p-asetamid ve MPAEMA'nın model organizma Galleria mellonella (Lepidoptera: Pyralidae) üzerindeki etkisinin in vivo ve in silico değerlendirilmesi
Yıl 2025,
Cilt: 28 Sayı: 3, 625 - 635
Nevin Çankaya
,
Serap Yalcin
,
Fahriye Ercan
Öz
Bu çalışmada 2-kloro-N-(4-metoksifenil)asetamid (p-asetamid) ve 2-(4-metoksifenilamino)-2-oksoetil metakrilat (MPAEMA), tarımsal zararlı Galleria mellonella üzerindeki etkilerini değerlendirmek amacıyla yeniden sentezlenmiştir. p-asetamid ve MPAEMA'nın G. mellonella'nın larva evresine karşı toksisiteleri eş zamanlı olarak değerlendirilmiştir. Sonuçlar, p-asetamidin daha düşük dozlarda böcek larvaları üzerinde öldürücü etkiye sahip olduğunu göstermektedir. p-asetamid ve MPAEMA'nın LC50 dozları sırasıyla 873.572 ve 687.355 uM'dir. Bu değerler, bu maddelere maruz kalan larvaların %50'sinin ölmesinin beklendiği madde konsantrasyonlarını temsil etmektir. p-asetamid ve MPAEMA'nın süperoksit dismutaz (SOD), katalaz (CAT), glutatyon peroksidaz (GPx) ve glutatyon-S-transferaz (GST) proteinleriyle moleküler yerleştirme etkileşimleri analiz edildi. MPAEMA ve glutatyon peroksidaz arasındaki bağlanma enerjisi -6,8 kcal/mol olarak belirlendi. Bu, MPAEMA'nın glutatyon peroksidaz üzerinde inhibitör bir etkiye sahip olabileceğini ve bu enzimi hedef alan pestisitlerin geliştirilmesi için daha fazla araştırılabileceğini düşündürmektedir.
Kaynakça
- Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-267.
- Abdelaziz, N., Abdelrahman, A. & Elbanna, S. (2024). Toxicity and Physiological Effect of Lemongrass Essential Oil Nano-capsules on the Greater Wax Moth Larvae Galleria mellonella L. (Lepidoptera: Pyralidae).
Catrina:The International Journal of Environmental Sciences, 32(1), 61-71.
- Acikbas, Y., Cankaya, N., Capan, R., Erdogan, M. & Soykan, C. (2016). Swelling behaviour of the 2-(4-methoxyphenylamino)-2-oxoethyl methacrylate monomer LB thin film exposed to various organic vapours by quartz crystal microbalance technique. Journal of Macromolecular Science, Part A, Pure and Applied Chemistry, 53(1), 18–25.
- Aioub, A.A.A., Hashem, A.S., El-Sappah, A.H., El-Harairy, A., Abdel-Hady, A.A.A., Al-Shuraym, L.A., Sayed, S., Huang, Q. & Abdel-Wahab, S.I.Z. (2023). Identification and Characterization of Glutathione S-transferase Genes in Spodoptera frugiperda (Lepidoptera: Noctuidae) under Insecticides Stress. Toxics, 11(6), 542.
- Allegra, E., Titball, R.W., Carter, J. & Champion, O.L. (2018). Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals, Chemosphere, 198, 469-472.
- Altıkat, A., Turan, T., Torun, F.E. & Bingül, Z. (2009). Use of Pesticides in Turkey and its Effects on Environment, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 40(2), 87-92.
- Alvandial, A., Jawadi M.H., Altıntaş Z.N., Yıldız N. & Karaman, M (2016.) Candida albicans’ın Salgısal Asit Proteinaz Etkinliğinin Araştırılmasında In Vivo Model Olarak Galleria mellonella Larvanın Kullanılması. Türk Mikrobiyoloji Cemiyeti Dergisi, 46(2), 69-75.
- Banfi, D., Bianchi, T., Mastore, M. & Brivio, M.F. (2024). Optimization of Experimental Infection of the Animal Model Galleria mellonella Linnaeus 1758 (Lepidoptera: Pyralidae) with the Gram-Positive Bacterium Micrococcus luteus. Insects, 15(8), 618.
- Borase, D.N., Thorat, Y.E., Baitha, A. et al. (2024). Parasitizing efficiency of Tetrastichus howardi (Olliff) (Hymenoptera: Eulophidae) on Galleria mellonella (Linnaeus) (Lepidoptera: Pyralidae) larva and pupa. Egyptian Journal of Biological Pest Control, 34(1), 14.
- Bugyna, L., Kendra, S. & Bujdáková, H. (2023). Galleria mellonella—A Model for the Study of aPDT—Prospects and Drawbacks. Microorganisms, 11(6), 1455.
- Cankaya, N. Izdal, M, Azarkan, S.Y. (2021). Synthesis, characterization, biological evaluation and molecular docking studies of new oxoacrylate and acetamide on hela cancer cell lines. Current Computer-Aided Drug Design, 17(6), 838−848.
- Chowdhury, S.K., Banerjee, M., Basnett, D. & Mazumdar, T. (2023). Natural pesticides for pest control in agricultural crops: an alternative and eco-friendly method, Plant Science Today, 11(1), 433–450.
- Coates, C.J., Lim, J., Harman, K., Rowley, A.F., Griffiths, D.J., Emery, H. & Layton, W. (2019). The insect, Galleria mellonella, is a compatible model for evaluating the toxicology of okadaic acid, Cell Biology and Toxicology, 35, 219–232.
- Çelik, C., Stanley, D. & Büyükgüzel, E. (2024). Dietary oxyclozanide influences antioxidant enzyme activities and damages DNA in Galleria mellonella (Lepidoptera: Pyralidae), Environmental Entomology, 53(5), 789–800.
- Çoban, V., Çankaya, N. & Azarkan, S.Y. (2024). New Oxomethacrylate and Acetamide: Synthesis, Characterization and their Computational Approaches: Molecular Docking, Molecular Dynamic, ADME, Drug and Chemical Toxicology, 47(6), 1175–1184.
- Dent, D. & Binks, R.H., Insect pest management. 3rd ed. Wallingford (Oxfordshire, UK): CABI; 2020. p. 380.
Firacative, C., Khan, A., Duan, S., Ferreira-Paim, K., Leemon, D. & Meyer, W. (2020). Rearing and Maintenance of Galleria mellonella and Its Application to Study Fungal Virulence, Journal of Fungi (Basel). 6(3), 130.
- Humphrey, W., Dalke, A. & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–28.
- Karimi-Maleh, H., Ghalkhani, M., Dehkordi, Z.S., Tehran, M.M., Singh, J., Wen, Y., Baghayeri, M., Rouhi, J., Fu, L. & Rajendran, S. (2024). Mof-enabled pesticides as developing approach for sustainable agriculture and reducing environmental hazards, Journal of Industrial and Engineering Chemistry, 129, 105-123.
- Kelly, L.A., Mezulis, S., Yates, C., Wass, M. & Sternberg, M. (2015). The Phyre2 Web Portal for Protein Modelling, Prediction, and Analysis. Nature Protocols, 10(6), 845–858.
- Kwadha, A.C.,Ong’amo, G.O, Ndegwa, P.N., Raina, S.K. & Fombong, A.T. (2017). The Biology and Control of the Greater Wax Moth, Galleria mellonella. Insects, 8(2), 61.
- Maiorino, M., Gregolin, C. & Ursini, F. (1990). Phospholipid hydroperoxide glutathione peroxidase. Methods Enzymol. 186, 448-457.
- Ménard, G., Rouillon, A., Cattoir, V. & Donnio, P.Y. (2021). Galleria mellonella as a Suitable Model of Bacterial Infection: Past, Present and Future, Frontiers in Cellular and Infection Microbiology, 11, 782733.
- Moya-Anderico, L., Vukomanovic, M., del Mar Cendra, M., Segura-Feliu, M., Gil, V., del Río, J.A. & Torrents, E. (2021). Utility of Galleria mellonella larvae for evaluating nanoparticle toxicology, Chemosphere, 266, 129235.
- Murail, S., Vries, S., Rey, J., Moroy, G. & Tufféry, P. (2021). SeamDock: An Interactive and Collaborative Online Docking Resource to Assist Small Compound Molecular Docking. Frontiers in Molecular Biosciences, 8, 716466.
- Sefer, N.E. & Büyükgüzel, K. (2018). The effect of piperazine on the survival and development of Galleria mellonella. Karaelmas Science and Engineering Journal, 8(1), 365–372.
- Tanış, E., Çankaya, N. & Yalçın, S. (2019). Synthesis, Experimental and Theoretical Analysis, and Antiproliferative Activity of 2-(4-methoxyphenylamino)-2-oxoethyl methacrylate, Chinese Journal of Physics, 57, 348-361.
- Temüz, M. M., Çankaya, N., Korcan, S. E., Azarkan, S. Y., Kahraman, T. (2024). First in vitro-in silico Analysis’s for Determination of Antimicrobial and Antioxidant Properties of 2-(4-methoxyphenylamino)-2-oxoethylmethacrylate and p-acetamide, ACS Omega, 9(7), 7910-7922.
- Tiwari, N., Mishra, A. (2023). Computational perspectives on Chlorpyrifos and its degradants as human glutathione S-transferases inhibitors: DFT calculations, molecular docking study and MD simulations. Computational Toxicology, 26, 100264.
- Trott, O., Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
- Tufféry, P. & Murail, S. (2020). Samuelmurail/docking_py: Docking_py, a python Library for Ligand Protein Docking. Paris, France, Zenodo. http://doi.org/10.5281/zenodo.4506970
- Yalçın, S., Sas, E. B., Çankaya, N., Ercan, F., Kurt, M. (2019). The physical studies and interaction with anti-apoptotic proteins of 2-(bis(cyanomethyl)amino)-2-oxoethyl methacrylate molecule, Condensed Matter Physics, 22(3), 33301, 1–8.
- Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., Zhang, Y. (2015). The I-TASSER Suite: Protein Structure and Function Prediction. Nature Methods, 12(1), 7–8.
- Zheng, W. et al. (2021). Protein structure prediction using deep learning distance and hydrogen‐bonding restraints in CASP14. Proteins, 89, 1734–1751.
- Zhou, W., Li, M., Achal, V. (2025). A comprehensive review on environmental and human health impacts of chemical pesticide usage. Emerging Contaminants, 11(1), 100410.
In Vivo and in Silico Evaluation of the Effect of p-Acetamide and MPAEMA on the Model Organism Galleria Mellonella (Lepidoptera: Pyralidae)
Yıl 2025,
Cilt: 28 Sayı: 3, 625 - 635
Nevin Çankaya
,
Serap Yalcin
,
Fahriye Ercan
Öz
In this study, 2-chloro-N-(4-methoxyphenyl)acetamide (p-acetamide) and 2-(4-methoxyphenylamino)-2-oxoethyl methacrylate (MPAEMA) were resynthesized to evaluate their effect on the agricultural pest Galleria mellonella. The toxicities of p-acetamide and MPAEMA against the larval stage of G. mellonella were evaluated concurrently. The results indicate that p-acetamide has a lethal effect on insect larvae at lower doses. LC50 doses of p-acetamide and MPAEMA were 873,572 and 687,355 uM, respectively. These values represent the concentrations of the substances at which 50% of the larvae exposed to them are expected to die. The molecular docking interactions of p-acetamide and MPAEMA with the proteins superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) were analyzed. The binding energy between MPAEMA and glutathione peroxidase was determined to be -6.8 kcal/mol. This suggests that MPAEMA may have an inhibitory effect on glutathione peroxidase and could be further investigated for developing pesticides that target this enzyme.
Kaynakça
- Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-267.
- Abdelaziz, N., Abdelrahman, A. & Elbanna, S. (2024). Toxicity and Physiological Effect of Lemongrass Essential Oil Nano-capsules on the Greater Wax Moth Larvae Galleria mellonella L. (Lepidoptera: Pyralidae).
Catrina:The International Journal of Environmental Sciences, 32(1), 61-71.
- Acikbas, Y., Cankaya, N., Capan, R., Erdogan, M. & Soykan, C. (2016). Swelling behaviour of the 2-(4-methoxyphenylamino)-2-oxoethyl methacrylate monomer LB thin film exposed to various organic vapours by quartz crystal microbalance technique. Journal of Macromolecular Science, Part A, Pure and Applied Chemistry, 53(1), 18–25.
- Aioub, A.A.A., Hashem, A.S., El-Sappah, A.H., El-Harairy, A., Abdel-Hady, A.A.A., Al-Shuraym, L.A., Sayed, S., Huang, Q. & Abdel-Wahab, S.I.Z. (2023). Identification and Characterization of Glutathione S-transferase Genes in Spodoptera frugiperda (Lepidoptera: Noctuidae) under Insecticides Stress. Toxics, 11(6), 542.
- Allegra, E., Titball, R.W., Carter, J. & Champion, O.L. (2018). Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals, Chemosphere, 198, 469-472.
- Altıkat, A., Turan, T., Torun, F.E. & Bingül, Z. (2009). Use of Pesticides in Turkey and its Effects on Environment, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 40(2), 87-92.
- Alvandial, A., Jawadi M.H., Altıntaş Z.N., Yıldız N. & Karaman, M (2016.) Candida albicans’ın Salgısal Asit Proteinaz Etkinliğinin Araştırılmasında In Vivo Model Olarak Galleria mellonella Larvanın Kullanılması. Türk Mikrobiyoloji Cemiyeti Dergisi, 46(2), 69-75.
- Banfi, D., Bianchi, T., Mastore, M. & Brivio, M.F. (2024). Optimization of Experimental Infection of the Animal Model Galleria mellonella Linnaeus 1758 (Lepidoptera: Pyralidae) with the Gram-Positive Bacterium Micrococcus luteus. Insects, 15(8), 618.
- Borase, D.N., Thorat, Y.E., Baitha, A. et al. (2024). Parasitizing efficiency of Tetrastichus howardi (Olliff) (Hymenoptera: Eulophidae) on Galleria mellonella (Linnaeus) (Lepidoptera: Pyralidae) larva and pupa. Egyptian Journal of Biological Pest Control, 34(1), 14.
- Bugyna, L., Kendra, S. & Bujdáková, H. (2023). Galleria mellonella—A Model for the Study of aPDT—Prospects and Drawbacks. Microorganisms, 11(6), 1455.
- Cankaya, N. Izdal, M, Azarkan, S.Y. (2021). Synthesis, characterization, biological evaluation and molecular docking studies of new oxoacrylate and acetamide on hela cancer cell lines. Current Computer-Aided Drug Design, 17(6), 838−848.
- Chowdhury, S.K., Banerjee, M., Basnett, D. & Mazumdar, T. (2023). Natural pesticides for pest control in agricultural crops: an alternative and eco-friendly method, Plant Science Today, 11(1), 433–450.
- Coates, C.J., Lim, J., Harman, K., Rowley, A.F., Griffiths, D.J., Emery, H. & Layton, W. (2019). The insect, Galleria mellonella, is a compatible model for evaluating the toxicology of okadaic acid, Cell Biology and Toxicology, 35, 219–232.
- Çelik, C., Stanley, D. & Büyükgüzel, E. (2024). Dietary oxyclozanide influences antioxidant enzyme activities and damages DNA in Galleria mellonella (Lepidoptera: Pyralidae), Environmental Entomology, 53(5), 789–800.
- Çoban, V., Çankaya, N. & Azarkan, S.Y. (2024). New Oxomethacrylate and Acetamide: Synthesis, Characterization and their Computational Approaches: Molecular Docking, Molecular Dynamic, ADME, Drug and Chemical Toxicology, 47(6), 1175–1184.
- Dent, D. & Binks, R.H., Insect pest management. 3rd ed. Wallingford (Oxfordshire, UK): CABI; 2020. p. 380.
Firacative, C., Khan, A., Duan, S., Ferreira-Paim, K., Leemon, D. & Meyer, W. (2020). Rearing and Maintenance of Galleria mellonella and Its Application to Study Fungal Virulence, Journal of Fungi (Basel). 6(3), 130.
- Humphrey, W., Dalke, A. & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–28.
- Karimi-Maleh, H., Ghalkhani, M., Dehkordi, Z.S., Tehran, M.M., Singh, J., Wen, Y., Baghayeri, M., Rouhi, J., Fu, L. & Rajendran, S. (2024). Mof-enabled pesticides as developing approach for sustainable agriculture and reducing environmental hazards, Journal of Industrial and Engineering Chemistry, 129, 105-123.
- Kelly, L.A., Mezulis, S., Yates, C., Wass, M. & Sternberg, M. (2015). The Phyre2 Web Portal for Protein Modelling, Prediction, and Analysis. Nature Protocols, 10(6), 845–858.
- Kwadha, A.C.,Ong’amo, G.O, Ndegwa, P.N., Raina, S.K. & Fombong, A.T. (2017). The Biology and Control of the Greater Wax Moth, Galleria mellonella. Insects, 8(2), 61.
- Maiorino, M., Gregolin, C. & Ursini, F. (1990). Phospholipid hydroperoxide glutathione peroxidase. Methods Enzymol. 186, 448-457.
- Ménard, G., Rouillon, A., Cattoir, V. & Donnio, P.Y. (2021). Galleria mellonella as a Suitable Model of Bacterial Infection: Past, Present and Future, Frontiers in Cellular and Infection Microbiology, 11, 782733.
- Moya-Anderico, L., Vukomanovic, M., del Mar Cendra, M., Segura-Feliu, M., Gil, V., del Río, J.A. & Torrents, E. (2021). Utility of Galleria mellonella larvae for evaluating nanoparticle toxicology, Chemosphere, 266, 129235.
- Murail, S., Vries, S., Rey, J., Moroy, G. & Tufféry, P. (2021). SeamDock: An Interactive and Collaborative Online Docking Resource to Assist Small Compound Molecular Docking. Frontiers in Molecular Biosciences, 8, 716466.
- Sefer, N.E. & Büyükgüzel, K. (2018). The effect of piperazine on the survival and development of Galleria mellonella. Karaelmas Science and Engineering Journal, 8(1), 365–372.
- Tanış, E., Çankaya, N. & Yalçın, S. (2019). Synthesis, Experimental and Theoretical Analysis, and Antiproliferative Activity of 2-(4-methoxyphenylamino)-2-oxoethyl methacrylate, Chinese Journal of Physics, 57, 348-361.
- Temüz, M. M., Çankaya, N., Korcan, S. E., Azarkan, S. Y., Kahraman, T. (2024). First in vitro-in silico Analysis’s for Determination of Antimicrobial and Antioxidant Properties of 2-(4-methoxyphenylamino)-2-oxoethylmethacrylate and p-acetamide, ACS Omega, 9(7), 7910-7922.
- Tiwari, N., Mishra, A. (2023). Computational perspectives on Chlorpyrifos and its degradants as human glutathione S-transferases inhibitors: DFT calculations, molecular docking study and MD simulations. Computational Toxicology, 26, 100264.
- Trott, O., Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
- Tufféry, P. & Murail, S. (2020). Samuelmurail/docking_py: Docking_py, a python Library for Ligand Protein Docking. Paris, France, Zenodo. http://doi.org/10.5281/zenodo.4506970
- Yalçın, S., Sas, E. B., Çankaya, N., Ercan, F., Kurt, M. (2019). The physical studies and interaction with anti-apoptotic proteins of 2-(bis(cyanomethyl)amino)-2-oxoethyl methacrylate molecule, Condensed Matter Physics, 22(3), 33301, 1–8.
- Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., Zhang, Y. (2015). The I-TASSER Suite: Protein Structure and Function Prediction. Nature Methods, 12(1), 7–8.
- Zheng, W. et al. (2021). Protein structure prediction using deep learning distance and hydrogen‐bonding restraints in CASP14. Proteins, 89, 1734–1751.
- Zhou, W., Li, M., Achal, V. (2025). A comprehensive review on environmental and human health impacts of chemical pesticide usage. Emerging Contaminants, 11(1), 100410.