/pdb.prot5139
  • Pfaffl, M.W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), e45. https://doi.org/10.1093/nar/29.9.e45
  • Pintye, A., Bacsó, R. & Kovács, G.M. (2024). Trans-kingdom fungal pathogens infecting both plants and humans, and the problem of azole fungicide resistance. Frontiers in Microbiology, 15. https://doi.org/ 10.3389/fmicb.2024.1354757
  • Pooggin, M.M. (2017). RNAi-mediated resistance to viruses: A critical assessment of methodologies. Current Opinion in Virology, 26, 28–35. https://doi.org/10.1016/j.coviro.2017.07.010
  • Poudyal, N., Subedi, Y. P., Shakespear, M., Grilley, M., Takemoto, J. Y., & Chang, C. W. T. (2024). Synthesis of kanamycin-azole hybrids and investigation of their antifungal activities. Bioorganic & Medicinal Chemistry, 114, 117947. https://doi.org/10.1016/j.bmc.2024.117947
  • Price, C.L., Parker, J.E., Warrilow, A.G., Kelly, D.E. & Kelly, S.L. (2015). Azole fungicides-understanding resistance mechanisms in agricultural fungal pathogens. Pest Management Science, 71(8), 1054–1058. https://doi.org/10.1002/ps.4029
  • Qin, C., Li, B., Fan, Y., Zhang, X., Yu, Z., Ryabov, E., Zhao, M., Wang, H., Shi, N., Zhang, P., Jackson, S., Tör, M., Cheng, Q., Liu, Y., Gallusci, P. & Hong, Y. (2017). Roles of dicer-like proteins 2 and 4 in intra- and intercellular antiviral silencing. Plant Physiology, 174(2), 1067–1081. https://doi.org/10.1104/pp.17.00475
  • Rymen, B., Fiorani, F., Kartal, F., Vandepoele, K., Inze, D. & Beemster, G.T.S. (2007) Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiology, 143(3), 1429–1438. https://doi.org/10.1104/ pp.106.093948
  • Sambrook, J. & Russell, D.W. (2006). Preparation and transformation of competent E. coli using calcium chloride. Cold Spring Harbor Protocols, 2006(1). https://doi.org/10.1101/pdb.prot3932
  • Sayari, M., van der Nest, M.A., Steenkamp, E.T., Adegeye, O.O., Marincowitz, S. & Wingfield, B.D. (2019). Agrobacterium-mediated transformation of Ceratocystis albifundus. Microbiological Research, 226, 55–64. https://doi.org/10.1016/j.micres.2019.05.004
  • Sharma, K.K. & Kuhad, R.C. (2010). Genetic transformation of lignin degrading fungi facilitated by Agrobacterium tumefaciens. BMC Biotechnology, 10(1), 67. https://doi.org/10.1186/1472-6750-10-67
  • Stockmann-Juvala, H. & Savolainen, K. (2008). A review of the toxic effects and mechanisms of action of fumonisin B1. Human & Experimental Toxicology, 27, 799–809. doi:10.1177/0960327108099525.
  • Tamura, K., Stecher, G. & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120
  • van der Linde, K., Kastner, C., Kumlehn, J., Kahmann, R., & Doehlemann, G. (2010). Systemic virus‐induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis. New Phytologist, 189(2), 471–483. https://doi.org/10.1111/j.1469-8137.2010.03474.x
  • van Rhijn, N., Bromley, M., Richardson, M. & Bowyer, P. (2021). CYP51 paralogue structure is associated with intrinsic azole resistance in fungi. mBio, 12(5). https://doi.org/10.1128/mbio.01945-21
  • Visentin, I., Montis, V., Döll, K., Alabouvette, C., Tamietti, G., Karlovsky, P. & Cardinale, F. (2012). Transcription of genes in the biosynthetic pathway for fumonisin mycotoxins is epigenetically and differentially regulated in the fungal maize pathogen Fusarium verticillioides. Eukaryotic Cell, 11(3), 252–259. https://doi.org/ 10.1128/ec.05159-11
  • Voinnet, O. (2001) RNA silencing as a plant immune system against viruses. Trend in Genetics, 17(8), 449-59
  • Voss, K.A., Riley, R.T., Norred, W.P., Bacon, C.W., Meredith, F.I., Howard, P.C., Plattner, R.D., Collins, T.F., Hansen, D.K. & Porter, J.K. (2001). An overview of rodent toxicities: liver and kidney effects of fumonisins and Fusarium moniliforme. Environmental Health Perspectives, 109(2), 259-266. doi: 10.1289/ehp.01109s2259
  • Waheed, S., Anwar, M., Saleem, M.A., Wu, J., Tayyab, M. & Hu, Z. (2021). The critical role of small RNAS in regulating plant innate immunity. Biomolecules, 11(2), 184. https://doi.org/10.3390/biom11020184
  • Wang, H. & Joseph, J.A. (1999). Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Biology and Medicine, 27(5-6), 612-616. https://doi.org/10.1016/s0891-5849(99)00107-0
  • Wang, Y., Cha, C., Khatabi, B., Scheible, W.R., Udvardi, M.K., Saha, M.C., Kang, Y. & Nelson, R.S. (2021). An efficient Brome mosaic virus-based gene silencing protocol for hexaploid wheat (Triticum aestivum L.). Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.685187
  • Yang, J., Zhang, T.Y., Liao, Q.S., He, L., Li, J., Zhang, H.M., Chen, X., Li, J., Yang, J., Li, J.B. & Chen, J.P. (2018). Chinese wheat mosaic virus-induced gene silencing in monocots and dicots at low temperature. Frontiers in Plant Science, 9, 1627. https://doi.org/10.3389/fpls.2018.01627
  • Yoon, J., Kim, Y., Kim, S., Jeong, H., Park, J., Jeong, M.H., Park, S., Jo, M., An, S., Park, J., Jang, S.H., Goh, J.& Park, S.Y. (2023). Agrobacterium tumefaciens-mediated transformation of the aquatic fungus Phialemonium inflatum FBCC-f1546. Journal of Fungi, 9(12), 1158. https://doi.org/10.3390/jof9121158
  • Yu, D., Zha, Y., Zhong, Z., Ruan, Y., Li, Z., Sun, L. & Hou, S. (2021). Improved detection of reactive oxygen species by DCFH-da: New insight into self-amplification of fluorescence signal by light irradiation. Sensors and Actuators B: Chemical, 339, 129878. https://doi.org/10.1016/j.snb.2021.129878
  • Zhang, L., Hou, M., Zhang, X., Cao, Y., Sun, S., Zhu, Z., Han, S., Chen, Y., Ku, L. & Duan, C. (2023). Integrative transcriptome and Proteome Analysis reveals maize responses to Fusarium verticillioides infection inside the stalks. Molecular Plant Pathology, 24(7), 693–710. https://doi.org/10.1111/mpp.13317
  • Zulfiqar, S., Farooq, M.A., Zhao, T., Wang, P., Tabusam, J., Wang, Y., Xuan, S., Zhao, J., Chen, X., Shen, S. & Gu, A. (2023). Virus-induced gene silencing (VIGS): A powerful tool for crop improvement and its advancement towards epigenetics. International Journal of Molecular Sciences, 24(6), 5608. https://doi.org/ 10.3390/ijms24065608

Agroinfection-Mediated Virus Induced Gene Silencing of Fungal Pathogen Fusarium verticillioides CYP51 Gene to Reduce its Pathogenicity during Maize (Zea mays) Germination

Yıl 2025, Cilt: 28 Sayı: 2, 306 - 319, 27.03.2025
https://doi.org/10.18016/ksutarimdoga.vi.1573791

Öz

Fusarium verticillioides is a fungal pathogen, resulting in devastating diseases in cereals, especially in maize (Zea mays) and causing massive economic losses in agriculture. F. verticillioides infections in the field are managed by chemical fungicides, mainly azoles which target cytochrome P450 lanosterol C-14α-demethylase (CYP51). Alternative to chemical fungicide, this study evaluated the potential of agroinfection-mediated Virus Induced Gene Silencing (VIGS) approach in controlling F. verticillioides pathogenicity, which is based on naturally occurring RNA interference (RNAi) mechanism. For this purpose, F. verticillioides was co-cultivated with Agrobacterium tumefaciens transformed with a Brome Mosaic Virus (BMV3) derived vector carrying a 313 nucleotide length fragment common to the three existing F. verticillioides CYP51 genes and comparatively evaluated with the mock group treated similarly but with empty vector at morphologically, biochemically and transcriptionally. It was detected that agroinfection-mediated VIGS treatment of F. verticillioides reduced expression levels of CYP51A by 49%, CYP51B by 65% and CYP51C by 51% and the growth rate by 13% while the germination rate was 20% and ROS amount 56% higher compared to mock-treated F. verticillioides. These findings pointed out that silencing of CYP51 caused ROS accumulation in cells leading to inhibition of the pathogenicity of F. verticillioides. This study represented the potential of targeting CYP51 gene by agroinfection-mediated VIGS treatment as an agriculturally sustainable and environmentally friendly alternative method to control F. verticillioides-caused plant diseases.

Etik Beyan

Etik kurulu onay belgesine gerek yoktur.

Destekleyen Kurum

TÜBİTAK 221O321 ve COST CA20110

Proje Numarası

TÜBİTAK 221O321 ve COST CA20110

Teşekkür

This study was supported by COST 2519 program of Scientific and Technological Research Council of Turkey (TUBITAK) (Grant number 221O321) and rely upon COST (European Cooperation in Science and Technology) Action CA20110-RNA communication across kingdoms: new mechanisms and strategies in pathogen control (exRNA-PATH). Coauthors deeply appreciate TUBITAK Science Fellowships and Grant Programme Directorate (BIDEB) for their supports.

Kaynakça

  • Akanmu, A.O., Sobowale, A.A., Abiala, M.A., Olawuyi, O.J. & Odebode, A.C. (2020). Efficacy of biochar in the management of Fusarium verticillioides SACC. causing ear rot in Zea mays L. Biotechnology Reports, 26, e00474. https://doi.org/10.1016/j.btre.2020.e00474
  • Akgul, B., & Aydinoglu, F. (2025). Evaluation of ZMA-MIR408 and its target genes function on maize (Zea mays) leaf growth response to cold stress by VIGS-based STTM approach. Gene, 938, 149-161. https://doi.org/10.1016/j.gene.2024.149161
  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2.
  • Aydinoglu, F., Gultekin, Y., Gül, E. Y., & Ecik, E. T. (2024). Bodipy-mediated photosensitization approach to control maize (Zea mays) pathogenic fungus Fusarium verticillioides. Journal of Plant Pathology, 107(1), 511–523. https://doi.org/10.1007/s42161-024-01792-z
  • Blacutt, A.A., Gold, S.E., Voss, K.A., Gao, M. & Glenn, A.E. (2018). Fusarium verticillioides: Advancements in understanding the toxicity, virulence, and niche adaptations of a model mycotoxigenic pathogen of maize. Phytopathology, 108(3), 312–326. https://doi.org/10.1094/phyto-06-17-0203-rvw
  • Buchon, N., & Vaury, C. (2005). RNAi: A defensive RNA-silencing against viruses and transposable elements. Heredity, 96(2), 195–202. https://doi.org/10.1038/sj.hdy.6800789
  • Bundock, P., Dulk-Ras, A., Beijersbergen, A. & Hooykaas, P.J. (1995). Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO Journal, 14, 3206–3214. https://doi.org/ 10.1002/j.1460-2075.1995.tb07323.x
  • Chen, X., Abdallah, M.F., Landschoot, S., Audenaert, K., De Saeger, S., Chen, X. & Rajkovic, A. (2023). Aspergillus flavus and Fusarium verticillioides and their main mycotoxins: Global Distribution and scenarios of interactions in maize. Toxins, 15(9), 577. https://doi.org/10.3390/toxins15090577
  • Chen, X., Zhong, Z., Xu, Z., Chen, L. & Wang, Y. (2010). 2′, 7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radical Research, 44(6), 587-604. https://doi.org/10.3109/10715761003709802
  • Collin, F. (2019). Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. International Journal of Molecular Sciences, 20(10), 2407. https://doi.org/10.3390/ijms20102407
  • de Groot, M.J., Bundock, P., Hooykaas, P.J., & Beijersbergen, A.G. (1998). Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotechnology, 16, 839–842. https://doi.org/10.1038/nbt0998-839
  • de Haan, L.R., Reiniers, M.J., Reeskamp, L.F., Belkouz, A., Ao, L., Cheng, S., Ding, B., van Golen, R.F., & Heger, M. (2022). Experimental conditions that influence the utility of 2′7′-dichlorodihydrofluorescein diacetate (DCFH2-DA) as a fluorogenic biosensor for mitochondrial redox status. Antioxidants, 11(8), 1424. https://doi.org/10.3390/antiox11081424
  • Ding, X.S., Mannas, S.W., Bishop, B.A., Rao, X., Lecoultre, M., Kwon, S., & Nelson, R.S. (2017). An improved brome mosaic virus silencing vector: Greater insert stability and more extensive VIGS. Plant Physiology, 176(1), 496–510. https://doi.org/10.1104/pp.17.00905
  • Dong, Y.H., Meng, X.L., Wang, Y.N., Hu, T.L., Wang, S.T. & Cao, K.Q. (2020). Screening of pathogenicity-deficient Fusarium oxysporum mutants established by Agrobacterium tumefaciens-mediated transformation. Canadian Journal of Plant Pathology, 43(1), 140–154. https://doi.org/10.1080/07060661.2020.1746402
  • Doughty, K.J., Sierotzki, H., Semar, M. & Goertz, A. (2021). Selection and amplification of fungicide resistance in Aspergillus fumigatus in relation to DMI fungicide use in agronomic settings: Hotspots versus coldspots. Microorganisms, 9(12), 2439. https://doi.org/10.3390/microorganisms9122439
  • Draskau, M.K. & Svingen, T. (2022). Azole fungicides and their endocrine disrupting properties: Perspectives on sex hormone-dependent reproductive development. Frontiers in Toxicology, 4. https://doi.org/ 10.3389/ftox.2022.883254
  • Fan, J., Urban, M., Parker, J.E., Brewer, H.C., Kelly, S.L., Hammond‐Kosack, K.E., Fraaije, B.A., Liu, X. & Cools, H.J. (2013). Characterization of the sterol 14α‐demethylases of Fusarium graminearum identifies a novel genus‐specific CYP51 function. New Phytologist, 198(3), 821–835. https://doi.org/10.1111/nph.12193
  • Halder, K., Chaudhuri, A., Abdin, M.Z., Majee, M. & Datta, A. (2022). RNA interference for improving disease resistance in plants and its relevance in this clustered regularly interspaced short palindromic repeats-dominated era in terms of dsrna-based biopesticides. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.885128
  • He, D., Feng, Z., Gao, S., Wei, Y., Han, S. & Wang, L. (2021). Contribution of NADPH-cytochrome P450 reductase to azole resistance in Fusarium oxysporum. Frontiers in Microbiology, 12. https://doi.org/10.3389/ fmicb.2021.709942
  • He, F., Zhang, R., Zhao, J., Qi, T., Kang, Z., & Guo, J. (2019). Host-induced silencing of Fusarium graminearum genes enhances the resistance of Brachypodium distachyon to fusarium head blight. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01362
  • Hooykaas, P.J. (2023). The ti plasmid, driver of Agrobacterium pathogenesis. Phytopathology, 113(4), 594–604. https://doi.org/10.1094/phyto-11-22-0432-ia
  • Hoppe, K., Chełkowski, J., Błaszczyk, L. & Bocianowski, J. (2024). Observation of changes in fusarium mycotoxin profiles in maize grain over the last decade in Poland. Food Control, 158, 110248. https://doi.org/10.1016/j.foodcont.2023.110248
  • Höfle, L., Biedenkopf, D., Werner, B. T., Shrestha, A., Jelonek, L., & Koch, A. (2020). Study on the efficiency of dsrnas with increasing length in RNA-based silencing of the Fusarium cyp51 genes. RNA Biology, 17(4), 463–473. https://doi.org/10.1080/15476286.2019.1700033
  • Huang, C.Y., Wang, H., Hu, P., Hamby, R. & Jin, H. (2019). Small RNAS–big players in plant-microbe interactions. Cell Host & Microbe, 26(2), 173–182. https://doi.org/10.1016/j.chom.2019.07.021
  • Jørgensen, L.N. & Heick, T.M. (2021). Azole use in agriculture, horticulture, and Wood Preservation – is it indispensable? Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/fcimb.2021.730297
  • Kannan, K. & Jain, S.K. (2000). Oxidative stress and apoptosis. Pathophysiology, 7(3), 153–163. https://doi.org/ 10.1016/s0928-4680(00)00053-5
  • Kılınç, S., Karademir, Ç., & Ekin, Z. (2018). Bazı Mısır (Zea mays L.) çeşitlerinde Verim ve kalite özelliklerinin Belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 21(6), 809–816. doi:10.18016/ ksutarimdoga.vi.463813
  • Kim, H. & Xue, X. (2020). Detection of total reactive oxygen species in adherent cells by 2’,7’-Dichlorodihydrofluorescein diacetate staining. Journal of Visualized Experiments, 160, e60682. https://doi.org/10.3791/60682
  • Khaeim, H., Kende, Z., Jolánkai, M., Kovács, G. P., Gyuricza, C., & Tarnawa, Á. (2022). Impact of temperature and water on seed germination and seedling growth of maize (Zea mays L.). Agronomy, 12(2), 397. https://doi.org/10.3390/agronomy12020397
  • Kobayashi, D., Kondo, K., Uehara, N., Otokozawa, S., Tsuji, N., Yagihashi, A. & Watanabe, N. (2002). Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrobial Agents and Chemotherapy, 46(10), 3113–3117. https://doi.org/10.1128/aac.46.10.3113-3117.2002
  • Koch, A., Stein, E., & Kogel, K.H. (2018). RNA-based disease control as a complementary measure to fight fusarium fungi through silencing of the azole target cytochrome P450 lanosterol C-14 α-demethylase. European Journal of Plant Pathology, 152(4), 1003–1010. https://doi.org/10.1007/s10658-018-1518-4
  • Koch, A., Höfle, L., Werner, B. T., Imani, J., Schmidt, A., Jelonek, L., & Kogel, K. (2019). SIGS vs HIGS: A study on the efficacy of two dsRNA delivery strategies to silence Fusarium fgcyp51 genes in infected host and non‐host plants. Molecular Plant Pathology, 20(12), 1636–1644. https://doi.org/10.1111/mpp.12866
  • Koeppe, S., Kawchuk, L., & Kalischuk, M. (2023). RNA interference past and future applications in plants. International Journal of Molecular Sciences, 24(11), 9755. https://doi.org/10.3390/ijms24119755
  • Lanubile, A., Maschietto, V., Borrelli, V.M., Stagnati, L., Logrieco, A.F., & Marocco, A. (2017). Molecular Basis of Resistance to Fusarium Ear Rot in Maize. Frontiers in Plant Science, 8, 1774. doi: 10.3389/fpls.2017.01774.
  • Mao, C.X., Luo, J., Zhang, Y., & Zhang, C.Q. (2023). Targeted deletion of three CYP51s in Fusarium fujikuroi and their different roles in determining sensitivity to 14α-demethylase inhibitor fungicides. Pest Management Science, 79(4), 1324-1330. https://doi.org/10.1002/ps.7304
  • Mascia, T., Gallitelli, D. & Palukaitis, P. (2014). Something new to explore: Plant viruses infecting and inducing gene silencing in filamentous fungi. Mobile Genetic Elements, 4(4). https://doi.org/10.4161/mge.29782
  • Omotayo, O.P., Omotayo, A.O., Mwanza, M. & Babalola, O.O. (2019). Prevalence of mycotoxins and their consequences on human health. Toxicological Research, 35(1), 1–7. https://doi.org/10.5487/tr.2019.35.1.001
  • Padilla-Roji, I., Ruiz-Jiménez, L., Bakhat, N., Vielba-Fernández, A., Pérez-García, A., & Fernández-Ortuño, D. (2023). RNAi technology: A new path for the research and management of obligate biotrophic phytopathogenic fungi. International Journal of Molecular Sciences, 24(10), 9082. https://doi.org/10.3390/ijms24109082
  • Padmanabhan, M. & Dinesh-Kumar, S.P. (2009). Virus-induced gene silencing as a tool for delivery of dsRNA into plants. Cold Spring Harbor Protocols, 2009(2). https://doi.org/10.1101/pdb.prot5139
  • Pfaffl, M.W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), e45. https://doi.org/10.1093/nar/29.9.e45
  • Pintye, A., Bacsó, R. & Kovács, G.M. (2024). Trans-kingdom fungal pathogens infecting both plants and humans, and the problem of azole fungicide resistance. Frontiers in Microbiology, 15. https://doi.org/ 10.3389/fmicb.2024.1354757
  • Pooggin, M.M. (2017). RNAi-mediated resistance to viruses: A critical assessment of methodologies. Current Opinion in Virology, 26, 28–35. https://doi.org/10.1016/j.coviro.2017.07.010
  • Poudyal, N., Subedi, Y. P., Shakespear, M., Grilley, M., Takemoto, J. Y., & Chang, C. W. T. (2024). Synthesis of kanamycin-azole hybrids and investigation of their antifungal activities. Bioorganic & Medicinal Chemistry, 114, 117947. https://doi.org/10.1016/j.bmc.2024.117947
  • Price, C.L., Parker, J.E., Warrilow, A.G., Kelly, D.E. & Kelly, S.L. (2015). Azole fungicides-understanding resistance mechanisms in agricultural fungal pathogens. Pest Management Science, 71(8), 1054–1058. https://doi.org/10.1002/ps.4029
  • Qin, C., Li, B., Fan, Y., Zhang, X., Yu, Z., Ryabov, E., Zhao, M., Wang, H., Shi, N., Zhang, P., Jackson, S., Tör, M., Cheng, Q., Liu, Y., Gallusci, P. & Hong, Y. (2017). Roles of dicer-like proteins 2 and 4 in intra- and intercellular antiviral silencing. Plant Physiology, 174(2), 1067–1081. https://doi.org/10.1104/pp.17.00475
  • Rymen, B., Fiorani, F., Kartal, F., Vandepoele, K., Inze, D. & Beemster, G.T.S. (2007) Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiology, 143(3), 1429–1438. https://doi.org/10.1104/ pp.106.093948
  • Sambrook, J. & Russell, D.W. (2006). Preparation and transformation of competent E. coli using calcium chloride. Cold Spring Harbor Protocols, 2006(1). https://doi.org/10.1101/pdb.prot3932
  • Sayari, M., van der Nest, M.A., Steenkamp, E.T., Adegeye, O.O., Marincowitz, S. & Wingfield, B.D. (2019). Agrobacterium-mediated transformation of Ceratocystis albifundus. Microbiological Research, 226, 55–64. https://doi.org/10.1016/j.micres.2019.05.004
  • Sharma, K.K. & Kuhad, R.C. (2010). Genetic transformation of lignin degrading fungi facilitated by Agrobacterium tumefaciens. BMC Biotechnology, 10(1), 67. https://doi.org/10.1186/1472-6750-10-67
  • Stockmann-Juvala, H. & Savolainen, K. (2008). A review of the toxic effects and mechanisms of action of fumonisin B1. Human & Experimental Toxicology, 27, 799–809. doi:10.1177/0960327108099525.
  • Tamura, K., Stecher, G. & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120
  • van der Linde, K., Kastner, C., Kumlehn, J., Kahmann, R., & Doehlemann, G. (2010). Systemic virus‐induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis. New Phytologist, 189(2), 471–483. https://doi.org/10.1111/j.1469-8137.2010.03474.x
  • van Rhijn, N., Bromley, M., Richardson, M. & Bowyer, P. (2021). CYP51 paralogue structure is associated with intrinsic azole resistance in fungi. mBio, 12(5). https://doi.org/10.1128/mbio.01945-21
  • Visentin, I., Montis, V., Döll, K., Alabouvette, C., Tamietti, G., Karlovsky, P. & Cardinale, F. (2012). Transcription of genes in the biosynthetic pathway for fumonisin mycotoxins is epigenetically and differentially regulated in the fungal maize pathogen Fusarium verticillioides. Eukaryotic Cell, 11(3), 252–259. https://doi.org/ 10.1128/ec.05159-11
  • Voinnet, O. (2001) RNA silencing as a plant immune system against viruses. Trend in Genetics, 17(8), 449-59
  • Voss, K.A., Riley, R.T., Norred, W.P., Bacon, C.W., Meredith, F.I., Howard, P.C., Plattner, R.D., Collins, T.F., Hansen, D.K. & Porter, J.K. (2001). An overview of rodent toxicities: liver and kidney effects of fumonisins and Fusarium moniliforme. Environmental Health Perspectives, 109(2), 259-266. doi: 10.1289/ehp.01109s2259
  • Waheed, S., Anwar, M., Saleem, M.A., Wu, J., Tayyab, M. & Hu, Z. (2021). The critical role of small RNAS in regulating plant innate immunity. Biomolecules, 11(2), 184. https://doi.org/10.3390/biom11020184
  • Wang, H. & Joseph, J.A. (1999). Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Biology and Medicine, 27(5-6), 612-616. https://doi.org/10.1016/s0891-5849(99)00107-0
  • Wang, Y., Cha, C., Khatabi, B., Scheible, W.R., Udvardi, M.K., Saha, M.C., Kang, Y. & Nelson, R.S. (2021). An efficient Brome mosaic virus-based gene silencing protocol for hexaploid wheat (Triticum aestivum L.). Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.685187
  • Yang, J., Zhang, T.Y., Liao, Q.S., He, L., Li, J., Zhang, H.M., Chen, X., Li, J., Yang, J., Li, J.B. & Chen, J.P. (2018). Chinese wheat mosaic virus-induced gene silencing in monocots and dicots at low temperature. Frontiers in Plant Science, 9, 1627. https://doi.org/10.3389/fpls.2018.01627
  • Yoon, J., Kim, Y., Kim, S., Jeong, H., Park, J., Jeong, M.H., Park, S., Jo, M., An, S., Park, J., Jang, S.H., Goh, J.& Park, S.Y. (2023). Agrobacterium tumefaciens-mediated transformation of the aquatic fungus Phialemonium inflatum FBCC-f1546. Journal of Fungi, 9(12), 1158. https://doi.org/10.3390/jof9121158
  • Yu, D., Zha, Y., Zhong, Z., Ruan, Y., Li, Z., Sun, L. & Hou, S. (2021). Improved detection of reactive oxygen species by DCFH-da: New insight into self-amplification of fluorescence signal by light irradiation. Sensors and Actuators B: Chemical, 339, 129878. https://doi.org/10.1016/j.snb.2021.129878
  • Zhang, L., Hou, M., Zhang, X., Cao, Y., Sun, S., Zhu, Z., Han, S., Chen, Y., Ku, L. & Duan, C. (2023). Integrative transcriptome and Proteome Analysis reveals maize responses to Fusarium verticillioides infection inside the stalks. Molecular Plant Pathology, 24(7), 693–710. https://doi.org/10.1111/mpp.13317
  • Zulfiqar, S., Farooq, M.A., Zhao, T., Wang, P., Tabusam, J., Wang, Y., Xuan, S., Zhao, J., Chen, X., Shen, S. & Gu, A. (2023). Virus-induced gene silencing (VIGS): A powerful tool for crop improvement and its advancement towards epigenetics. International Journal of Molecular Sciences, 24(6), 5608. https://doi.org/ 10.3390/ijms24065608
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Patolojisi, Mikrobiyal Genetik
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Yaprak Narmanlı 0000-0002-1820-0460

Buse Didem Perendi 0009-0008-9789-9361

Fatma Aydinoglu 0000-0002-9974-045X

Proje Numarası TÜBİTAK 221O321 ve COST CA20110
Erken Görünüm Tarihi 20 Mart 2025
Yayımlanma Tarihi 27 Mart 2025
Gönderilme Tarihi 25 Ekim 2024
Kabul Tarihi 26 Şubat 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 2

Kaynak Göster

APA Narmanlı, Y., Perendi, B. D., & Aydinoglu, F. (2025). Agroinfection-Mediated Virus Induced Gene Silencing of Fungal Pathogen Fusarium verticillioides CYP51 Gene to Reduce its Pathogenicity during Maize (Zea mays) Germination. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(2), 306-319. https://doi.org/10.18016/ksutarimdoga.vi.1573791

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149