Araştırma Makalesi
BibTex RIS Kaynak Göster

AMF ve Biyoçar Biyotik ve Abiyotik Stres Altında Biber Gelişimini ve Besin İçeriğini Nasıl Etkiler?

Yıl 2025, Cilt: 28 Sayı: 2, 459 - 479, 27.03.2025
https://doi.org/10.18016/ksutarimdoga.vi.1587723

Öz

Tuz stresi, biber bitkisinin büyümesini olumsuz etkileyen, bitki patojenlerinin gelişimini hızlandırabilen ve bitkinin hastalıklara karşı duyarlılığını artırabilen önemli bir abiyotik strestir. Biber solgunluğu hastalığına neden olan Verticillium dahliae önemli bir biyotik stres faktörüdür. Funneliformis mosseae ve biyoçar organik atıkları, bitki kökleriyle simbiyotik bağlantılar kurarak topraktan besin maddesi alınmasına yardımcı olur ve bitki hastalıklarının kontrolünde, bitki büyümesinde ve stres toleransında etkilidir. Bu çalışma, tuz stresi (50mM, 100mM, 150mM) altında yetiştirilen biber bitkisinde V. dahliae (Vd)'ye karşı F. mosseae (Fm) ve %2 biyoçarın (Bc) bazı bitki fizyolojik özellikleri, bitki besin elementi alımı, toprak pH'sı ve EC değeri üzerindeki etkilerini belirlemeyi amaçlamaktadır. Çalışma sonucunda, F. mosseae'nin tek başına veya %2 biyoçar ile etkileşimli olarak kullanılması, bitkinin bazı fizyolojik parametrelerini ve bazı mineral (P, K, Mg ve Mn) içeriklerini önemli ölçüde artırmıştır. Ayrıca, biber bitkileri tuza ve V. dahliae'nin neden olduğu stres faktörlerine karşı kayda değer bir dayanıklılık göstermiştir. Buna ek olarak, F. mosseae ve biyoçar arasındaki etkileşim, şiddetli tuz stresi koşulları altında toprak EC değerini önemli ölçüde düşürmüştür. Öte yandan, biyoçar, toprak pH'sı ve Ca/Na oranı açısından F. mosseae'den daha etkili olmuştur. Sonuçlar, biyoçar ve F. mosseae'nin biyotik (V. dahliae) ve abiyotik stres (tuz stresi) hasarını azaltmada faydalı olduğunu ve bitki büyümesini ve besin emilimini artırdığını göstermiştir. Dolayısıyla bu çalışma, özellikle sürdürülebilir tarım için faydalı mikroorganizmaların kullanılması alanında mükemmel ve yeni sonuçlar ortaya koymaktadır.

Proje Numarası

FDK-2020-8903

Kaynakça

  • Abd El-Mageed, T.A., Rady, M.M., Taha, R.S., Abd El Azeam, S., Simpson, C.R., & Semida, W.M. (2020). Effects of integrated use of residual sulfur-enhanced biochar with effective microorganisms on soil properties, plant growth and short-term productivity of Capsicum annuum under salt stress. Sci Hortic. 261, 108930. https://doi.org/10.1016/j.scienta.2019.108930.
  • Akay Rastgeldi, Z.H. (2010). The Effects of Different Salt Concentrations in Pepper on Some Physiological Parameters and Mineral Matter Content (master's thesis, unpublished). HU, Institute of Science and Technology, Sanliurfa (Turkish). 10.1007/s10343-023-00897-2.
  • Akhter, A., Hage-Ahmed, K., Soja, G., & Steinkellner, S. (2015). Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp. lycopersici. Frontiers in Plant Sci. 6, 529. https://doi.org/10.3389/fpls.2015.00529.
  • Akköprü, A., & Demir, S. (2005). Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J Phytopathol. 153, 544-550. https://doi.org/10.1111/j.1439-0434.2005.01018.x.
  • Ali, S., Rizwan, M., Qayyum, M.F., Ok, Y.S., Ibrahim, M., Riaz, M., & Shahzad, A.N. (2017). Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environ. Sci Pollut Res. 24, 12700-12712. https://doi.org/10.1007/s11356-017-8904-x.
  • Azeem, M., Hayat, R., Hussain, Q., Ahmed, M., Pan, G., Tahir, M.I., & Irfan, M. (2019). Biochar improves soil quality and N2-fixation and reduces net ecosystem CO2 exchange in a dryland legume-cereal cropping system. Soil tillage res. 186, 172-182. https://doi.org/10.1016/j.still.2018.10.007.
  • Beltrano, J., Ruscitti, M., Arango, M.C., & Ronco, M. (2013). Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. J Soil Sci Plant Nutr. 13, 123-141. https://doi.org/10.4067/S0718- 95162013005000012.
  • Bennett, A.E., Alers-Garcia, J., & Bever, J.D. (2006). Three-way interactions among mutualistic mycorrhizal fungi, plants, and plant enemies: hypotheses and synthesis. The American Naturalist 167 (2), 141-152.
  • Biró, B., Köves-Péchy, K., Vörös, I., Takács, T., Eggenberger, P., & Strasser, R.J. (2000). Interrelations between Azospirillum and Rhizobium nitrogen-fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile, AMF-free or normal soil conditions. Appl Soil Ecol. 15, 159-168. https://doi.org/10.1016/S0929-1393(00)00092-5.
  • Castañeda, W., Toro, M., Solorzano, A., & Zúñiga-Dávila, D. (2020). Production and nutritional quality of tomatoes (Solanum lycopersicum var. Cerasiforme) are improved in the presence of biochar and inoculation with arbuscular mycorrhizae. Am. J. Plant Sci. 11(3): 426-436. 10.4236/ajps.2020.113031
  • Celik, Y. (2023). The effects of different organic fertilizers and reduced doses of chemical fertilizer applications on yield and quality traits in greenhouse melon cultivation. Rev. Bras. Frutic. 45, e-538. https://doi.org/10.1590/0100-29452023538
  • Coşkun, F., Alptekin, Y., & Demir, S. (2021) Reaction of different pepper (Capsicum annuum L.) cultivars to isolates of Verticillium dahliae Kleb. from various hosts. YYU J Agr Sci. 31, 838-846. https://doi.org/10.29133/yyutbd.882449
  • Coşkun, F., Alptekin, Y., & Demir, S. (2023). Effects of arbuscular mycorrhizal fungi and salicylic acid on plant growth and the activity of antioxidative enzymes against wilt disease caused by Verticillium dahliae in pepper. Eur J Plant Pathol. 165, 163-177. https://doi.org/10.1007/s10658-022-02596-6.
  • Demir, S., Şensoy, S., Ocak, E., Tüfenkci, Ş., Demirer Durak, E., Erdinc, C., & Ünsal, H. (2015). Effects of Arbuscular Mycorrhizal Fungus, Humic Acid, and Whey on Wilt Disease caused By Verticillium dahliae Kleb. In Three Solanaceous Crops. Turk J Agric For. 39, 300-309. https://doi.org/10.3906/tar-1403-39.
  • Demirel, Ö., Güneş, H., & Can, C. (2024). Sustainable and modern bio-based technologies: new approachs to food safety and security. Environ Dev Sustain. 1-28. doi: https://doi.org/10.1007/s10668-024-04683-6
  • Dilegge, M.J., Manter, D.K., Vivanco, J.M. (2019). A novel approach to determine generalist nematophagous microbes reveals Mortierella globalpina as a new biocontrol agent against Meloidogyne spp. nematodes. Sci Rep 9, 1-9. https://doi.org/10.1038/s41598-019-44010-y.
  • Elmer, W.H., & Pignatello, J.J. (2011). Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Dis. 95, 960-966. https://doi.org/10.1094/PDIS-10-10-0741.
  • Etesami, H., & Beattie, G.A. (2018). Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol. https://doi.org/10.3389/fmicb.2018.00148.
  • Food and Agriculture Organization of the United Nations (2020). FAOSTAT [online]. Website http://www.fao.org/faostat/en/ [Accessed 11.06.2023].
  • Farhangi-Abriz, S., & Torabian, S. (2018). Effect of biochar on growth and ion contents of bean plant under saline condition. Environ Sci Pollut Res. 25, 11556-11564. https://doi.org/10.1007/s11356-018-1446-z.
  • Fiorilli, V., Vallino, M., Biselli, C., Faccio, A., Bagnaresi, P., & Bonfante, P. (2015). Host and non-host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi. Front. Plant Sci. 6, 636. https://doi.org/10.3389/fpls.2015.00636
  • Geleta, L.F., Labuschagne, M.T. (2006). Combining ability and heritability for vitamin C and total soluble solids in pepper (Capsicum annuum L.). J Sci Food Agric. 86, 1317-1320. https://doi.org/ 10.1002/jsfa.2494.
  • Giri, B., Kapoor, R., & Mukerji, K.G. (2007). Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54, 753-760. https://doi.org/10.1007/s00248-007-9239-9.
  • Giono, B.R.W., Solle, M.S., Idrus, M.I., & Sofyan, S. (2021). Utilization of Biochar and Mycorrhiza to Increase the Absorption of Elemental Nutrients of Cayenne Chili Plant (Capsicum fruntescnes L.). J Trop Agric. 26, 75-86. https://doi.org/10.5400/jts.2021.v26i2.75.
  • Gruntman, M., & Novoplansky, A. (2011). Ontogenetic contingency of tolerance mechanisms in response to apical damage. Annals of Botany 108(5): 965-973. https://doi.org/10.1093/aob/mcr204
  • Guevara, L., Domínguez-Anaya, M.Á., Ortigosa, A., González-Gordo, S., Díaz, C., Vicente, F., Corpas, F.J., del Palacio, J.P., & Palma, J.M. (2021). Identification of compounds with potential therapeutic uses from sweet pepper (Capsicum annuum L.) fruits and their modulation by nitric oxide (NO). Int. J Mol Sci. 22, 4476. https://doi.org/10.3390/ijms22094476.
  • Gujre, N., Soni, A., Rangan, L., Tsang, D.C., & Mitra, S. (2021). Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: A review. Environmental Pollution 268, 115549. https://doi.org/10.1016/j.envpol.2020.115549
  • Güneş, H., Demir, S., & Akköprü, A. (2022). Relationship between some plants species belonging to Brassicaceae, Chenopodiaceae and Urticaceae families, and arbuscular mycorrhizal fungi and rhizobacteria. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 25(6), 1350-1360. https://doi.org/10.18016/ksutarimdoga.vi.1096156
  • Gunes, H., Demir, S., Erdinc, C., & Furan, M.A. (2023). Effects of Arbuscular Mycorrhızal Fungı (AMF) and Bıochar On the Growth of Pepper (Capsicum annum L.) Under Salt Stress. Gesunde Pflanz 1-13. https://doi.org/10.1007/s10343-023-00897-2.
  • Güneş, H., Demir, S., Demirer Durak, E., & Boyno, G. (2024). The effect of Arbuscular Mycorrhizal fungal species Funneliformis mosseae and biochar against Verticillium dahliae in pepper plants under salt stress. Eur. J. Plant Pathol. 1-18. doi: https://doi.org/10.1007/s10658-024-02926-w
  • Graber, E.R., Meller Harel, Y., Kolton, M., Cytryn, E., Silber, A., Rav David, D., & Elad, Y. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil. 337, 481-496. https://doi.org/10.1007/s11104-010-0544-6.
  • Graber, E.R., Frenkel, O., Jaiswal, A.K., & Elad, Y. (2014). How May Biochar İnfluence Severity of Diseases Caused by Soilborne Pathogens? Carbon Manag. 5, 169-183. https://doi.org/10.1080/17583004.2014.913360.
  • Hajiboland, R., Aliasgharzadeh, N., Laiegh, S.F., & Poschenrieder, C. (2010). Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil. 331, 313-327. https://doi.org/10.1007/s11104-009-0255-z.
  • Hammer, E.C., Balogh-Brunstad, Z., Jakobsen, I., Olsson, P.A., Stipp, S.L., & Rillig, M.C. (2014). A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biol Biochem. 77, 252-260. https://doi.org/10.1016/j.soilbio.2014.06.012.
  • Hashem, A., Kumar, A., Al-Dbass, A.M., Alqarawi, A.A., Al-Arjani, A.B.F., Singh, G., & Abd_Allah, E.F. (2019). Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi J. Biol. Sci. 26(3), 614-624. https://doi.org/10.1016/j.sjbs.2018.11.005
  • Hawkins, H.J., Cargill, R.I., Van Nuland, M.E., Hagen, S.C., Field, K.J., Sheldrake, M., & Kiers, E.Tç (2023). Mycorrhizal mycelium as a global carbon pool. Curr. Biol. 33(11), R560-R573. https://doi.org/10.1016/j.cub.2023.02.027
  • Ippolito, J.A., Laird, D.A., & Busscher, W.A. (2012). “Environmental Benefits of Biochar”. J Environ Qual. 41, 967-972. https://doi.org/10.2134/jeq2012.0151.
  • Jackson, M.L. (1958). Chemical Composition of Soils, 71-141. In F.E. Bear (ed.) Chemistry of the soil, 2nd edition. Reinhold Publ. Corp., New York.
  • Jaafar, N.M. (2014). Biochar as a habitat for arbuscular mycorrhizal fungi. In Mycorrhizal fungi: use in sustainable agriculture and land restoration (297-311). Berlin Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-45370-4_19
  • Jung, S.C., Martinez-Medina, A., Lopez-Raez, J.A., & Pozo, M.J. (2012). Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 38, 651-664. https://doi.org/10.1007/s10886-012-0134-6
  • Kacar, B. (1984). Practice Guide of Plant Nutrition. Ankara University, Publications of Agricultural Faculty: Ankara, Turkey.
  • Kacjan Maršić, N., Štolfa, P., Vodnik, D., Košmelj, K., Mikulič-Petkovšek, M., Kump, B., & Šircelj, H. (2021). Physiological and Biochemical Responses of Ungrafted and Grafted Bell Pepper Plants (Capsicum annuum L. var. grossum (L.) Sendtn.) Grown under Moderate Salt Stress. Plants, 10, 314. https://doi.org/10.3390/plants10020314.
  • Karagiannidis, N., Bletsos, F., & Stavropoulos, N. (2002). Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Sci Hortic. 94, 145-156. https://doi.org/10.1016/S0304-4238(01)00336-3.
  • Kesimci, T.G., Demirci, E., Şimşe, U., Tohumcu, F., & Erdel, E. (2019). The effect of Verticillium dahliae on the amount of nutrients in strawberry plants. J. Instit.Sci. Technol. 9, 626-635. https://doi.org/10.21597/jist.556229.
  • Khrieba, M.I., Sharifnabi, B., & Zangeneh, S. (2019). Interaction between Arbuscular Mycorrhiza Fungi (AMF) with Verticillium dahliae Kleb. on Olive Tree under Greenhouse Conditions. Res. J. Agric. Sci. 6, 185-191. https://doi.org/10.1128/AEM.00148-11.
  • Kolton, M., Meller Harel, Y., Pasternak, Z., Graber, E.R., Elad, Y., & Cytryn, E. (2011). Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl. Environ. Microbiol. 77, 4924-4930. https://doi.org/10.1128/AEM.00148-11.
  • Kotuby-Amacher, J., Koenig, R., & Kitchen, B. (2000). Salinity and Plant Tolerance. Electronic Publication AG-SO-03, Utah State University Extension, Logan.
  • Köhl, J., Kolnaar, R., & Ravensberg, W.J. (2019). Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant Sci. 10, 845. https://doi.org/10.3389/fpls.2019.00845 Lamb, C., Dixon, R.A. (1997). The oxidative burst in plant disease resistance. Annu Rev Plant Biol. 48, 251-275. https://doi.org/10.1146/annurev.arplant.48.1.251.
  • Liu, J., Zheng, Z., Zhou, X., Feng, C., & Zhuang, Y. (2015). Improving the resistance of eggplant (Solanum melongena) to Verticillium wilt using wild species Solanum linnaeanum. Euphytica. 201, 463-469. https://doi.org/10.1007/s10681-014-1234-x.
  • Low, P.S., & Merida, J.R. (1996). The oxidative burst in plant defense: function and signal transduction. Physiol Plant. 96, 533-542. https://doi.org/10.1111/j.1399-3054.1996.tb00469.x.
  • Nguyen, V.T., Edward, C.Y.L., Lester, W.B. (2010). Characterization of P. capsici isolates from black pepper in Vietnam. Fungal Biol. 114, 160-170. doi.org:10.1016/j.funbio.2009.11.005
  • Novak, J.M., Busscher, W.J., Watts, D.W., Amonette, J.E., Ippolito, J.A., Lima, I.M., & Schomberg, H. (2012). Biochars impact on soil-moisture storage in an ultisol and two aridisols. Soil Sci. 177, 310-320. https://doi.org/10.1097/SS.0b013e31824e5593.
  • Nzanza, B., Marais, D., & Soundy, P. (2012). Effect of arbuscular mycorrhizal fungal inoculation and biochar amendment on growth and yield of tomato. Int J Agric Biol. 14, 965-969.
  • Ogundeji, A.O., Li, Y., Liu, X., Meng, L., Sang, P., Mu, Y., & Li, S. (2021). Eggplant by grafting enhanced with biochar recruits specific microbes for disease suppression of Verticillium wilt. Appl Soil Ecol. 163, 103912. https://doi.org/10.1016/j.apsoil.2021.103912.
  • Oztekin, G.B., Tuzel, Y., Tuzel, I.H. (2013). Does mycorrhiza improve salinity tolerance in grafted plants? Sci Hortic. 149, 55-60. https://doi.org/10.1016/j.scienta.2012.02.033.
  • Özdamar, K. (2010). Paket programlar ile istatistiksel veri analizi II (çok değişkenli analizler) [Statistical data analysis with package programs II (multivariate analysis)], Kaan Kitabevi, 7. Baskı, Eskişehir.
  • Palansooriya, K.N., Yang, Y., Tsang, Y.F., Sarkar, B., Hou, D., Cao, X., Meers, E., Rinklebe, J., Kim, K., & Ok, Y.S. (2020). Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: A review. Crit Rev Environ Sci Technol. 50, 549-611. https://doi.org/10.1080/10643389.2019.1629803.
  • Pegg, G.F., & Brady, B.L. (2002). Verticillium Wilts. CABI Publishing. CAB International Wallingford, UK. Pozo, M.J., Azcón-Aguilar, C. (2007). Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10(4), 393-398. https://doi.org/10.1016/j.pbi.2007.05.004
  • Pozo, M.J., Jung, S.C., López-Ráez, J.A., & Azcón-Aguilar, C. (2010). Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress: the role of plant defence mechanisms. Arbuscular mycorrhizas: physiology and function 193-207.
  • Rousk, J., Brookes, P.C., & Baath, E. (2009). Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol. 75, 1589-1596. https://doi.org/10.1128/AEM.02775-08.
  • Sagar, A., Rathore, P., Ramteke, P.W., Ramakrishna, W., Reddy, M.S., & Pecoraro, L. (2021). Plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and their synergistic interactions to counteract the negative effects of saline soil on agriculture: Key macromolecules and mechanisms. Microorganisms. 9, 1491. https://doi.org/10.3390/microorganisms9071491.
  • Schnathorst, W.C. (1981). Life Cycle and Epidemiology of Verticillium. Fungal Wilt Diseases of Plants. Academic Pres, New York, 640. https://doi.org/10.3390/microorganisms9071491.
  • Schüßler, A., & Walker, C. (2010). The Glomeromycota: a species list with new families and new genera. Published in December 2010 in libraries at The Royal Botanic Garden Edinburgh; The Royal Botanic Garden Kew; Botanische Staatssammlung Munich, and Oregon State University.
  • Shi, R.Y., Hong, Z.N., Li, J.Y., Jiang, J., Kamran, M.A., Xu, R.K., & Qian, W. (2018). Peanut straw biochar increases the resistance of two Ultisols derived from different parent materials to acidification: A mechanism study. J Environ Manage. 210, 171-179. https://doi.org/10.1016/j.jenvman.2018.01.028.
  • Tjamos, E.C., Rowe, R.C., Heale, J.B., & Fravel, D.R. (2000). Advances in Verticillium research and disease management; proceedings. In 7. International Verticillium Symposium 1971-1997 Silver Jubilee6-10 Oct 1997 Cape Sounion, Atenas (Grecia) (No. 632.4521 I61 1997). American Phytopathological Society, St. Paul, MN (EUA).
  • Tripathi, A., Maurya, S., Pandey, K. K., & Behera, T. K. (2024). Global Scenario of Vegetable Fungal Diseases. Vegetable Science, 51, 54-65. https://doi.org/10.61180/vegsci.2024.v51.spl.06
  • Tyvaert, L., Everaert, E., Lippens, L., Cuijpers, W.J.M., França, S.C., & Höfte, M. (2019). Interaction of Colletotrichum coccodes and Verticillium dahliae in pepper plants. Eur J. Plant Pathol. 155, 1303-1317. https://doi.org/10.1007/s10658-019-01857-1.
  • U.S. Salinity Laboratory Staff. (1954). Methods for soil characterization. p 83-147. In Diagnosis and improvement of saline and alkali soils. USDA-Agricultural Handbook No. 60. U.S. Government Printing Office, Washington, D.C.
  • Vahedi, R., Rasouli-Sadaghiani, M.H., Barin, M., & Vetukuri, R.R. (2022). Effect of Biochar and Microbial Inoculation on P, Fe, and Zn Bioavailability in a Calcareous Soil. Processes. https://doi.org/10.3390/pr10020343.
  • Van der Ent, S., Van Wees, S.C., & Pieterse, C.M. (2009). Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70(13-14): 1581-1588. https://doi.org/10.1016/j.phytochem.2009.06.009
  • Were, S.A., Narla, R., Mutitu, E.W., Muthomi, J.W., Munyua, L.M., Roobroeck, D., & Valauwe, B. (2021). Biochar and vermicompost soil amendments reduce root rot disease of common bean (Phaseolous Vulgaris L.). Afr J Biol Sci. 3, 176-196. https://doi.org/10.33472/AFJBS.3.1.2021.176-196.
  • Wu, Q.S., Zou, Y.N., & He, X.H. (2010). Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant. 32, 297-304. https://doi.org/I: 10.1007/s11738-009-0407-z.
  • Xu, G., Zhang, Y., Sun, J., & Shao, H. (2016). Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Sci Total Environ. 568, 910-915. https://doi.org/10.1016/j.scitotenv.2016.06.079.
  • Yao, Q., Liu, J., Yu, Z., Li, Y., Jin, J., Liu, X., & Wang, G. (2017). Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China. Soil Biol Biochem. 110, 56-67. https://doi.org/10.1016/j.soilbio.2017.03.005.
  • Zhang, S., Lehmann, A., Zheng, W., You, Z., & Rillig, M.C. (2019 a). Arbuscular Mycorrhizal Fungi İncrease Grain Yields: A Meta‐Analysis. New Phytol. 222, 543-555. https://doi.org/10.1111/nph.15570.
  • Zhang, J., Bai, Z., Huang, J., Hussain, S., Zhao, F., Zhu, C., Jin, Q. (2019 b). Biochar alleviated the salt stress of induced saline paddy soil and improved the biochemical characteristics of rice seedlings differing in salt tolerance. Soil tillage res. 195. 104372. https://doi.org/10.1016/j.still.2019.104372.
  • Zhuo, F., Zhang, X.F., Lei, L.L., Yan, T.X., Lu, R.R., Hu, Z.H., & Jing, Y.X. (2020). The effect of arbuscular mycorrhizal fungi and biochar on the growth and Cd/Pb accumulation in Zea mays. Int J Phytoremediation. 22, 1009-1018. https://doi.org/10.1080/15226514.2020.1725867.

How do AMF and Biochar Affect Pepper Growth and Nutrient Content under Biotic and Abiotic Stress?

Yıl 2025, Cilt: 28 Sayı: 2, 459 - 479, 27.03.2025
https://doi.org/10.18016/ksutarimdoga.vi.1587723

Öz

Salt stress is a significant abiotic stress that adversely affects pepper plant growth which can accelerate the development of plant pathogens and increase plant susceptibility to diseases. Verticillium dahliae, which causes pepper wilt disease, is an important biotic stress factor. Funneliformis mosseae and biochar organic wastes help to take nutrients from the soil by establishing symbiotic connections with plant roots and, are effective in treating plant diseases, plant growth, and stress tolerance. This study aims to determine the effects of F. mosseae (Fm) and 2% biochar (Bc) against V. dahliae (Vd) on some plant physiological properties, plant nutrient uptake, soil pH, and EC value in pepper plants grown under salt stress (50mM, 100mM, 150mM). As a result of the study, the use of F. mosseae alone or in interaction with 2% biochar significantly increased some physiological parameters and some minerals (P, K, Mg, and Mn) contents of the plant. Moreover, pepper plants showed remarkable resistance to salt and stress factors caused by V. dahliae. In addition, the interaction between F. mosseae and biochar significantly lowered the soil EC value under conditions of severe salt stress. On the other hand, biochar was more effective than F.mosseae in terms of soil pH and Ca/Na ratio. The results showed that biochar and F. mosseae were beneficial in reducing biotic (V. dahliae) and abiotic stress (salt stress) damage while enhancing plant growth and nutrient absorption. Therefore, this study yields excellent and novel results, particularly in the field of employing beneficial microorganisms for sustainable agriculture.

Proje Numarası

FDK-2020-8903

Kaynakça

  • Abd El-Mageed, T.A., Rady, M.M., Taha, R.S., Abd El Azeam, S., Simpson, C.R., & Semida, W.M. (2020). Effects of integrated use of residual sulfur-enhanced biochar with effective microorganisms on soil properties, plant growth and short-term productivity of Capsicum annuum under salt stress. Sci Hortic. 261, 108930. https://doi.org/10.1016/j.scienta.2019.108930.
  • Akay Rastgeldi, Z.H. (2010). The Effects of Different Salt Concentrations in Pepper on Some Physiological Parameters and Mineral Matter Content (master's thesis, unpublished). HU, Institute of Science and Technology, Sanliurfa (Turkish). 10.1007/s10343-023-00897-2.
  • Akhter, A., Hage-Ahmed, K., Soja, G., & Steinkellner, S. (2015). Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp. lycopersici. Frontiers in Plant Sci. 6, 529. https://doi.org/10.3389/fpls.2015.00529.
  • Akköprü, A., & Demir, S. (2005). Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J Phytopathol. 153, 544-550. https://doi.org/10.1111/j.1439-0434.2005.01018.x.
  • Ali, S., Rizwan, M., Qayyum, M.F., Ok, Y.S., Ibrahim, M., Riaz, M., & Shahzad, A.N. (2017). Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environ. Sci Pollut Res. 24, 12700-12712. https://doi.org/10.1007/s11356-017-8904-x.
  • Azeem, M., Hayat, R., Hussain, Q., Ahmed, M., Pan, G., Tahir, M.I., & Irfan, M. (2019). Biochar improves soil quality and N2-fixation and reduces net ecosystem CO2 exchange in a dryland legume-cereal cropping system. Soil tillage res. 186, 172-182. https://doi.org/10.1016/j.still.2018.10.007.
  • Beltrano, J., Ruscitti, M., Arango, M.C., & Ronco, M. (2013). Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. J Soil Sci Plant Nutr. 13, 123-141. https://doi.org/10.4067/S0718- 95162013005000012.
  • Bennett, A.E., Alers-Garcia, J., & Bever, J.D. (2006). Three-way interactions among mutualistic mycorrhizal fungi, plants, and plant enemies: hypotheses and synthesis. The American Naturalist 167 (2), 141-152.
  • Biró, B., Köves-Péchy, K., Vörös, I., Takács, T., Eggenberger, P., & Strasser, R.J. (2000). Interrelations between Azospirillum and Rhizobium nitrogen-fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile, AMF-free or normal soil conditions. Appl Soil Ecol. 15, 159-168. https://doi.org/10.1016/S0929-1393(00)00092-5.
  • Castañeda, W., Toro, M., Solorzano, A., & Zúñiga-Dávila, D. (2020). Production and nutritional quality of tomatoes (Solanum lycopersicum var. Cerasiforme) are improved in the presence of biochar and inoculation with arbuscular mycorrhizae. Am. J. Plant Sci. 11(3): 426-436. 10.4236/ajps.2020.113031
  • Celik, Y. (2023). The effects of different organic fertilizers and reduced doses of chemical fertilizer applications on yield and quality traits in greenhouse melon cultivation. Rev. Bras. Frutic. 45, e-538. https://doi.org/10.1590/0100-29452023538
  • Coşkun, F., Alptekin, Y., & Demir, S. (2021) Reaction of different pepper (Capsicum annuum L.) cultivars to isolates of Verticillium dahliae Kleb. from various hosts. YYU J Agr Sci. 31, 838-846. https://doi.org/10.29133/yyutbd.882449
  • Coşkun, F., Alptekin, Y., & Demir, S. (2023). Effects of arbuscular mycorrhizal fungi and salicylic acid on plant growth and the activity of antioxidative enzymes against wilt disease caused by Verticillium dahliae in pepper. Eur J Plant Pathol. 165, 163-177. https://doi.org/10.1007/s10658-022-02596-6.
  • Demir, S., Şensoy, S., Ocak, E., Tüfenkci, Ş., Demirer Durak, E., Erdinc, C., & Ünsal, H. (2015). Effects of Arbuscular Mycorrhizal Fungus, Humic Acid, and Whey on Wilt Disease caused By Verticillium dahliae Kleb. In Three Solanaceous Crops. Turk J Agric For. 39, 300-309. https://doi.org/10.3906/tar-1403-39.
  • Demirel, Ö., Güneş, H., & Can, C. (2024). Sustainable and modern bio-based technologies: new approachs to food safety and security. Environ Dev Sustain. 1-28. doi: https://doi.org/10.1007/s10668-024-04683-6
  • Dilegge, M.J., Manter, D.K., Vivanco, J.M. (2019). A novel approach to determine generalist nematophagous microbes reveals Mortierella globalpina as a new biocontrol agent against Meloidogyne spp. nematodes. Sci Rep 9, 1-9. https://doi.org/10.1038/s41598-019-44010-y.
  • Elmer, W.H., & Pignatello, J.J. (2011). Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Dis. 95, 960-966. https://doi.org/10.1094/PDIS-10-10-0741.
  • Etesami, H., & Beattie, G.A. (2018). Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol. https://doi.org/10.3389/fmicb.2018.00148.
  • Food and Agriculture Organization of the United Nations (2020). FAOSTAT [online]. Website http://www.fao.org/faostat/en/ [Accessed 11.06.2023].
  • Farhangi-Abriz, S., & Torabian, S. (2018). Effect of biochar on growth and ion contents of bean plant under saline condition. Environ Sci Pollut Res. 25, 11556-11564. https://doi.org/10.1007/s11356-018-1446-z.
  • Fiorilli, V., Vallino, M., Biselli, C., Faccio, A., Bagnaresi, P., & Bonfante, P. (2015). Host and non-host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi. Front. Plant Sci. 6, 636. https://doi.org/10.3389/fpls.2015.00636
  • Geleta, L.F., Labuschagne, M.T. (2006). Combining ability and heritability for vitamin C and total soluble solids in pepper (Capsicum annuum L.). J Sci Food Agric. 86, 1317-1320. https://doi.org/ 10.1002/jsfa.2494.
  • Giri, B., Kapoor, R., & Mukerji, K.G. (2007). Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54, 753-760. https://doi.org/10.1007/s00248-007-9239-9.
  • Giono, B.R.W., Solle, M.S., Idrus, M.I., & Sofyan, S. (2021). Utilization of Biochar and Mycorrhiza to Increase the Absorption of Elemental Nutrients of Cayenne Chili Plant (Capsicum fruntescnes L.). J Trop Agric. 26, 75-86. https://doi.org/10.5400/jts.2021.v26i2.75.
  • Gruntman, M., & Novoplansky, A. (2011). Ontogenetic contingency of tolerance mechanisms in response to apical damage. Annals of Botany 108(5): 965-973. https://doi.org/10.1093/aob/mcr204
  • Guevara, L., Domínguez-Anaya, M.Á., Ortigosa, A., González-Gordo, S., Díaz, C., Vicente, F., Corpas, F.J., del Palacio, J.P., & Palma, J.M. (2021). Identification of compounds with potential therapeutic uses from sweet pepper (Capsicum annuum L.) fruits and their modulation by nitric oxide (NO). Int. J Mol Sci. 22, 4476. https://doi.org/10.3390/ijms22094476.
  • Gujre, N., Soni, A., Rangan, L., Tsang, D.C., & Mitra, S. (2021). Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: A review. Environmental Pollution 268, 115549. https://doi.org/10.1016/j.envpol.2020.115549
  • Güneş, H., Demir, S., & Akköprü, A. (2022). Relationship between some plants species belonging to Brassicaceae, Chenopodiaceae and Urticaceae families, and arbuscular mycorrhizal fungi and rhizobacteria. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 25(6), 1350-1360. https://doi.org/10.18016/ksutarimdoga.vi.1096156
  • Gunes, H., Demir, S., Erdinc, C., & Furan, M.A. (2023). Effects of Arbuscular Mycorrhızal Fungı (AMF) and Bıochar On the Growth of Pepper (Capsicum annum L.) Under Salt Stress. Gesunde Pflanz 1-13. https://doi.org/10.1007/s10343-023-00897-2.
  • Güneş, H., Demir, S., Demirer Durak, E., & Boyno, G. (2024). The effect of Arbuscular Mycorrhizal fungal species Funneliformis mosseae and biochar against Verticillium dahliae in pepper plants under salt stress. Eur. J. Plant Pathol. 1-18. doi: https://doi.org/10.1007/s10658-024-02926-w
  • Graber, E.R., Meller Harel, Y., Kolton, M., Cytryn, E., Silber, A., Rav David, D., & Elad, Y. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil. 337, 481-496. https://doi.org/10.1007/s11104-010-0544-6.
  • Graber, E.R., Frenkel, O., Jaiswal, A.K., & Elad, Y. (2014). How May Biochar İnfluence Severity of Diseases Caused by Soilborne Pathogens? Carbon Manag. 5, 169-183. https://doi.org/10.1080/17583004.2014.913360.
  • Hajiboland, R., Aliasgharzadeh, N., Laiegh, S.F., & Poschenrieder, C. (2010). Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil. 331, 313-327. https://doi.org/10.1007/s11104-009-0255-z.
  • Hammer, E.C., Balogh-Brunstad, Z., Jakobsen, I., Olsson, P.A., Stipp, S.L., & Rillig, M.C. (2014). A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biol Biochem. 77, 252-260. https://doi.org/10.1016/j.soilbio.2014.06.012.
  • Hashem, A., Kumar, A., Al-Dbass, A.M., Alqarawi, A.A., Al-Arjani, A.B.F., Singh, G., & Abd_Allah, E.F. (2019). Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi J. Biol. Sci. 26(3), 614-624. https://doi.org/10.1016/j.sjbs.2018.11.005
  • Hawkins, H.J., Cargill, R.I., Van Nuland, M.E., Hagen, S.C., Field, K.J., Sheldrake, M., & Kiers, E.Tç (2023). Mycorrhizal mycelium as a global carbon pool. Curr. Biol. 33(11), R560-R573. https://doi.org/10.1016/j.cub.2023.02.027
  • Ippolito, J.A., Laird, D.A., & Busscher, W.A. (2012). “Environmental Benefits of Biochar”. J Environ Qual. 41, 967-972. https://doi.org/10.2134/jeq2012.0151.
  • Jackson, M.L. (1958). Chemical Composition of Soils, 71-141. In F.E. Bear (ed.) Chemistry of the soil, 2nd edition. Reinhold Publ. Corp., New York.
  • Jaafar, N.M. (2014). Biochar as a habitat for arbuscular mycorrhizal fungi. In Mycorrhizal fungi: use in sustainable agriculture and land restoration (297-311). Berlin Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-45370-4_19
  • Jung, S.C., Martinez-Medina, A., Lopez-Raez, J.A., & Pozo, M.J. (2012). Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 38, 651-664. https://doi.org/10.1007/s10886-012-0134-6
  • Kacar, B. (1984). Practice Guide of Plant Nutrition. Ankara University, Publications of Agricultural Faculty: Ankara, Turkey.
  • Kacjan Maršić, N., Štolfa, P., Vodnik, D., Košmelj, K., Mikulič-Petkovšek, M., Kump, B., & Šircelj, H. (2021). Physiological and Biochemical Responses of Ungrafted and Grafted Bell Pepper Plants (Capsicum annuum L. var. grossum (L.) Sendtn.) Grown under Moderate Salt Stress. Plants, 10, 314. https://doi.org/10.3390/plants10020314.
  • Karagiannidis, N., Bletsos, F., & Stavropoulos, N. (2002). Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Sci Hortic. 94, 145-156. https://doi.org/10.1016/S0304-4238(01)00336-3.
  • Kesimci, T.G., Demirci, E., Şimşe, U., Tohumcu, F., & Erdel, E. (2019). The effect of Verticillium dahliae on the amount of nutrients in strawberry plants. J. Instit.Sci. Technol. 9, 626-635. https://doi.org/10.21597/jist.556229.
  • Khrieba, M.I., Sharifnabi, B., & Zangeneh, S. (2019). Interaction between Arbuscular Mycorrhiza Fungi (AMF) with Verticillium dahliae Kleb. on Olive Tree under Greenhouse Conditions. Res. J. Agric. Sci. 6, 185-191. https://doi.org/10.1128/AEM.00148-11.
  • Kolton, M., Meller Harel, Y., Pasternak, Z., Graber, E.R., Elad, Y., & Cytryn, E. (2011). Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl. Environ. Microbiol. 77, 4924-4930. https://doi.org/10.1128/AEM.00148-11.
  • Kotuby-Amacher, J., Koenig, R., & Kitchen, B. (2000). Salinity and Plant Tolerance. Electronic Publication AG-SO-03, Utah State University Extension, Logan.
  • Köhl, J., Kolnaar, R., & Ravensberg, W.J. (2019). Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant Sci. 10, 845. https://doi.org/10.3389/fpls.2019.00845 Lamb, C., Dixon, R.A. (1997). The oxidative burst in plant disease resistance. Annu Rev Plant Biol. 48, 251-275. https://doi.org/10.1146/annurev.arplant.48.1.251.
  • Liu, J., Zheng, Z., Zhou, X., Feng, C., & Zhuang, Y. (2015). Improving the resistance of eggplant (Solanum melongena) to Verticillium wilt using wild species Solanum linnaeanum. Euphytica. 201, 463-469. https://doi.org/10.1007/s10681-014-1234-x.
  • Low, P.S., & Merida, J.R. (1996). The oxidative burst in plant defense: function and signal transduction. Physiol Plant. 96, 533-542. https://doi.org/10.1111/j.1399-3054.1996.tb00469.x.
  • Nguyen, V.T., Edward, C.Y.L., Lester, W.B. (2010). Characterization of P. capsici isolates from black pepper in Vietnam. Fungal Biol. 114, 160-170. doi.org:10.1016/j.funbio.2009.11.005
  • Novak, J.M., Busscher, W.J., Watts, D.W., Amonette, J.E., Ippolito, J.A., Lima, I.M., & Schomberg, H. (2012). Biochars impact on soil-moisture storage in an ultisol and two aridisols. Soil Sci. 177, 310-320. https://doi.org/10.1097/SS.0b013e31824e5593.
  • Nzanza, B., Marais, D., & Soundy, P. (2012). Effect of arbuscular mycorrhizal fungal inoculation and biochar amendment on growth and yield of tomato. Int J Agric Biol. 14, 965-969.
  • Ogundeji, A.O., Li, Y., Liu, X., Meng, L., Sang, P., Mu, Y., & Li, S. (2021). Eggplant by grafting enhanced with biochar recruits specific microbes for disease suppression of Verticillium wilt. Appl Soil Ecol. 163, 103912. https://doi.org/10.1016/j.apsoil.2021.103912.
  • Oztekin, G.B., Tuzel, Y., Tuzel, I.H. (2013). Does mycorrhiza improve salinity tolerance in grafted plants? Sci Hortic. 149, 55-60. https://doi.org/10.1016/j.scienta.2012.02.033.
  • Özdamar, K. (2010). Paket programlar ile istatistiksel veri analizi II (çok değişkenli analizler) [Statistical data analysis with package programs II (multivariate analysis)], Kaan Kitabevi, 7. Baskı, Eskişehir.
  • Palansooriya, K.N., Yang, Y., Tsang, Y.F., Sarkar, B., Hou, D., Cao, X., Meers, E., Rinklebe, J., Kim, K., & Ok, Y.S. (2020). Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: A review. Crit Rev Environ Sci Technol. 50, 549-611. https://doi.org/10.1080/10643389.2019.1629803.
  • Pegg, G.F., & Brady, B.L. (2002). Verticillium Wilts. CABI Publishing. CAB International Wallingford, UK. Pozo, M.J., Azcón-Aguilar, C. (2007). Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10(4), 393-398. https://doi.org/10.1016/j.pbi.2007.05.004
  • Pozo, M.J., Jung, S.C., López-Ráez, J.A., & Azcón-Aguilar, C. (2010). Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress: the role of plant defence mechanisms. Arbuscular mycorrhizas: physiology and function 193-207.
  • Rousk, J., Brookes, P.C., & Baath, E. (2009). Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol. 75, 1589-1596. https://doi.org/10.1128/AEM.02775-08.
  • Sagar, A., Rathore, P., Ramteke, P.W., Ramakrishna, W., Reddy, M.S., & Pecoraro, L. (2021). Plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and their synergistic interactions to counteract the negative effects of saline soil on agriculture: Key macromolecules and mechanisms. Microorganisms. 9, 1491. https://doi.org/10.3390/microorganisms9071491.
  • Schnathorst, W.C. (1981). Life Cycle and Epidemiology of Verticillium. Fungal Wilt Diseases of Plants. Academic Pres, New York, 640. https://doi.org/10.3390/microorganisms9071491.
  • Schüßler, A., & Walker, C. (2010). The Glomeromycota: a species list with new families and new genera. Published in December 2010 in libraries at The Royal Botanic Garden Edinburgh; The Royal Botanic Garden Kew; Botanische Staatssammlung Munich, and Oregon State University.
  • Shi, R.Y., Hong, Z.N., Li, J.Y., Jiang, J., Kamran, M.A., Xu, R.K., & Qian, W. (2018). Peanut straw biochar increases the resistance of two Ultisols derived from different parent materials to acidification: A mechanism study. J Environ Manage. 210, 171-179. https://doi.org/10.1016/j.jenvman.2018.01.028.
  • Tjamos, E.C., Rowe, R.C., Heale, J.B., & Fravel, D.R. (2000). Advances in Verticillium research and disease management; proceedings. In 7. International Verticillium Symposium 1971-1997 Silver Jubilee6-10 Oct 1997 Cape Sounion, Atenas (Grecia) (No. 632.4521 I61 1997). American Phytopathological Society, St. Paul, MN (EUA).
  • Tripathi, A., Maurya, S., Pandey, K. K., & Behera, T. K. (2024). Global Scenario of Vegetable Fungal Diseases. Vegetable Science, 51, 54-65. https://doi.org/10.61180/vegsci.2024.v51.spl.06
  • Tyvaert, L., Everaert, E., Lippens, L., Cuijpers, W.J.M., França, S.C., & Höfte, M. (2019). Interaction of Colletotrichum coccodes and Verticillium dahliae in pepper plants. Eur J. Plant Pathol. 155, 1303-1317. https://doi.org/10.1007/s10658-019-01857-1.
  • U.S. Salinity Laboratory Staff. (1954). Methods for soil characterization. p 83-147. In Diagnosis and improvement of saline and alkali soils. USDA-Agricultural Handbook No. 60. U.S. Government Printing Office, Washington, D.C.
  • Vahedi, R., Rasouli-Sadaghiani, M.H., Barin, M., & Vetukuri, R.R. (2022). Effect of Biochar and Microbial Inoculation on P, Fe, and Zn Bioavailability in a Calcareous Soil. Processes. https://doi.org/10.3390/pr10020343.
  • Van der Ent, S., Van Wees, S.C., & Pieterse, C.M. (2009). Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70(13-14): 1581-1588. https://doi.org/10.1016/j.phytochem.2009.06.009
  • Were, S.A., Narla, R., Mutitu, E.W., Muthomi, J.W., Munyua, L.M., Roobroeck, D., & Valauwe, B. (2021). Biochar and vermicompost soil amendments reduce root rot disease of common bean (Phaseolous Vulgaris L.). Afr J Biol Sci. 3, 176-196. https://doi.org/10.33472/AFJBS.3.1.2021.176-196.
  • Wu, Q.S., Zou, Y.N., & He, X.H. (2010). Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant. 32, 297-304. https://doi.org/I: 10.1007/s11738-009-0407-z.
  • Xu, G., Zhang, Y., Sun, J., & Shao, H. (2016). Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Sci Total Environ. 568, 910-915. https://doi.org/10.1016/j.scitotenv.2016.06.079.
  • Yao, Q., Liu, J., Yu, Z., Li, Y., Jin, J., Liu, X., & Wang, G. (2017). Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China. Soil Biol Biochem. 110, 56-67. https://doi.org/10.1016/j.soilbio.2017.03.005.
  • Zhang, S., Lehmann, A., Zheng, W., You, Z., & Rillig, M.C. (2019 a). Arbuscular Mycorrhizal Fungi İncrease Grain Yields: A Meta‐Analysis. New Phytol. 222, 543-555. https://doi.org/10.1111/nph.15570.
  • Zhang, J., Bai, Z., Huang, J., Hussain, S., Zhao, F., Zhu, C., Jin, Q. (2019 b). Biochar alleviated the salt stress of induced saline paddy soil and improved the biochemical characteristics of rice seedlings differing in salt tolerance. Soil tillage res. 195. 104372. https://doi.org/10.1016/j.still.2019.104372.
  • Zhuo, F., Zhang, X.F., Lei, L.L., Yan, T.X., Lu, R.R., Hu, Z.H., & Jing, Y.X. (2020). The effect of arbuscular mycorrhizal fungi and biochar on the growth and Cd/Pb accumulation in Zea mays. Int J Phytoremediation. 22, 1009-1018. https://doi.org/10.1080/15226514.2020.1725867.
Toplam 77 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fitopatoloji
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Hasret Güneş 0000-0003-3155-2695

Semra Demir 0000-0002-0177-7677

Çeknas Erdinç 0000-0003-1208-032X

Proje Numarası FDK-2020-8903
Erken Görünüm Tarihi 20 Mart 2025
Yayımlanma Tarihi 27 Mart 2025
Gönderilme Tarihi 19 Kasım 2024
Kabul Tarihi 1 Şubat 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 2

Kaynak Göster

APA Güneş, H., Demir, S., & Erdinç, Ç. (2025). How do AMF and Biochar Affect Pepper Growth and Nutrient Content under Biotic and Abiotic Stress?. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(2), 459-479. https://doi.org/10.18016/ksutarimdoga.vi.1587723

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149