Araştırma Makalesi
BibTex RIS Kaynak Göster

Altı Farklı Mikroyeşillikte Ekim Yoğunluğunun Büyüme Parametreleri Üzerine Etkisi

Yıl 2025, Cilt: 28 Sayı: 3, 661 - 671
https://doi.org/10.18016/ksutarimdoga.vi.1574906

Öz

Mikroyeşilliklerde tohum ekim sıklığı, bitki gelişimini ve nihai ürün kalitesini doğrudan etkileyen temel bir parametredir. Tohumların ekim sıklığının doğru ayarlanması, optimal büyüme koşullarını sağlayarak verimi artırıp bitkilerin sağlıklı ve güçlü gelişimini destekler. Bu çalışmada, brokoli, siyah turp, kırmızı pancar, bezelye, ayçiçeği ve fasulye tohumları kullanılmış; üç farklı ekim sıklığı belirlenmiş ve 16x9x7 cm boyutlarındaki kaplarda tohum ekimi gerçekleştirilmiştir. Çalışma, farklı tohum ekim sıklığının mikroyeşilliklerde bitki boyu, hipokotil boyu, gövde çapı, tek bitki ağırlığı, yaprak alanı, verim, kuru madde ve krolofil içeriği üzerine etkilerini ortaya koymaktadır. Tohum ekim sıklığı arttıkça bitki büyüme parametrelerinde önemli değişiklikler olduğu gözlemlenmiştir. Bu bulgular, mikroyeşillik üretiminde tohum ekim sıklığının dikkatli bir şekilde optimize edilmesi gerektiğini vurgulamaktadır.

Proje Numarası

FDK-2021-13517

Kaynakça

  • Balik, S., Dasgan, H. Y., Ikiz, B., & Gruda, N. S. (2024a). The Performance of Growing-Media-Shaped Microgreens: The Growth, Yield, and Nutrient Profiles of Broccoli, Red Beet, and Black Radish. Horticulturae, 10(12), 1289. https://www.mdpi.com/2311-7524/10/12/1289#.
  • Balik, S., Elgudayem, F., Dasgan, H. Y., Kafkas, N. E., & Gruda, N. S. (2025). Nutritional quality profiles of six microgreens. Scientific Reports, 15(1), 6213. https://doi.org/10.1038/s41598-025-85860-z
  • Chandrashekharaiah, K. S. (2013). Storage proteins and trypsin inhibitors of an underutilized Legume, Mucuna: variability and their stability during germination. American Journal of Plant Sciences, 4(4), 7. DOI:10.4236/ajps.2013.44112.
  • Choe, U., Yu, L. L., & Wang, T. T. (2018). The science behind microgreens as an exciting new food for the 21st century. Journal of agricultural and food chemistry, 66(44), 11519-11530. https://doi.org/10.1021/ acs.jafc.8b03096.
  • Cowden, R. J., Markussen, B., Ghaley, B. B., & Henriksen, C. B. (2024). The Effects of Light Spectrum and Intensity, Seeding Density, and Fertilization on Biomass, Morphology, and Resource Use Efficiency in Three Species of Brassicaceae Microgreens. Plants, 13(1), 124. https://www.mdpi.com/2223-7747/13/1/124#.
  • Dubey, S., Harbourne, N., Harty, M., Hurley, D., & Elliott-Kingston, C. (2024). Microgreens Production: Exploiting Environmental and Cultural Factors for Enhanced Agronomical Benefits. Plants, 13(18), 2631. https://www.mdpi.com/2223-7747/13/18/2631#.
  • Gök, S. B., Özdüven, F., & Açıkgöz, F. E. (2024). The Effect of Different Harvest Times on Phenolic Content and Antioxidant Activity in Some Microgreens. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 27(2), 417-422. https://doi.org/10.18016/ksutarimdoga.vi.1216114.
  • Hasanuzzaman, M., & Fujita, M. (2022). Plant oxidative stress: Biology, physiology and mitigation. Plants, 11(9), 1185. https://doi.org/10.3390/plants11091185.
  • Kyriacou, M. C., El-Nakhel, C., Pannico, A., Graziani, G., Soteriou, G. A., Giordano, M., ... & Rouphael, Y. (2020). Phenolic constitution, phytochemical and macronutrient content in three species of microgreens as modulated by natural fiber and synthetic substrates. Antioxidants, 9(3), 252. https://doi.org/10.3390/antiox9030252.
  • Lee, J. S., Pill, W. G., Cobb, B. B., & Olszewski, M. (2004). Seed treatments to advance greenhouse establishment of beet and chard microgreens. The Journal of Horticultural Science and Biotechnology, 79(4), 565-570. https://doi.org/10.1080/14620316.2004.11511806.
  • Lerner, B. L., Strassburger, A. S., & Schäfer, G. (2024). Cultivation of arugula microgreens: seed densities and electrical conductivity of nutrient solution in two growing seasons. Bragantia, 83, e20230183. https://doi.org/10.1590/1678-4499.20230183.
  • Lowe, N. M. (2021). The global challenge of hidden hunger: perspectives from the field. Proceedings of the Nutrition Society, 80(3), 283-289. https://doi.org/10.1017/S0029665121000902.
  • Maboko, M. M., & Du Plooy, C. P. (2009). Effect of plant spacing on yield of four leafy lettuce (Lactuca sativa L.) cultivars in a soilless production system. S. Afr. J. Plant Soil, 23, 199-201.
  • Moraru, P. I., Rusu, T., & Mintas, O. S. (2022). Trial protocol for evaluating platforms for growing microgreens in hydroponic conditions. Foods, 11(9), 1327. https://doi.org/10.3390/foods11091327.
  • Murphy, C., & Pill, W. (2010). Cultural practices to speed the growth of microgreen arugula (roquette; Eruca vesicaria subsp. sativa). The Journal of Horticultural Science and Biotechnology, 85(3), 171-176. https://doi.org/10.1080/14620316.2010.11512650.
  • Nolan, D. A. (2018). Effects of Seed Density and Other Factors on the Yield of Microgreens Grown Hydroponically on Burlap. Virginia Tech, 1–44. http://hdl.handle.net/10919/86642.
  • Ntsoane, L. L., Manhivi, M. E., Shoko, V., Seke, T., Maboko, M. F., M., & Sivakumar, D. (2023). The Phytonutrient Content and Yield of Brassica Microgreens Grown in Soilless Media with Different Seed Densities. Horticulturae, 9(11), 1218. https://doi.org/10.3390/horticulturae9111218.
  • Palmitessa, O. D., Renna, M., Crupi, P., Lovece, A., Corbo, F., & Santamaria, P. (2020). Yield and quality characteristics of Brassica microgreens as affected by the NH4: NO3 molar ratio and strength of the nutrient solution. Foods, 9(5), 677. https://doi.org/10.3390/foods9050677.
  • Panyapruek, S. N., Sinsiri, W., Sinsiri, N., Arimatsu, P., & Polthanee, A. (2016). Effect of paclobutrazol growth regulator on tuber production and starch quality of cassava (Manihot esculenta Crantz). Asian Journal of Plant Sciences, 15(1-2), 1-7. http://scialert.net/fulltext/?doi=ajps.2016.1.7&org=11.
  • Priti, Sangwan, S., Kukreja, B., Mishra, G. P., Dikshit, H. K., Singh, A., ... & Nair, R. M. (2022). Yield optimization, microbial load analysis, and sensory evaluation of mungbean (Vigna radiata L.), lentil (Lens culinaris subsp. culinaris), and Indian mustard (Brassica juncea L.) microgreens grown under greenhouse conditions. Plos one, 17(5), e0268085. https://doi.org/10.1371/journal.pone.0268085.
  • Saman, F., & Tomaş, M. (2022). Vitaminlerin Nanoenkapsülasyonu ve Nanoenkapsüle Vitaminlerin Sağlık Üzerine Etkileri. Akademik Gıda, 20(3), 283-295. https://doi.org/10.24323/akademik-gida.1187151.
  • Sánchez, M. T., Entrenas, J. A., Torres, I., Vega, M., & Pérez-Marín, D. (2018). Monitoring texture and other quality parameters in spinach plants using NIR spectroscopy. Computers and electronics in agriculture, 155, 446-452. https://doi.org/10.1016/j.compag.2018.11.004.
  • Sarıyer, T., Gündoğdu, M. A., Şeker, M., & Alkan, Y. (2024). The effects of sowing density applications on yield and some quality parameters in different vegetable microgreens. International Journal of Innovative Approaches in Science Research, 8(2), 79-89. https://doi.org/10.29329/ijiasr.2024.1054.4.
  • Senevirathne, G. I., Gama-Arachchige, N. S., & Karunaratne, A. M. (2019). Germination, harvesting stage, antioxidant activity and consumer acceptance of ten microgreens. Ceylon J. Sci, 48(91), 10-4038. http://doi.org/ 10.4038/cjs.v48i1.7593.
  • Signore, A., Somma, A., Leoni, B., & Santamaria, P. (2024). Optimising Sowing Density for Microgreens Production in Rapini, Kale and Cress. Horticulturae, 10(3), 274. https://doi.org/10.3390/ horticulturae10030274.
  • Thuong, V. T., & Minh, H. G. (2020). Effects of growing substrates and seed density on yield and quality of radish (Raphanus sativus) microgreens. Research on Crops, 21(3), 579-586. DOI : 10.31830/2348-7542.2020.091.
  • Valverde-Miranda, D., Díaz-Pérez, M., Gómez-Galán, M., & Callejón-Ferre, Á. J. (2021). Total soluble solids and dry matter of cucumber as indicators of shelf life. Postharvest Biology and Technology, 180, 111603. https://doi.org/10.1016/j.postharvbio.2021.111603.
  • Yaşa, B., Genç, M., Angın, N., & Ertaş, M. (2023). Farklı Bölgelerde Yetişen Mersin (Myrtus communis L.) Meyvelerinin Bazı Fitokimyasal Özelliklerinin Karakterizasyonu. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26(6), 1230-1238. https://doi.org/10.18016/ksutarimdoga.vi.1248947.

The Effect of Seed Sowing Density on Growth Parameters in Six Different Microgreen

Yıl 2025, Cilt: 28 Sayı: 3, 661 - 671
https://doi.org/10.18016/ksutarimdoga.vi.1574906

Öz

Seed sowing density is a key parameter that directly affects plant growth and the final product quality in microgreens. Proper adjustment of sowing density ensures optimal growth conditions, enhancing yield and supporting healthy and vigorous plant development. In this study, broccoli, black radish, red beet, pea, sunflower, and bean seeds were used; three different sowing densities were determined, and the seeds were sown in containers measuring 16x9x7 cm. The study investigates the effects of different seed sowing densities on plant height, hypocotyl length, stem diameter, individual plant weight, leaf area, yield, dry matter content, and chlorophyll content in microgreens. Significant changes in plant growth parameters were observed as the sowing density increased. These findings highlight the necessity of carefully optimizing sowing density in microgreens production.

Proje Numarası

FDK-2021-13517

Kaynakça

  • Balik, S., Dasgan, H. Y., Ikiz, B., & Gruda, N. S. (2024a). The Performance of Growing-Media-Shaped Microgreens: The Growth, Yield, and Nutrient Profiles of Broccoli, Red Beet, and Black Radish. Horticulturae, 10(12), 1289. https://www.mdpi.com/2311-7524/10/12/1289#.
  • Balik, S., Elgudayem, F., Dasgan, H. Y., Kafkas, N. E., & Gruda, N. S. (2025). Nutritional quality profiles of six microgreens. Scientific Reports, 15(1), 6213. https://doi.org/10.1038/s41598-025-85860-z
  • Chandrashekharaiah, K. S. (2013). Storage proteins and trypsin inhibitors of an underutilized Legume, Mucuna: variability and their stability during germination. American Journal of Plant Sciences, 4(4), 7. DOI:10.4236/ajps.2013.44112.
  • Choe, U., Yu, L. L., & Wang, T. T. (2018). The science behind microgreens as an exciting new food for the 21st century. Journal of agricultural and food chemistry, 66(44), 11519-11530. https://doi.org/10.1021/ acs.jafc.8b03096.
  • Cowden, R. J., Markussen, B., Ghaley, B. B., & Henriksen, C. B. (2024). The Effects of Light Spectrum and Intensity, Seeding Density, and Fertilization on Biomass, Morphology, and Resource Use Efficiency in Three Species of Brassicaceae Microgreens. Plants, 13(1), 124. https://www.mdpi.com/2223-7747/13/1/124#.
  • Dubey, S., Harbourne, N., Harty, M., Hurley, D., & Elliott-Kingston, C. (2024). Microgreens Production: Exploiting Environmental and Cultural Factors for Enhanced Agronomical Benefits. Plants, 13(18), 2631. https://www.mdpi.com/2223-7747/13/18/2631#.
  • Gök, S. B., Özdüven, F., & Açıkgöz, F. E. (2024). The Effect of Different Harvest Times on Phenolic Content and Antioxidant Activity in Some Microgreens. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 27(2), 417-422. https://doi.org/10.18016/ksutarimdoga.vi.1216114.
  • Hasanuzzaman, M., & Fujita, M. (2022). Plant oxidative stress: Biology, physiology and mitigation. Plants, 11(9), 1185. https://doi.org/10.3390/plants11091185.
  • Kyriacou, M. C., El-Nakhel, C., Pannico, A., Graziani, G., Soteriou, G. A., Giordano, M., ... & Rouphael, Y. (2020). Phenolic constitution, phytochemical and macronutrient content in three species of microgreens as modulated by natural fiber and synthetic substrates. Antioxidants, 9(3), 252. https://doi.org/10.3390/antiox9030252.
  • Lee, J. S., Pill, W. G., Cobb, B. B., & Olszewski, M. (2004). Seed treatments to advance greenhouse establishment of beet and chard microgreens. The Journal of Horticultural Science and Biotechnology, 79(4), 565-570. https://doi.org/10.1080/14620316.2004.11511806.
  • Lerner, B. L., Strassburger, A. S., & Schäfer, G. (2024). Cultivation of arugula microgreens: seed densities and electrical conductivity of nutrient solution in two growing seasons. Bragantia, 83, e20230183. https://doi.org/10.1590/1678-4499.20230183.
  • Lowe, N. M. (2021). The global challenge of hidden hunger: perspectives from the field. Proceedings of the Nutrition Society, 80(3), 283-289. https://doi.org/10.1017/S0029665121000902.
  • Maboko, M. M., & Du Plooy, C. P. (2009). Effect of plant spacing on yield of four leafy lettuce (Lactuca sativa L.) cultivars in a soilless production system. S. Afr. J. Plant Soil, 23, 199-201.
  • Moraru, P. I., Rusu, T., & Mintas, O. S. (2022). Trial protocol for evaluating platforms for growing microgreens in hydroponic conditions. Foods, 11(9), 1327. https://doi.org/10.3390/foods11091327.
  • Murphy, C., & Pill, W. (2010). Cultural practices to speed the growth of microgreen arugula (roquette; Eruca vesicaria subsp. sativa). The Journal of Horticultural Science and Biotechnology, 85(3), 171-176. https://doi.org/10.1080/14620316.2010.11512650.
  • Nolan, D. A. (2018). Effects of Seed Density and Other Factors on the Yield of Microgreens Grown Hydroponically on Burlap. Virginia Tech, 1–44. http://hdl.handle.net/10919/86642.
  • Ntsoane, L. L., Manhivi, M. E., Shoko, V., Seke, T., Maboko, M. F., M., & Sivakumar, D. (2023). The Phytonutrient Content and Yield of Brassica Microgreens Grown in Soilless Media with Different Seed Densities. Horticulturae, 9(11), 1218. https://doi.org/10.3390/horticulturae9111218.
  • Palmitessa, O. D., Renna, M., Crupi, P., Lovece, A., Corbo, F., & Santamaria, P. (2020). Yield and quality characteristics of Brassica microgreens as affected by the NH4: NO3 molar ratio and strength of the nutrient solution. Foods, 9(5), 677. https://doi.org/10.3390/foods9050677.
  • Panyapruek, S. N., Sinsiri, W., Sinsiri, N., Arimatsu, P., & Polthanee, A. (2016). Effect of paclobutrazol growth regulator on tuber production and starch quality of cassava (Manihot esculenta Crantz). Asian Journal of Plant Sciences, 15(1-2), 1-7. http://scialert.net/fulltext/?doi=ajps.2016.1.7&org=11.
  • Priti, Sangwan, S., Kukreja, B., Mishra, G. P., Dikshit, H. K., Singh, A., ... & Nair, R. M. (2022). Yield optimization, microbial load analysis, and sensory evaluation of mungbean (Vigna radiata L.), lentil (Lens culinaris subsp. culinaris), and Indian mustard (Brassica juncea L.) microgreens grown under greenhouse conditions. Plos one, 17(5), e0268085. https://doi.org/10.1371/journal.pone.0268085.
  • Saman, F., & Tomaş, M. (2022). Vitaminlerin Nanoenkapsülasyonu ve Nanoenkapsüle Vitaminlerin Sağlık Üzerine Etkileri. Akademik Gıda, 20(3), 283-295. https://doi.org/10.24323/akademik-gida.1187151.
  • Sánchez, M. T., Entrenas, J. A., Torres, I., Vega, M., & Pérez-Marín, D. (2018). Monitoring texture and other quality parameters in spinach plants using NIR spectroscopy. Computers and electronics in agriculture, 155, 446-452. https://doi.org/10.1016/j.compag.2018.11.004.
  • Sarıyer, T., Gündoğdu, M. A., Şeker, M., & Alkan, Y. (2024). The effects of sowing density applications on yield and some quality parameters in different vegetable microgreens. International Journal of Innovative Approaches in Science Research, 8(2), 79-89. https://doi.org/10.29329/ijiasr.2024.1054.4.
  • Senevirathne, G. I., Gama-Arachchige, N. S., & Karunaratne, A. M. (2019). Germination, harvesting stage, antioxidant activity and consumer acceptance of ten microgreens. Ceylon J. Sci, 48(91), 10-4038. http://doi.org/ 10.4038/cjs.v48i1.7593.
  • Signore, A., Somma, A., Leoni, B., & Santamaria, P. (2024). Optimising Sowing Density for Microgreens Production in Rapini, Kale and Cress. Horticulturae, 10(3), 274. https://doi.org/10.3390/ horticulturae10030274.
  • Thuong, V. T., & Minh, H. G. (2020). Effects of growing substrates and seed density on yield and quality of radish (Raphanus sativus) microgreens. Research on Crops, 21(3), 579-586. DOI : 10.31830/2348-7542.2020.091.
  • Valverde-Miranda, D., Díaz-Pérez, M., Gómez-Galán, M., & Callejón-Ferre, Á. J. (2021). Total soluble solids and dry matter of cucumber as indicators of shelf life. Postharvest Biology and Technology, 180, 111603. https://doi.org/10.1016/j.postharvbio.2021.111603.
  • Yaşa, B., Genç, M., Angın, N., & Ertaş, M. (2023). Farklı Bölgelerde Yetişen Mersin (Myrtus communis L.) Meyvelerinin Bazı Fitokimyasal Özelliklerinin Karakterizasyonu. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26(6), 1230-1238. https://doi.org/10.18016/ksutarimdoga.vi.1248947.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Fizyolojisi, Bitki Bilimi (Diğer)
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Sibel Balık 0000-0001-7174-4865

Hayriye Yıldız Daşgan 0000-0002-0403-1627

Proje Numarası FDK-2021-13517
Erken Görünüm Tarihi 1 Mayıs 2025
Yayımlanma Tarihi
Gönderilme Tarihi 28 Ekim 2024
Kabul Tarihi 22 Mart 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 3

Kaynak Göster

APA Balık, S., & Daşgan, H. Y. (2025). The Effect of Seed Sowing Density on Growth Parameters in Six Different Microgreen. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(3), 661-671. https://doi.org/10.18016/ksutarimdoga.vi.1574906

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149