Dışardan Uygulanan SiO2 Nanopartiküllerinin Yabani ve Kültür Nohut Bitkilerinde Kuraklık Stresi Toleransına Etkileri
Yıl 2025,
Cilt: 28 Sayı: 3, 807 - 819
Eray Şimşek
,
Elif Tiryaki
,
Büşra Tataş
,
Sertan Çevik
Öz
Kuraklık, bitki büyümesini sınırlayan en önemli stres faktörlerinden biridir. Birçok çalışma, bitkilerin kuraklığa karşı toleransını artırma yöntemlerine odaklanmıştır. Son zamanlarda ise özellikle nanoteknoloji alanındaki ilerlemelerle güçlenen nanomalzemelerin bitkilere dıştan uygulamalarına odaklanılmıştır. Silikon, kuraklık dahil olmak üzere farklı stres faktörlerine karşı bazı bitkileri destekler gibi görünmektedir. Buna rağmen, yabani ve kültür nohutlarında kuraklık toleransını artırmak için silikon kullanımına dair kayda değer bir çalışma eksikliği vardır. Bu çalışmada, kültür ve yabani olmak üzere iki nohut türünde, kuraklık stresi altında 150 mg/L SiO₂ nanopartikül spreylemesi uygulanmıştır. Bitkilerin kuraklık toleransındaki değişimi belirlemek amacıyla morfolojik, fizyolojik ve biyokimyasal özelliklerdeki değişiklikler analiz edilmiştir. Kuraklık stresi altında, SiO₂ uygulaması her iki türde de antioksidan enzimlerin aktivitelerini artırmıştır. Benzer şekilde, nanopartikül uygulaması bitkilerin bazı büyüme özelliklerini de artırmıştır. Ayrıca, kurak koşullarda SiO₂ uygulanan bitkilerde yaprak oransal su içeriğinde önemli artışlar tespit edilmiştir. Bu çalışmada, SiO₂ nanopartikül uygulamasının yabani ve kültür nohut bitkilerinin stres toleransı üzerindeki etkisi incelenmiştir. Sonuçlar temel olarak, SiO2 NP'lerin dışsal olarak uygulamasının, hem yabani hem de kültür nohut türlerinde su durumu ve büyüme parametrelerini uyararak ve antioksidan enzimlerin aktivitelerini artırarak kuraklığa toleransı artırdığını göstermiştir.
Etik Beyan
Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz
ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun
davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak
gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir
değişiklik yapmadığımı, çalışmanın Committee on Publication Ethics (COPE)' in tüm şartlarını
ve koşullarını kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim.
Destekleyen Kurum
TUBİTAK ve HÜBAP
Proje Numarası
1919B012203485 ve 22275
Teşekkür
Research funding for this study was partly provided by The Scientific and Technological Research Council of Turkey (TUBITAK-2209) with the project number 1919B012203485 and Harran University Scientific Research Council (HUBAP) with the project number 22275.
Kaynakça
- Abd-El-Aty, M. S., Kamara, M. M., Elgamal, W. H., Mesbah, M. I., Abomarzoka, E. A., Alwutayd, K. M., Mansour, E., Ben Abdelmalek, I., Behiry, S. I., Almoshadak, A. S., & Abdelaal, K. (2024). Exogenous application of nano-silicon, potassium sulfate, or proline enhances physiological parameters, antioxidant enzyme activities, and agronomic traits of diverse rice genotypes under water deficit conditions. Heliyon, 10(5), e26077. https://doi.org/10.1016/j.heliyon.2024.e26077
- Aebi, H. (1984). [13] Catalase in vitro. In Methods in Enzymology (Vol. 105, pp. 121–126). Academic Press. https://doi.org/10.1016/S0076-6879(84)05016-3
- Ahmed, F., Javed, B., Razzaq, A., & Mashwani, Z.-R. (2021). Applications of copper and silver nanoparticles on wheat plants to induce drought tolerance and increase yield. IET Nanobiotechnology, 15(1), 68–78. https://doi.org/10.1049/nbt2.12002
- Alharbi, K., Rashwan, E., Mohamed, H. H., Awadalla, A., Omara, A. E.-D., Hafez, E. M., & Alshaal, T. (2022). Application of Silica Nanoparticles in Combination with Two Bacterial Strains Improves the Growth, Antioxidant Capacity and Production of Barley Irrigated with Saline Water in Salt-Affected Soil. Plants, 11(15), Article 15. https://doi.org/10.3390/plants11152026
- Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/BF00018060
- Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security: An overview. Plant Pathology, 60(1), 2–14. https://doi.org/10.1111/j.1365-3059.2010.02411.x
- Chandra, J., Chauhan, R., Korram, J., Satnami, M. L., & Keshavkant, S. (2020). Silica nanoparticle minimizes aluminium imposed injuries by impeding cytotoxic agents and over expressing protective genes in Cicer arietinum. Scientia Horticulturae, 260, 108885. https://doi.org/10.1016/j.scienta.2019.108885
- Chauhan, J., Srivastava, J. P., Singhal, R. K., Soufan, W., Dadarwal, B. K., Mishra, U. N., Anuragi, H., Rahman, M. A., Sakran, M. I., Brestic, M., Zivcak, M., Skalicky, M., & Sabagh, A. E. (2022). Alterations of Oxidative Stress Indicators, Antioxidant Enzymes, Soluble Sugars, and Amino Acids in Mustard [Brassica juncea (L.) Czern and Coss.] in Response to Varying Sowing Time, and Field Temperature. Frontiers in Plant Science, 13, 1-15. https://doi.org/10.3389/fpls.2022.875009
- Coyne, C. J., Kumar, S., von Wettberg, E. J. B., Marques, E., Berger, J. D., Redden, R. J., Ellis, T. H. N., Brus, J., Zablatzká, L., & Smýkal, P. (2020). Potential and limits of exploitation of crop wild relatives for pea, lentil, and chickpea improvement. Legume Science, 2(2), e36. https://doi.org/10.1002/leg3.36
- Debona, D., Rodrigues, F. A., & Datnoff, L. E. (2017). Silicon’s Role in Abiotic and Biotic Plant Stresses. Annual Review of Phytopathology, 55, 85–107. https://doi.org/10.1146/ANNUREV-PHYTO-080516-035312
- Dikilitas, M., Simsek, E., & Roychoudhury, A. (2020). Role of proline and glycine betaine in overcoming abiotic stresses. In A. Roychoudhury & D. K. Tripathi (Eds.), Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives, (pp. 1-23). John Wiley & Sons Ltd.
https://doi.org/10.1002/9781119552154.ch1
- Du, J., Liu, B., Zhao, T., Xu, X., Lin, H., Ji, Y., Li, Y., Li, Z., Lu, C., Li, P., Zhao, H., Li, Y., Yin, Z., & Ding, X. (2022). Silica nanoparticles protect rice against biotic and abiotic stresses. Journal of Nanobiotechnology, 20(1), 197. https://doi.org/10.1186/s12951-022-01420-x
- Dura, O., & Kepenekçi, İ. (2022). Bazı Nanogümüş Partiküllü (AgNPs) Bitki Su Ekstraklarının Kök-Ur Nematodu, Meloidogyne incognita (Kofoid & White) Chitwood (Nematoda: Meloidogynidae)’ya Karşı İn vitro Koşullarda Etkinliğinin Belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 25(6), 1390-1400. https://doi.org/10.18016/ksutarimdoga.vi.994761
- Elshayb, O. M., Nada, A. M., Ibrahim, H. M., Amin, H. E., & Atta, A. M. (2021). Application of Silica Nanoparticles for Improving Growth, Yield, and Enzymatic Antioxidant for the Hybrid Rice EHR1 Growing under Water Regime Conditions. Materials, 14(5), Article 5. https://doi.org/10.3390/ma14051150
- Fatemi, H., Esmaiel Pour, B., & Rizwan, M. (2021). Foliar application of silicon nanoparticles affected the growth, vitamin C, flavonoid, and antioxidant enzyme activities of coriander (Coriandrum sativum L.) plants grown in lead (Pb)-spiked soil. Environmental Science and Pollution Research, 28(2), 1417–1425.
https://doi.org/10.1007/s11356-020-10549-x
- Feng, S., Sultana, S., Sikdar, A., Roy, R., Wang, J., & Huang, Y. (2023). Lipid Peroxidation, Antioxidant Enzyme Activities, and Osmotic Adjustment in Platycladus orientalis and Amorpha fruticosa Differ during Drought and Rewatering. Forests, 14(5), Article 5. https://doi.org/10.3390/f14051019
- Gaur, P. M., Samineni, S., Thudi, M., Tripathi, S., Sajja, S. B., Jayalakshmi, V., Mannur, D. M., Vijayakumar, A. G., Ganga Rao, N. V. P. R., Ojiewo, C., Fikre, A., Kimurto, P., Kileo, R. O., Girma, N., Chaturvedi, S. K., Varshney, R. K., & Dixit, G. P. (2019). Integrated breeding approaches for improving drought and heat adaptation in chickpea (Cicer arietinum L.). Plant Breeding, 138(4), 389–400. https://doi.org/10.1111/pbr.12641
- Hajizadeh, H. S., Azizi, S., Rasouli, F., & Okatan, V. (2022). Modulation of physiological and biochemical traits of two genotypes of Rosa damascena Mill. By SiO2-NPs under In vitro drought stress. BMC Plant Biology, 22(1), 538. https://doi.org/10.1186/s12870-022-03915-z
- Heikal, Y. M., El-Esawi, M. A., El-Ballat, E. M., & Abdel-Aziz, H. M. M. (2023). Applications of nanoparticles for mitigating salinity and drought stress in plants: An overview on the physiological, biochemical and molecular genetic aspects. New Zealand Journal of Crop and Horticultural Science, 51(3), 297–327.
https://doi.org/10.1080/01140671.2021.2016870
- Huang, Q., Ayyaz, A., Farooq, M. A., Zhang, K., Chen, W., Hannan, F., Sun, Y., Shahzad, K., Ali, B., & Zhou, W. (2024). Silicon dioxide nanoparticles enhance plant growth, photosynthetic performance, and antioxidants defence machinery through suppressing chromium uptake in Brassica napus L. Environmental Pollution, 342, 123013. https://doi.org/10.1016/j.envpol.2023.123013
- Irfan, M., Maqsood, M. A., Rehman, H. ur, Mahboob, W., Sarwar, N., Hafeez, O. B. A., Hussain, S., Ercisli, S., Akhtar, M., & Aziz, T. (2023). Silicon Nutrition in Plants under Water-Deficit Conditions: Overview and Prospects. Water, 15(4), Article 4. https://doi.org/10.3390/w15040739
- Kalal, P. R., Tomar, R. S., & Jajoo, A. (2022). SiO2 nanopriming protects PS I and PSII complexes in wheat under drought stress. Plant Nano Biology, 2, 100019. https://doi.org/10.1016/j.plana.2022.100019.
- Kapazoglou, A., Gerakari, M., Lazaridi, E., Kleftogianni, K., Sarri, E., Tani, E., & Bebeli, P. J. (2023). Crop Wild Relatives: A Valuable Source of Tolerance to Various Abiotic Stresses. Plants, 12(2), 328. https://doi.org/10.3390/plants12020328.
- Kandhol, N., Jain, M., & Tripathi, D. K. (2022). Nanoparticles as potential hallmarks of drought stress tolerance in plants. Physiologia Plantarum, 174(2), e13665. https://doi.org/10.1111/ppl.13665
- Kumar, M., Chauhan, A. S., Kumar, M., Yusuf, M. A., Sanyal, I., & Chauhan, P. S. (2019). Transcriptome Sequencing of Chickpea (Cicer arietinum L.) Genotypes for Identification of Drought-Responsive Genes Under Drought Stress Condition. Plant Molecular Biology Reporter, 37(3), 186–203. https://doi.org/10.1007/s11105-019-01147-4
- Li, Z., Song, Z., Yan, Z., Hao, Q., Song, A., Liu, L., Yang, X., Xia, S., & Liang, Y. (2018). Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis. Agronomy for Sustainable Development, 38(3), 26. https://doi.org/10.1007/s13593-018-0496-4
- Maqbool, M. A., Aslam, M., & Ali, H. (2017). Breeding for improved drought tolerance in Chickpea (Cicer arietinum L.). Plant Breeding, 136(3), 300–318. https://doi.org/10.1111/pbr.12477
- Millan, T., Clarke, H. J., Siddique, K. H. M., Buhariwalla, H. K., Gaur, P. M., Kumar, J., Gil, J., Kahl, G., & Winter, P. (2006). Chickpea molecular breeding: New tools and concepts. Euphytica, 147(1), 81–103. https://doi.org/10.1007/s10681-006-4261-4
- Mohamadzadeh, M., Janmohammadi, M., Abbasi, A., Sabaghnia, N., & Ion, V. (2023). Physiochemical response of Cicer arietinum to zinc-containing mesoporous silica nanoparticles under water stress. BioTechnologia, 104(3), 263–273. https://doi.org/10.5114/bta.2023.130729
- Mohamed, N. G., & Abdel-Hakeem, M. A. (2023). Chitosan nanoparticles enhance drought tolerance in tomatoes (Solanum lycopersicum L) via gene expression modulation. Plant Gene, 34, 100406. https://doi.org/10.1016/j.plgene.2023.100406
- Mohammadi, H., Esmailpour, M., Gheranpaye, A. (2016). Effects of TiO2 nanoparticles and water-deficit stress on morpho-physiological characteristics of dragonhead (Dracocephalum moldavica l.) plants. Acta Agricul. Slo. 107, 385–396. doi: 10.14720/aas.2016.107.2.11
- Mukarram, M., Petrik, P., Mushtaq, Z., Khan, M. M. A., Gulfishan, M., & Lux, A. (2022). Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules. Environmental Pollution, 310, 119855. https://doi.org/10.1016/j.envpol.2022.119855
- Nadeem, M., Li, J., Yahya, M., Sher, A., Ma, C., Wang, X., & Qiu, L. (2019). Research Progress and Perspective on Drought Stress in Legumes: A Review. International Journal of Molecular Sciences, 20(10), Article 10. https://doi.org/10.3390/ijms20102541
- Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3
- Raza, M. A. S., Zulfiqar, B., Iqbal, R., Muzamil, M. N., Aslam, M. U., Muhammad, F., Amin, J., Aslam, H. M. U., Ibrahim, M. A., Uzair, M., & Habib-ur-Rahman, M. (2023). Morpho-physiological and biochemical response of wheat to various treatments of silicon nano-particles under drought stress conditions. Scientific Reports, 13(1), Article 1. https://doi.org/10.1038/s41598-023-29784-6
- Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants, 10(2), Article 2. https://doi.org/10.3390/plants10020259
- Sharf-Eldin, A. A., Alwutayd, K. M., El-Yazied, A. A., El-Beltagi, H. S., Alharbi, B. M., Eisa, M. A. M., Alqurashi, M., Sharaf, M., Al-Harbi, N. A., Al-Qahtani, S. M., & Ibrahim, M. F. M. (2023). Response of Maize Seedlings to Silicon Dioxide Nanoparticles (SiO2NPs) under Drought Stress. Plants, 12(14), Article 14. https://doi.org/10.3390/plants12142592
- Smart, R. E., & Bingham, G. E. (1974). Rapid Estimates of Relative Water Content. Plant Physiology, 53(2), 258–260. https://doi.org/10.1104/pp.53.2.258
- Soylu, S., Kara, M., Türkmen, M., & Şahin, B. (2022). Synergistic effect of Foeniculum vulgare essential oil on the antibacterial activities of Ag- and Cu-substituted ZnO nanorods (ZnO-NRs) against food, human and plant pathogenic bacterial disease agents. Inorganic Chemistry Communications, 146, 110103. https://doi.org/10.1016/j.inoche.2022.110103
- Şahin, B., Soylu, S., Kara, M., Türkmen, M., Aydin, R., & Çetin, H. (2021). Superior antibacterial activity against seed-borne plant bacterial disease agents and enhanced physical properties of novel green synthesized nanostructured ZnO using Thymbra spicata plant extract. Ceramics International, 47, 341-350.
https://doi.org/10.1016/j.ceramint.2020.08.139
- Şahin, B., Aydin, R., Soylu, S., Türkmen, M., Kara, M., Akkaya, A., Çetin, H., & Ayyıldız, E. (2022). The effect of Thymus syriacus plant extract on the main physical and antibacterial activities of ZnO nanoparticles synthesized by SILAR Method. Inorganic Chemistry Communications, 135, 109088.
https://doi.org/10.1016/j.inoche.2021.109088
- Thudi, M., Upadhyaya, H. D., Rathore, A., Gaur, P. M., Krishnamurthy, L., Roorkiwal, M., Nayak, S. N., Chaturvedi, S. K., Basu, P. S., Gangarao, N. V. P. R., Fikre, A., Kimurto, P., Sharma, P. C., Sheshashayee, M. S., Tobita, S., Kashiwagi, J., Ito, O., Killian, A., & Varshney, R. K. (2014). Genetic Dissection of Drought and Heat Tolerance in Chickpea through Genome-Wide and Candidate Gene-Based Association Mapping Approaches. PLOS ONE, 9(5), e96758. https://doi.org/10.1371/journal.pone.0096758
- Uddin, M., Bhat, U. H., Singh, S., Singh, S., Chishti, A. S., & Khan, M. M. A. (2023). Combined application of SiO2 and TiO2 nanoparticles enhances growth characters, physiological attributes and essential oil production of Coleus aromatics Benth. Heliyon, 9(11), e21646. https://doi.org/10.1016/j.heliyon.2023.e21646.
- Quezada-Martinez, D., Addo Nyarko, C. P., Schiessl, S. V., & Mason, A. S. (2021). Using wild relatives and related species to build climate resilience in Brassica crops. Theoretical and Applied Genetics, 134(6), 1711-1728. https://doi.org/10.1007/s00122-021-03793-3.
- Van Nguyen, D., Nguyen, H. M., Le, N. T., Nguyen, K. H., Nguyen, H. T., Le, H. M., ... & Van Ha, C. (2022). Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. Journal of Plant Growth Regulation, 41(1), 364-375. https://doi.org/10.1007/s00344-021-10301-w
- Wahab, A., Abdi, G., Saleem, M. H., Ali, B., Ullah, S., Shah, W., Mumtaz, S., Yasin, G., Muresan, C. C., & Marc, R. A. (2022). Plants’ Physio-Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A Comprehensive Review. Plants, 11(13), Article 13. https://doi.org/10.3390/plants11131620
- Wang, L., Ning, C., Pan, T., & Cai, K. (2022). Role of Silica Nanoparticles in Abiotic and Biotic Stress Tolerance in Plants: A Review. International Journal of Molecular Sciences, 23(4), Article 4. https://doi.org/10.3390/ijms23041947
- Wang, X., Xie, H., Wang, P., & Yin, H. (2023). Nanoparticles in Plants: Uptake, Transport and Physiological Activity in Leaf and Root. Materials, 16(8), Article 8. https://doi.org/10.3390/ma16083097
- Wang, X., Li, Q., Pei, Z., Wang, S. (2018). Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biol. Plant 62, 801–808. doi: 10.1007/s10535-018-0813-4
- Yıldız, Ş. (2018). Kuraklık stresi altındaki arpa bitkilerinin yapraklarına SiO2 nanopartikül uygulamasının etkilerinin incelenmesi (Tez no 533009). [Yüksek Lisans Tezi, Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü Biyoteknoloji Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
- Zahedi, S. M., Hosseini, M. S., Fahadi Hoveizeh, N., Kadkhodaei, S., & Vaculík, M. (2023). Comparative morphological, physiological and molecular analyses of drought-stressed strawberry plants affected by SiO2 and SiO2-NPs foliar spray. Scientia Horticulturae, 309, 111686. https://doi.org/10.1016/j.scienta.2022.111686
- Zhang, H., Sun, X., & Dai, M. (2022). Improving crop drought resistance with plant growth regulators and rhizobacteria: Mechanisms, applications, and perspectives. Plant Communications, 3(1), 100228. https://doi.org/10.1016/j.xplc.2021.100228
- Zhang, Y., Liu, N., Wang, W., Sun, J., Zhu, L. (2020). Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa l.) growth by TiO2 nanoparticles. Front. Environ. Sci. Engin. 14, 1–12. doi: 10.1007/s11783-020-1282-5
Effects of Exogenous Application of SiO2 Nanoparticles Enhances Drought Stress Tolerance in Wild and Cultivated Chickpea Plants
Yıl 2025,
Cilt: 28 Sayı: 3, 807 - 819
Eray Şimşek
,
Elif Tiryaki
,
Büşra Tataş
,
Sertan Çevik
Öz
Drought is one of the most significant stress factors that constrain plant growth. Many studies focused on methods to enhance the plant stress tolerance against drought. Recently, the focus has been on the exogenous applications and, in particular, the nanomaterials powered by advancements in the field of nanotechnology. Silicon appears to support some plants against different stress factors, including drought. Despite this, there is a remarkable lack of studies on the use of silicon for enhancing drought tolerance in wild and cultivated chickpeas. In this study, 150 mg L-1 SiO2 nanoparticle spraying was applied to two chickpea varieties, cultivated and wild, under drought stress. Changes were analyzed in morphological, physiological, and biochemical traits to find the change in plants' drought tolerance. Under drought stress, SiO2 treatment increased antioxidant enzyme activities in both species. Similarly, nanoparticle treatment increased some growth characteristics of plants. Additionally, significant increases in leaf relative water content were detected in plants treated with SiO₂ under drought conditions. In this study, the effect of SiO2 nanoparticle application on the stress tolerance of wild and cultivated chickpea plants has been studied. Basically, the results showed that exogenous application of SiO2 NPs increases drought tolerance by stimulating water status and growth parameters, and by activities of antioxidant enzymes in both wild and cultivated species of chickpea.
Etik Beyan
I declare that this study is an original work; that I have adhered to the scientific ethical principles and rules at all stages of the study, including preparation, data collection, analysis, and presentation of information; that I have cited all data and information not obtained within the scope of this study and included these sources in the bibliography; that I have not made any changes to the used data; and that I have complied with all ethical duties and responsibilities by accepting all the terms and conditions of the Committee on Publication Ethics (COPE).
Destekleyen Kurum
The Scientific and Technological Research Council of Turkey (TUBITAK) and Harran University Scientific Research Council (HUBAP)
Proje Numarası
1919B012203485 ve 22275
Teşekkür
Research funding for this study was partly provided by The Scientific and Technological Research Council of Turkey (TUBITAK-2209) with the project number 1919B012203485 and Harran University Scientific Research Council (HUBAP) with the project number 22275.
Kaynakça
- Abd-El-Aty, M. S., Kamara, M. M., Elgamal, W. H., Mesbah, M. I., Abomarzoka, E. A., Alwutayd, K. M., Mansour, E., Ben Abdelmalek, I., Behiry, S. I., Almoshadak, A. S., & Abdelaal, K. (2024). Exogenous application of nano-silicon, potassium sulfate, or proline enhances physiological parameters, antioxidant enzyme activities, and agronomic traits of diverse rice genotypes under water deficit conditions. Heliyon, 10(5), e26077. https://doi.org/10.1016/j.heliyon.2024.e26077
- Aebi, H. (1984). [13] Catalase in vitro. In Methods in Enzymology (Vol. 105, pp. 121–126). Academic Press. https://doi.org/10.1016/S0076-6879(84)05016-3
- Ahmed, F., Javed, B., Razzaq, A., & Mashwani, Z.-R. (2021). Applications of copper and silver nanoparticles on wheat plants to induce drought tolerance and increase yield. IET Nanobiotechnology, 15(1), 68–78. https://doi.org/10.1049/nbt2.12002
- Alharbi, K., Rashwan, E., Mohamed, H. H., Awadalla, A., Omara, A. E.-D., Hafez, E. M., & Alshaal, T. (2022). Application of Silica Nanoparticles in Combination with Two Bacterial Strains Improves the Growth, Antioxidant Capacity and Production of Barley Irrigated with Saline Water in Salt-Affected Soil. Plants, 11(15), Article 15. https://doi.org/10.3390/plants11152026
- Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/BF00018060
- Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security: An overview. Plant Pathology, 60(1), 2–14. https://doi.org/10.1111/j.1365-3059.2010.02411.x
- Chandra, J., Chauhan, R., Korram, J., Satnami, M. L., & Keshavkant, S. (2020). Silica nanoparticle minimizes aluminium imposed injuries by impeding cytotoxic agents and over expressing protective genes in Cicer arietinum. Scientia Horticulturae, 260, 108885. https://doi.org/10.1016/j.scienta.2019.108885
- Chauhan, J., Srivastava, J. P., Singhal, R. K., Soufan, W., Dadarwal, B. K., Mishra, U. N., Anuragi, H., Rahman, M. A., Sakran, M. I., Brestic, M., Zivcak, M., Skalicky, M., & Sabagh, A. E. (2022). Alterations of Oxidative Stress Indicators, Antioxidant Enzymes, Soluble Sugars, and Amino Acids in Mustard [Brassica juncea (L.) Czern and Coss.] in Response to Varying Sowing Time, and Field Temperature. Frontiers in Plant Science, 13, 1-15. https://doi.org/10.3389/fpls.2022.875009
- Coyne, C. J., Kumar, S., von Wettberg, E. J. B., Marques, E., Berger, J. D., Redden, R. J., Ellis, T. H. N., Brus, J., Zablatzká, L., & Smýkal, P. (2020). Potential and limits of exploitation of crop wild relatives for pea, lentil, and chickpea improvement. Legume Science, 2(2), e36. https://doi.org/10.1002/leg3.36
- Debona, D., Rodrigues, F. A., & Datnoff, L. E. (2017). Silicon’s Role in Abiotic and Biotic Plant Stresses. Annual Review of Phytopathology, 55, 85–107. https://doi.org/10.1146/ANNUREV-PHYTO-080516-035312
- Dikilitas, M., Simsek, E., & Roychoudhury, A. (2020). Role of proline and glycine betaine in overcoming abiotic stresses. In A. Roychoudhury & D. K. Tripathi (Eds.), Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives, (pp. 1-23). John Wiley & Sons Ltd.
https://doi.org/10.1002/9781119552154.ch1
- Du, J., Liu, B., Zhao, T., Xu, X., Lin, H., Ji, Y., Li, Y., Li, Z., Lu, C., Li, P., Zhao, H., Li, Y., Yin, Z., & Ding, X. (2022). Silica nanoparticles protect rice against biotic and abiotic stresses. Journal of Nanobiotechnology, 20(1), 197. https://doi.org/10.1186/s12951-022-01420-x
- Dura, O., & Kepenekçi, İ. (2022). Bazı Nanogümüş Partiküllü (AgNPs) Bitki Su Ekstraklarının Kök-Ur Nematodu, Meloidogyne incognita (Kofoid & White) Chitwood (Nematoda: Meloidogynidae)’ya Karşı İn vitro Koşullarda Etkinliğinin Belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 25(6), 1390-1400. https://doi.org/10.18016/ksutarimdoga.vi.994761
- Elshayb, O. M., Nada, A. M., Ibrahim, H. M., Amin, H. E., & Atta, A. M. (2021). Application of Silica Nanoparticles for Improving Growth, Yield, and Enzymatic Antioxidant for the Hybrid Rice EHR1 Growing under Water Regime Conditions. Materials, 14(5), Article 5. https://doi.org/10.3390/ma14051150
- Fatemi, H., Esmaiel Pour, B., & Rizwan, M. (2021). Foliar application of silicon nanoparticles affected the growth, vitamin C, flavonoid, and antioxidant enzyme activities of coriander (Coriandrum sativum L.) plants grown in lead (Pb)-spiked soil. Environmental Science and Pollution Research, 28(2), 1417–1425.
https://doi.org/10.1007/s11356-020-10549-x
- Feng, S., Sultana, S., Sikdar, A., Roy, R., Wang, J., & Huang, Y. (2023). Lipid Peroxidation, Antioxidant Enzyme Activities, and Osmotic Adjustment in Platycladus orientalis and Amorpha fruticosa Differ during Drought and Rewatering. Forests, 14(5), Article 5. https://doi.org/10.3390/f14051019
- Gaur, P. M., Samineni, S., Thudi, M., Tripathi, S., Sajja, S. B., Jayalakshmi, V., Mannur, D. M., Vijayakumar, A. G., Ganga Rao, N. V. P. R., Ojiewo, C., Fikre, A., Kimurto, P., Kileo, R. O., Girma, N., Chaturvedi, S. K., Varshney, R. K., & Dixit, G. P. (2019). Integrated breeding approaches for improving drought and heat adaptation in chickpea (Cicer arietinum L.). Plant Breeding, 138(4), 389–400. https://doi.org/10.1111/pbr.12641
- Hajizadeh, H. S., Azizi, S., Rasouli, F., & Okatan, V. (2022). Modulation of physiological and biochemical traits of two genotypes of Rosa damascena Mill. By SiO2-NPs under In vitro drought stress. BMC Plant Biology, 22(1), 538. https://doi.org/10.1186/s12870-022-03915-z
- Heikal, Y. M., El-Esawi, M. A., El-Ballat, E. M., & Abdel-Aziz, H. M. M. (2023). Applications of nanoparticles for mitigating salinity and drought stress in plants: An overview on the physiological, biochemical and molecular genetic aspects. New Zealand Journal of Crop and Horticultural Science, 51(3), 297–327.
https://doi.org/10.1080/01140671.2021.2016870
- Huang, Q., Ayyaz, A., Farooq, M. A., Zhang, K., Chen, W., Hannan, F., Sun, Y., Shahzad, K., Ali, B., & Zhou, W. (2024). Silicon dioxide nanoparticles enhance plant growth, photosynthetic performance, and antioxidants defence machinery through suppressing chromium uptake in Brassica napus L. Environmental Pollution, 342, 123013. https://doi.org/10.1016/j.envpol.2023.123013
- Irfan, M., Maqsood, M. A., Rehman, H. ur, Mahboob, W., Sarwar, N., Hafeez, O. B. A., Hussain, S., Ercisli, S., Akhtar, M., & Aziz, T. (2023). Silicon Nutrition in Plants under Water-Deficit Conditions: Overview and Prospects. Water, 15(4), Article 4. https://doi.org/10.3390/w15040739
- Kalal, P. R., Tomar, R. S., & Jajoo, A. (2022). SiO2 nanopriming protects PS I and PSII complexes in wheat under drought stress. Plant Nano Biology, 2, 100019. https://doi.org/10.1016/j.plana.2022.100019.
- Kapazoglou, A., Gerakari, M., Lazaridi, E., Kleftogianni, K., Sarri, E., Tani, E., & Bebeli, P. J. (2023). Crop Wild Relatives: A Valuable Source of Tolerance to Various Abiotic Stresses. Plants, 12(2), 328. https://doi.org/10.3390/plants12020328.
- Kandhol, N., Jain, M., & Tripathi, D. K. (2022). Nanoparticles as potential hallmarks of drought stress tolerance in plants. Physiologia Plantarum, 174(2), e13665. https://doi.org/10.1111/ppl.13665
- Kumar, M., Chauhan, A. S., Kumar, M., Yusuf, M. A., Sanyal, I., & Chauhan, P. S. (2019). Transcriptome Sequencing of Chickpea (Cicer arietinum L.) Genotypes for Identification of Drought-Responsive Genes Under Drought Stress Condition. Plant Molecular Biology Reporter, 37(3), 186–203. https://doi.org/10.1007/s11105-019-01147-4
- Li, Z., Song, Z., Yan, Z., Hao, Q., Song, A., Liu, L., Yang, X., Xia, S., & Liang, Y. (2018). Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis. Agronomy for Sustainable Development, 38(3), 26. https://doi.org/10.1007/s13593-018-0496-4
- Maqbool, M. A., Aslam, M., & Ali, H. (2017). Breeding for improved drought tolerance in Chickpea (Cicer arietinum L.). Plant Breeding, 136(3), 300–318. https://doi.org/10.1111/pbr.12477
- Millan, T., Clarke, H. J., Siddique, K. H. M., Buhariwalla, H. K., Gaur, P. M., Kumar, J., Gil, J., Kahl, G., & Winter, P. (2006). Chickpea molecular breeding: New tools and concepts. Euphytica, 147(1), 81–103. https://doi.org/10.1007/s10681-006-4261-4
- Mohamadzadeh, M., Janmohammadi, M., Abbasi, A., Sabaghnia, N., & Ion, V. (2023). Physiochemical response of Cicer arietinum to zinc-containing mesoporous silica nanoparticles under water stress. BioTechnologia, 104(3), 263–273. https://doi.org/10.5114/bta.2023.130729
- Mohamed, N. G., & Abdel-Hakeem, M. A. (2023). Chitosan nanoparticles enhance drought tolerance in tomatoes (Solanum lycopersicum L) via gene expression modulation. Plant Gene, 34, 100406. https://doi.org/10.1016/j.plgene.2023.100406
- Mohammadi, H., Esmailpour, M., Gheranpaye, A. (2016). Effects of TiO2 nanoparticles and water-deficit stress on morpho-physiological characteristics of dragonhead (Dracocephalum moldavica l.) plants. Acta Agricul. Slo. 107, 385–396. doi: 10.14720/aas.2016.107.2.11
- Mukarram, M., Petrik, P., Mushtaq, Z., Khan, M. M. A., Gulfishan, M., & Lux, A. (2022). Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules. Environmental Pollution, 310, 119855. https://doi.org/10.1016/j.envpol.2022.119855
- Nadeem, M., Li, J., Yahya, M., Sher, A., Ma, C., Wang, X., & Qiu, L. (2019). Research Progress and Perspective on Drought Stress in Legumes: A Review. International Journal of Molecular Sciences, 20(10), Article 10. https://doi.org/10.3390/ijms20102541
- Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3
- Raza, M. A. S., Zulfiqar, B., Iqbal, R., Muzamil, M. N., Aslam, M. U., Muhammad, F., Amin, J., Aslam, H. M. U., Ibrahim, M. A., Uzair, M., & Habib-ur-Rahman, M. (2023). Morpho-physiological and biochemical response of wheat to various treatments of silicon nano-particles under drought stress conditions. Scientific Reports, 13(1), Article 1. https://doi.org/10.1038/s41598-023-29784-6
- Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants, 10(2), Article 2. https://doi.org/10.3390/plants10020259
- Sharf-Eldin, A. A., Alwutayd, K. M., El-Yazied, A. A., El-Beltagi, H. S., Alharbi, B. M., Eisa, M. A. M., Alqurashi, M., Sharaf, M., Al-Harbi, N. A., Al-Qahtani, S. M., & Ibrahim, M. F. M. (2023). Response of Maize Seedlings to Silicon Dioxide Nanoparticles (SiO2NPs) under Drought Stress. Plants, 12(14), Article 14. https://doi.org/10.3390/plants12142592
- Smart, R. E., & Bingham, G. E. (1974). Rapid Estimates of Relative Water Content. Plant Physiology, 53(2), 258–260. https://doi.org/10.1104/pp.53.2.258
- Soylu, S., Kara, M., Türkmen, M., & Şahin, B. (2022). Synergistic effect of Foeniculum vulgare essential oil on the antibacterial activities of Ag- and Cu-substituted ZnO nanorods (ZnO-NRs) against food, human and plant pathogenic bacterial disease agents. Inorganic Chemistry Communications, 146, 110103. https://doi.org/10.1016/j.inoche.2022.110103
- Şahin, B., Soylu, S., Kara, M., Türkmen, M., Aydin, R., & Çetin, H. (2021). Superior antibacterial activity against seed-borne plant bacterial disease agents and enhanced physical properties of novel green synthesized nanostructured ZnO using Thymbra spicata plant extract. Ceramics International, 47, 341-350.
https://doi.org/10.1016/j.ceramint.2020.08.139
- Şahin, B., Aydin, R., Soylu, S., Türkmen, M., Kara, M., Akkaya, A., Çetin, H., & Ayyıldız, E. (2022). The effect of Thymus syriacus plant extract on the main physical and antibacterial activities of ZnO nanoparticles synthesized by SILAR Method. Inorganic Chemistry Communications, 135, 109088.
https://doi.org/10.1016/j.inoche.2021.109088
- Thudi, M., Upadhyaya, H. D., Rathore, A., Gaur, P. M., Krishnamurthy, L., Roorkiwal, M., Nayak, S. N., Chaturvedi, S. K., Basu, P. S., Gangarao, N. V. P. R., Fikre, A., Kimurto, P., Sharma, P. C., Sheshashayee, M. S., Tobita, S., Kashiwagi, J., Ito, O., Killian, A., & Varshney, R. K. (2014). Genetic Dissection of Drought and Heat Tolerance in Chickpea through Genome-Wide and Candidate Gene-Based Association Mapping Approaches. PLOS ONE, 9(5), e96758. https://doi.org/10.1371/journal.pone.0096758
- Uddin, M., Bhat, U. H., Singh, S., Singh, S., Chishti, A. S., & Khan, M. M. A. (2023). Combined application of SiO2 and TiO2 nanoparticles enhances growth characters, physiological attributes and essential oil production of Coleus aromatics Benth. Heliyon, 9(11), e21646. https://doi.org/10.1016/j.heliyon.2023.e21646.
- Quezada-Martinez, D., Addo Nyarko, C. P., Schiessl, S. V., & Mason, A. S. (2021). Using wild relatives and related species to build climate resilience in Brassica crops. Theoretical and Applied Genetics, 134(6), 1711-1728. https://doi.org/10.1007/s00122-021-03793-3.
- Van Nguyen, D., Nguyen, H. M., Le, N. T., Nguyen, K. H., Nguyen, H. T., Le, H. M., ... & Van Ha, C. (2022). Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. Journal of Plant Growth Regulation, 41(1), 364-375. https://doi.org/10.1007/s00344-021-10301-w
- Wahab, A., Abdi, G., Saleem, M. H., Ali, B., Ullah, S., Shah, W., Mumtaz, S., Yasin, G., Muresan, C. C., & Marc, R. A. (2022). Plants’ Physio-Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A Comprehensive Review. Plants, 11(13), Article 13. https://doi.org/10.3390/plants11131620
- Wang, L., Ning, C., Pan, T., & Cai, K. (2022). Role of Silica Nanoparticles in Abiotic and Biotic Stress Tolerance in Plants: A Review. International Journal of Molecular Sciences, 23(4), Article 4. https://doi.org/10.3390/ijms23041947
- Wang, X., Xie, H., Wang, P., & Yin, H. (2023). Nanoparticles in Plants: Uptake, Transport and Physiological Activity in Leaf and Root. Materials, 16(8), Article 8. https://doi.org/10.3390/ma16083097
- Wang, X., Li, Q., Pei, Z., Wang, S. (2018). Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biol. Plant 62, 801–808. doi: 10.1007/s10535-018-0813-4
- Yıldız, Ş. (2018). Kuraklık stresi altındaki arpa bitkilerinin yapraklarına SiO2 nanopartikül uygulamasının etkilerinin incelenmesi (Tez no 533009). [Yüksek Lisans Tezi, Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü Biyoteknoloji Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
- Zahedi, S. M., Hosseini, M. S., Fahadi Hoveizeh, N., Kadkhodaei, S., & Vaculík, M. (2023). Comparative morphological, physiological and molecular analyses of drought-stressed strawberry plants affected by SiO2 and SiO2-NPs foliar spray. Scientia Horticulturae, 309, 111686. https://doi.org/10.1016/j.scienta.2022.111686
- Zhang, H., Sun, X., & Dai, M. (2022). Improving crop drought resistance with plant growth regulators and rhizobacteria: Mechanisms, applications, and perspectives. Plant Communications, 3(1), 100228. https://doi.org/10.1016/j.xplc.2021.100228
- Zhang, Y., Liu, N., Wang, W., Sun, J., Zhu, L. (2020). Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa l.) growth by TiO2 nanoparticles. Front. Environ. Sci. Engin. 14, 1–12. doi: 10.1007/s11783-020-1282-5