Araştırma Makalesi
BibTex RIS Kaynak Göster

Bazı Turunçgil Anaç Popülasyonlarında Genom Büyüklüğü Farklılıklarının ve Ploidi Seviyelerinin Belirlenmesi

Yıl 2025, Cilt: 28 Sayı: 3, 736 - 745
https://doi.org/10.18016/ksutarimdoga.vi.1475151

Öz

Bitki ıslah çalışmalarında kullanılan bitki materyalinin ploidi seviyesini belirlemek, özellikle biyoteknoloji uygulamaları için büyük önem taşımaktadır. Turunçgillerdeki mevcut genetik çeşitlilik, farklı ıslah yöntemleriyle çeşitli iklim ve toprak koşullarına uyum sağlayan anaçlar ve çeşitlerin kullanımını mümkün kılmaktadır. Ticari turunçgiller için çeşitli uygun anaçlar kullanılmaktadır. Bu çalışma, dünya genelinde yaygın olarak kullanılan turunçgil anaçlarının flow sitometri ile genom büyüklüklerini ve ploidi seviyelerinin belirlenmesi amacıyla yürütülmüştür. Çalışmada Gou-Tou, C-35, Troyer Citrange, Taiwanica, Citremon, Yuzu, Sunki mandarin, Flying Dragon, Yuma Citrange, Macrophylla ve Çin portakalı anaçları kullanılmıştır. İlgili anaçlardan elde edilen taze yaprak dokuları standart tür olarak kullanılan triploid Tahiti limon yaprak dokusu ile karıştırılmış ve hücre çekirdekleri izole edilmiştir. Propidium iodid ile boyanmış hücreler flow sitometri ile okunmuş ve histogram ve sitogramlar elde edilmiştir. Elde edilen sonuçlara göre, tüm türlerin diploid genom büyüklüğüne sahip olmalarına karşın genom hacmi açısından türler arasında farklılıkların olduğu belirlenmiştir. Yuzu fidanlarının en büyük (0.808 pg/2C), Flying Dragon trifoliatın ise en küçük genom hacmine sahip olduğu (0.700 pg/2C) tespit edilmiştir.

Kaynakça

  • Ashkenazi, S., Asor, Z., & Rosenberg, O. (1992). High density citrus plantation-the use of flying dragon trifoliate as an interstock. In V International Symposium on Orchard and Plantation Systems 349, 203-204.
  • Aubert, B., & Vullin, G. (1998). Citrus nurseries and planting techniques. Editions Quae. Brummer, E.C., Cazcarro, P.M., & Luth, D. (1999). Ploidy determination of alfalfa germplasm accessions using flow cytometry. Crop science, 39(4), 1202-1207.
  • Cameron, J.W.F.H. (1968). Genetics, breeding and nucellar embryony. The citrus industry, 325-370.
  • Cimen, B. (2020). Induction of polyploidy in C35 citrange through in vitro colchicine treatments of seed-derived explants. International Journal of Fruit Science, 20(3), 1929-1941.
  • Davies, F.S., & Albrigo, L.G. (1994). Citrus. CAB International. Wallingford UK, 30-33.
  • Ellialtioglu, S.S., Sarı, N., & Abak, K. (2000). Haploid plant production. Plant biotechnology volume: I. (Ed: M Babaoglu, E Gurel, S Ozcan), s.138-189, Selcuk University Foundation Publications, Konya.
  • FAO, (2022). Primary Crops Production Datas. FAO Web Pages (http://www.fao.org).
  • Ferguson, J.J., & Chaparro, J. (2004). Dwarfing and freeze hardiness potential of trifoliate orange rootstocks: HS982/HS221, 10/2004. EDIS 2004(14).
  • Guo, W.W., Wu, R.C., Cheng, Y.J., & Deng, X.X. (2008). Regeneration and molecular characterisation of two interspecific somatic hybrids of citrus for potential rootstock improvement. The Journal of Horticultural Science and Biotechnology, 83(4), 407-410.
  • Jaskani, M.J., Abbas, H., Khan, M.M., Shahzad, U., & Hussain, Z. (2006). Morphological description of three potential citrus rootstocks. Pakistan Journal of Botany, 38(2), 311.
  • Johnson, P.G., Riordan, T.P., & Arumuganathan, K. (1998). Ploidy level determinations in buffalograss clones and populations. Crop science, 38(2), 478-482.
  • Kaya, C., Tiryaki, I., Sari, U., Tuna, M. (2020). Genetic relationship and nuclear DNA content variation in Tef [Eragrostis tef (Zucc.) Trotter] accessions. Molecular Biology Reports, 47, 4455-4463.
  • Kaya, M.M., & Sakiroglu, M. (2012). Estimating genome size and confirming ploidy levels of wild tetraploid alfalfa accessions (Medicago sativa subsp. ã varia) using flow cytometry. Turkish Journal of Field Crops, 17(2), 151-156.
  • Louzada, E.S., Del Rio, H.S., Setamou, M., Watson, J.W., & Swietlik, D.M. (2008). Evaluation of citrus rootstocks for the high pH, calcareous soils of South Texas. Euphytica, 164(1), 13-18.
  • Matheron, M.E., & Matejka, J.C. (1988). Persistance of systemic activity for fungicides applied to citrus trunks to control Phytophthora gummosis. Plant disease, 72(2), 170-174.
  • Mavioğlu Kaya, M. (2010). Medicago sativa subsp. varia populasyonlarının ploidi seviyesinin flow sitometri yöntemiyle belirlenmesi (Tez no: 294932). [Master's thesis, Kafkas University, Institute of Science, Department of Biology] Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Nakandala, U., Masouleh, A. K., Smith, M. W., Furtado, A., Mason, P., Constantin, L., & Henry, R. J. (2023). Haplotype resolved chromosome level genome assembly of Citrus australis reveals disease resistance and other citrus specific genes. Horticulture Research, 10(5), uhad058.
  • Narukulla, V., Lahane, Y., Fiske, K., Pandey, S., & Ziogas, V. (2023). Induction of polyploidy in citrus rootstocks through in vitro colchicine treatment of seed-derived explants. Agronomy, 13(6), 1442.
  • Navarro, L., & Juárez, J. (2007). Shoot-tip grafting in vitro: impact in the citrus industry and research applications. Citrus genetics, breeding and biotechnology, 353-364.
  • Nix, J., Ranney, T. G., Lynch, N. P., & Chen, H. (2024). Flow Cytometry for Estimating Plant Genome Size: Revisiting Assumptions, Sources of Variation, Reference Standards, and Best Practices. J. Amer. Soc. Hort. Sci., 149(3), 131-141.
  • Ohri, D. (1998). Genome size variation and plant systematics. Annals of botany 82, 75-83.
  • Ollitrault, P., & Michaux-Ferrière, N. (1994). Application of flow cytometry for citrus genetic and breeding. ISC.
  • Ollitrault, P., Dambier, D., Luro, F., & Duperray, C. (1994). Nuclear genome size variations in citrus. Fruits 49(5-6), 390-393.
  • Ollitrault, P., Froelicher, Y., Dambier, D., Luro, F., & Yamamoto, M. (2007). Seedlessness and ploidy manipulations. Citrus genetics, breeding and biotechnology, 197-218.
  • Ozcan, M.O., & Ulubelde, M. (1984). Citrus rootstocks. Ege Region Agricultural Research Institute Publications No: 50 Menemen / İzmir.
  • Ozkan, H., Tuna, M., & Arumuganathan, K. (2003). Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops-Triticum) group. Journal of Heredity, 94(3), 260-264.
  • Palomino, G., Dolezeli J., Mendez, I., & Rubluo, A. (2003). Nuclear genome size analysis of Agave tequilana Weber. Caryologia, 56(1), 37-46.
  • Polatöz, S. (1995). Bazı Yerli ve Yabancı Kökenli Nuseller Portakal Klonlarının Adana Koşullarında Meyve Verim ve Kalite Özelliklerinin Belirlenmesi. [Master Thesis, Çukurova University Institute of Natural and Applied Sciences Department of Horticulture] Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Price, H.J., & Bachmann, K. (1975). DNA content and evolution in the Microseridinae. American Journal of Botany, 62(3), 262-267.
  • Rees, H., Walters, M.R. (1965). Nuclear DNA and the evolution of wheat. Heredity, 20(1), 73-82.
  • Rom, R.C., Carlson, R.F. (1987). Rootstocks for fruit crops (No. 634.0432 R6).
  • Salameh, N.M. (2014). Flow cytometric analysis of nuclear DNA between okra landraces (Abelmoschus esculentus L.). American Journal of Agricultural and Biological Sciences 9(2), 245-250.
  • Saunt, J. (2000). Citrus varieties of the world 2nd ed Sinclair International Norwich.
  • Seker, M., Tuzcu, O., Ollitrault, P. (2003). Comparison of nuclear DNA content of citrus rootstock populations by flow cytometry analysis. Plant Breeding, 122(2), 169-172.
  • Šimoníková, D., Čížková, J., Zoulová, V., Christelová, P., Hřibová, E. (2022). Advances in the molecular cytogenetics of bananas, family Musaceae. Plants, 11, 482.
  • Soni, A., Constantin, L., Furtado, A., & Henry, R. (2024). A flow cytometry protocol for accurate and precise measurement of plant genome size using frozen material. bioRxiv, 2024-02.
  • Swift, H. (1950). The constancy of desoxyribose nucleic acid in plant nuclei. Proceedings of the National Academy of Sciences of the United States of America, 36(11), 643.
  • Tuna, M. (2014). Flow cytometry and its use in agricultural research. II. Flow Cytometry and its use in agricultural research Education Program Notes, Namık Kemal University Faculty of Agriculture Department of Horticulture, Tekirdağ, 16-17.
  • Tuna, M., Vogel, K. P., Arumuganathan, K., & Gill, K. S. (2001). DNA content and ploidy determination of bromegrass germplasm accessions by flow cytometry. Crop Science, 41(5), 1629-1634.

Determination of Genome Size Differentiation and Ploidy Levels in Some Citrus Rootstock Populations

Yıl 2025, Cilt: 28 Sayı: 3, 736 - 745
https://doi.org/10.18016/ksutarimdoga.vi.1475151

Öz

Determining the ploidy level of plant material used in breeding studies is of great importance, especially for biotechnology applications. The existing genetic diversity in citrus allows the use of rootstocks and varieties that can be adapted to different climatic and soil conditions through different breeding methods. Several suitable rootstocks are used for commercial citrus. This study was conducted to determine the genome size and ploidy levels of citrus rootstocks widely used worldwide using flow cytometry. The rootstocks used in the study included Gou-Tou, C-35, Troyer citrus, Taiwanica, Citremon, Yuzu, Sunki mandarin, Flying Dragon, Yuma citrus, Macrophylla and Chinese orange. Fresh leaf tissue from each rootstock was mixed with triploid Tahitian lemon leaf tissue, used as a standard species, and cell nuclei were isolated. The cells stained with propidium iodide were analysed by flow cytometry, and histograms and cytograms were obtained. According to the results, although all species had diploid genome sizes, differences were observed between species in terms of genome volume. Yuzu seedlings were found to have the largest genome size (0.808 pg/2C), while Flying Dragon trifoliate had the smallest genome size (0.700 pg/2C).

Kaynakça

  • Ashkenazi, S., Asor, Z., & Rosenberg, O. (1992). High density citrus plantation-the use of flying dragon trifoliate as an interstock. In V International Symposium on Orchard and Plantation Systems 349, 203-204.
  • Aubert, B., & Vullin, G. (1998). Citrus nurseries and planting techniques. Editions Quae. Brummer, E.C., Cazcarro, P.M., & Luth, D. (1999). Ploidy determination of alfalfa germplasm accessions using flow cytometry. Crop science, 39(4), 1202-1207.
  • Cameron, J.W.F.H. (1968). Genetics, breeding and nucellar embryony. The citrus industry, 325-370.
  • Cimen, B. (2020). Induction of polyploidy in C35 citrange through in vitro colchicine treatments of seed-derived explants. International Journal of Fruit Science, 20(3), 1929-1941.
  • Davies, F.S., & Albrigo, L.G. (1994). Citrus. CAB International. Wallingford UK, 30-33.
  • Ellialtioglu, S.S., Sarı, N., & Abak, K. (2000). Haploid plant production. Plant biotechnology volume: I. (Ed: M Babaoglu, E Gurel, S Ozcan), s.138-189, Selcuk University Foundation Publications, Konya.
  • FAO, (2022). Primary Crops Production Datas. FAO Web Pages (http://www.fao.org).
  • Ferguson, J.J., & Chaparro, J. (2004). Dwarfing and freeze hardiness potential of trifoliate orange rootstocks: HS982/HS221, 10/2004. EDIS 2004(14).
  • Guo, W.W., Wu, R.C., Cheng, Y.J., & Deng, X.X. (2008). Regeneration and molecular characterisation of two interspecific somatic hybrids of citrus for potential rootstock improvement. The Journal of Horticultural Science and Biotechnology, 83(4), 407-410.
  • Jaskani, M.J., Abbas, H., Khan, M.M., Shahzad, U., & Hussain, Z. (2006). Morphological description of three potential citrus rootstocks. Pakistan Journal of Botany, 38(2), 311.
  • Johnson, P.G., Riordan, T.P., & Arumuganathan, K. (1998). Ploidy level determinations in buffalograss clones and populations. Crop science, 38(2), 478-482.
  • Kaya, C., Tiryaki, I., Sari, U., Tuna, M. (2020). Genetic relationship and nuclear DNA content variation in Tef [Eragrostis tef (Zucc.) Trotter] accessions. Molecular Biology Reports, 47, 4455-4463.
  • Kaya, M.M., & Sakiroglu, M. (2012). Estimating genome size and confirming ploidy levels of wild tetraploid alfalfa accessions (Medicago sativa subsp. ã varia) using flow cytometry. Turkish Journal of Field Crops, 17(2), 151-156.
  • Louzada, E.S., Del Rio, H.S., Setamou, M., Watson, J.W., & Swietlik, D.M. (2008). Evaluation of citrus rootstocks for the high pH, calcareous soils of South Texas. Euphytica, 164(1), 13-18.
  • Matheron, M.E., & Matejka, J.C. (1988). Persistance of systemic activity for fungicides applied to citrus trunks to control Phytophthora gummosis. Plant disease, 72(2), 170-174.
  • Mavioğlu Kaya, M. (2010). Medicago sativa subsp. varia populasyonlarının ploidi seviyesinin flow sitometri yöntemiyle belirlenmesi (Tez no: 294932). [Master's thesis, Kafkas University, Institute of Science, Department of Biology] Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Nakandala, U., Masouleh, A. K., Smith, M. W., Furtado, A., Mason, P., Constantin, L., & Henry, R. J. (2023). Haplotype resolved chromosome level genome assembly of Citrus australis reveals disease resistance and other citrus specific genes. Horticulture Research, 10(5), uhad058.
  • Narukulla, V., Lahane, Y., Fiske, K., Pandey, S., & Ziogas, V. (2023). Induction of polyploidy in citrus rootstocks through in vitro colchicine treatment of seed-derived explants. Agronomy, 13(6), 1442.
  • Navarro, L., & Juárez, J. (2007). Shoot-tip grafting in vitro: impact in the citrus industry and research applications. Citrus genetics, breeding and biotechnology, 353-364.
  • Nix, J., Ranney, T. G., Lynch, N. P., & Chen, H. (2024). Flow Cytometry for Estimating Plant Genome Size: Revisiting Assumptions, Sources of Variation, Reference Standards, and Best Practices. J. Amer. Soc. Hort. Sci., 149(3), 131-141.
  • Ohri, D. (1998). Genome size variation and plant systematics. Annals of botany 82, 75-83.
  • Ollitrault, P., & Michaux-Ferrière, N. (1994). Application of flow cytometry for citrus genetic and breeding. ISC.
  • Ollitrault, P., Dambier, D., Luro, F., & Duperray, C. (1994). Nuclear genome size variations in citrus. Fruits 49(5-6), 390-393.
  • Ollitrault, P., Froelicher, Y., Dambier, D., Luro, F., & Yamamoto, M. (2007). Seedlessness and ploidy manipulations. Citrus genetics, breeding and biotechnology, 197-218.
  • Ozcan, M.O., & Ulubelde, M. (1984). Citrus rootstocks. Ege Region Agricultural Research Institute Publications No: 50 Menemen / İzmir.
  • Ozkan, H., Tuna, M., & Arumuganathan, K. (2003). Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops-Triticum) group. Journal of Heredity, 94(3), 260-264.
  • Palomino, G., Dolezeli J., Mendez, I., & Rubluo, A. (2003). Nuclear genome size analysis of Agave tequilana Weber. Caryologia, 56(1), 37-46.
  • Polatöz, S. (1995). Bazı Yerli ve Yabancı Kökenli Nuseller Portakal Klonlarının Adana Koşullarında Meyve Verim ve Kalite Özelliklerinin Belirlenmesi. [Master Thesis, Çukurova University Institute of Natural and Applied Sciences Department of Horticulture] Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Price, H.J., & Bachmann, K. (1975). DNA content and evolution in the Microseridinae. American Journal of Botany, 62(3), 262-267.
  • Rees, H., Walters, M.R. (1965). Nuclear DNA and the evolution of wheat. Heredity, 20(1), 73-82.
  • Rom, R.C., Carlson, R.F. (1987). Rootstocks for fruit crops (No. 634.0432 R6).
  • Salameh, N.M. (2014). Flow cytometric analysis of nuclear DNA between okra landraces (Abelmoschus esculentus L.). American Journal of Agricultural and Biological Sciences 9(2), 245-250.
  • Saunt, J. (2000). Citrus varieties of the world 2nd ed Sinclair International Norwich.
  • Seker, M., Tuzcu, O., Ollitrault, P. (2003). Comparison of nuclear DNA content of citrus rootstock populations by flow cytometry analysis. Plant Breeding, 122(2), 169-172.
  • Šimoníková, D., Čížková, J., Zoulová, V., Christelová, P., Hřibová, E. (2022). Advances in the molecular cytogenetics of bananas, family Musaceae. Plants, 11, 482.
  • Soni, A., Constantin, L., Furtado, A., & Henry, R. (2024). A flow cytometry protocol for accurate and precise measurement of plant genome size using frozen material. bioRxiv, 2024-02.
  • Swift, H. (1950). The constancy of desoxyribose nucleic acid in plant nuclei. Proceedings of the National Academy of Sciences of the United States of America, 36(11), 643.
  • Tuna, M. (2014). Flow cytometry and its use in agricultural research. II. Flow Cytometry and its use in agricultural research Education Program Notes, Namık Kemal University Faculty of Agriculture Department of Horticulture, Tekirdağ, 16-17.
  • Tuna, M., Vogel, K. P., Arumuganathan, K., & Gill, K. S. (2001). DNA content and ploidy determination of bromegrass germplasm accessions by flow cytometry. Crop Science, 41(5), 1629-1634.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Biyoteknolojisi, Meyve Yetiştirme ve Islahı
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Sefa Polatöz 0000-0001-8219-3325

Murat Şeker 0000-0002-6886-0547

Çağlar Kaya 0000-0002-7054-3081

Erken Görünüm Tarihi 3 Mayıs 2025
Yayımlanma Tarihi
Gönderilme Tarihi 29 Nisan 2024
Kabul Tarihi 3 Mayıs 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 3

Kaynak Göster

APA Polatöz, S., Şeker, M., & Kaya, Ç. (2025). Determination of Genome Size Differentiation and Ploidy Levels in Some Citrus Rootstock Populations. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(3), 736-745. https://doi.org/10.18016/ksutarimdoga.vi.1475151

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149