Araştırma Makalesi
BibTex RIS Kaynak Göster

Endemik Campanula baskilensis Behçet bitkisinden asetilkolinesteraz inhibitörü olarak inositolün biyoaktivite rehberliğinde izolasyonu: İn vitro biyoaktivite, PCA analizi ve İn silico destekleyici çalışmalar

Yıl 2025, Cilt: 28 Sayı: 3, 717 - 735
https://doi.org/10.18016/ksutarimdoga.vi.1632935

Öz

Bu çalışmada Campanula baskilensis yaprak metanal:kloroform ekstraktının fraksiyonlarında biyoaktivite-yönlendirmeli moleküle ulaşılması amaçlanmıştır. Biyoaktif molekül/moleküllere ve yapısal konfigürasyona ulaşmak ve izole etmek için yaprak fraksiyonlarının biyoaktivitesi araştırıldı. Fraksiyonlama ve izolasyon işlemleri gelişmiş kolon kromatografisi tekniği kullanılarak gerçekleştirildi. Fraksiyon örnekleri için enzim inhibisyonu, antibakteriyel ve DNA koruma aktiviteler dahil olmak üzere in vitro biyoaktivite testleri uygulandı. İzole edilen bileşik NMR tekniği kullanılarak karakterize edildi. İn silico analizlerle moleküler doking, moleküler dinamikler ve son durum serbest enerji hesaplamalarını araştırıldı. Fraksiyonlama işlemi sonucunda 14 farklı fraksiyon elde edildi (F1-F14). F12 AChE karşı (IC50; 6.97±2.90 μg/mL), F6 karbonik anhidraz ve -amilaza karşı (IC50; 5.61±0.01 ve 18.82±1.48 μg/mL) yüksek inhibisyon aktivite gösterdi. F12 ve F11 E. coli'ye karşı en yüksek antibakteriyel aktivite gösterdi (15.40±1.10 ve 13.00±0.80 mm). F12 ve F5 fraksiyonları plazmit DNA'sında en yüksek koruma aktivitesine sahiptir ve F6, deoksiribozu korumak için en yüksek aktiviteye sahiptir. Birçok fraksiyonun, F12'de olduğu gibi, yüksek biyoaktif bileşikler içerdiğinden yüksek ve çeşitli bir biyoaktiviteye sahip olduğu gösterilmiştir. F12'nin test edilen çeşitli bakteri ve enzimler için yüksek inhibisyon aktivitesinin yanı sıra yüksek DNA koruması ile ana bileşen analizi pozitif korelasyon gösterdiği. Bu nedenle F12'ye Sephadex LH-20 ve etil asetat:metanol:hekzan (5:5:1) kullanılarak daha ileri fraksiyonlama ilerletildi. F12'den inositol izole edildi ve karakterizasyonu H-NMR ve C13-NMR spektrumları kullanılarak açıklandı. Moleküler doking sonuçlarına göre inositolün AChE enzimine bağlanabileceğini gösterdi. Ayrıca, moleküler dinamik sonuçları inositol-AChE'nin 100 nanosaniye içinde kararlı olduğunu gösterdi ve enerji hesaplamaları (gmx-MMPBSA) bu etkileşimin gücünü gösterdi.

Proje Numarası

PYO.FEN.1904.20.003 ve PYO.FEN.1904.19.006

Kaynakça

  • Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindahl, E., 2015. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19-25.
  • Addar, L., Bensouici, C., Zennia, S.S.A., Haroun, S.B., Mati, A., 2019. Antioxidant, tyrosinase, and urease inhibitory activities of camel αS-casein and its hydrolysate fractions. Small Ruminant Research, 173, 30-35. https://doi.org/10.1016/j.smallrumres.2019.01.015.
  • Akkoc, S., Karatas, H., Muhammed, M.T., Kökbudak, Z., Ceylan, A., Almalki, F., Laaroussi, H., Ben Hadda, T., 2023. Drug design of new therapeutic agents: Molecular docking, molecular dynamics simulation, DFT and POM analyses of new Schiff base ligands, and impact of substituents on bioactivity of their potential antifungal pharmacophore site. Journal of Biomolecular Structure and Dynamics, 41 (14), 6695-6708.
  • Alcitepe, E., 2011. New combinations in Campanula sect. Quinqueloculares from Turkey. Pakistan Journal of Botany, 43 (5), 2243-2254.
  • Baiseitova, A., Jenis, J., Kim, J.Y., Li, Z.P., Park, K.H., 2021. Phytochemical analysis of the aerial part of Ikonnikovia kaufmanniana and their protection of DNA damage. Natural Product Research, 35 (5), 880-883. https://doi.org/10.1080/14786419.2019.1607858
  • Başar, Y., Demirtaş, İ., Yenigün, S., İpek, Y., Özen, T., Behçet, L., 2024. Molecular docking, molecular dynamics, MM/PBSA approaches and bioactivity studies of nepetanudoside B isolated from endemic Nepeta aristata. Journal of Biomolecular Structure and Dynamics, 1-14. https://doi.org/10.1080/07391102.2024.2309641.
  • Behçet, L., İlçim, A., 2018. Campanula baskilensis sp. nov. (Campanulaceae), a new chasmophyte from Turkey with unusual capsule dehiscence. Nordic Journal of Botany, 36 (10), e01940. https://doi.org/10.1111/njb.01940.
  • Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., 2000. The protein data bank. Nucleic Acids Research 28 (1), 235-242. https://doi.org/10.1093/nar/28.1.235.
  • Bernhoft, A., 2010. A brief review on bioactive compounds in plants. Bioactive Compounds in Plants: Benefits and Risks for Man and Animals, 50, 11-17.
  • BIOVIA, D.S., 2017. BIOVIA Discovery Studio Visualizer. Software version 20, 779.
  • Bjelkmar, P., Larsson, P., Cuendet, M.A., Hess, B., Lindahl, E., 2010. Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. Journal of Chemical Theory and Computation, 6 (2), 459-466.
  • Brandt, K., Dötterl, S., Francke, W., Ayasse, M., Milet-Pinheiro, P., 2017. Flower Visitors of Campanula: Are Oligoleges More Sensitive to Host-Specific Floral Scents Than Polyleges? Journal of Chemical Ecology, 43 (1), 4-12.
  • Bucar, F., Wube, A., Schmid, M., 2013. Natural product isolation–how to get from biological material to pure compounds. Natural Product Reports, 30 (4), 525-545.
  • Chanda, J., Mukherjee, P.K., Biswas, R., Biswas, S., Tiwari, A.K., Pargaonkar, A., 2019. UPLC‐QTOF‐MS analysis of a carbonic anhydrase‐inhibiting extract and fractions of Luffa acutangula (L.) Roxb (ridge gourd). Phytochemical Analysis, 30 (2), 148-155. https://doi.org/10.1002/pca.2800.
  • Cuendet, M., Potterat, O., Hostettmann, K., 2001. Flavonoids and phenylpropanoid derivatives from Campanula barbata. Phytochemistry, 56 (6), 631-636.
  • Dillard, C.J., German, J.B., 2000. Phytochemicals: nutraceuticals and human health. Journal of the Science of Food and Agriculture, 80 (12), 1744-1756.
  • Dumlu, M., Gurkan, E., Tuzlaci, E., 2008. Chemical composition and antioxidant activity of Campanula alliariifolia. Natural Product Research, 22 (6), 477-482. https://doi.org/10.1080/14786410701640429.
  • Dzhumyrko, S., Shinkarenko, A., 1971. L-inositol from Campanula oblongifolia. Chemistry of Natural Compounds, 7 (5), 638-638.
  • Dzhumyrko, S., Shinkarenko, A., 1972. Mesoinositol from some species of the genus Campanula. Chemistry of Natural Compounds, 8 (3), 374-375.
  • Ellman, G.L., Courtney, K.D., Andres Jr, V., Featherstone, R.M., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7 (2), 88-95. https://doi.org/10.1016/0006-2952(61)90145-9.
  • Ercan, P., El, S.N., 2016. Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase. Food Chemistry, 205 , 163-169. https://doi.org/10.1016/j.foodchem.2016.03.012.
  • Harvey, A., 2000. Strategies for discovering drugs from previously unexplored natural products. Drug Discovery Today, 5 (7), 294-300.
  • Hassanien, M., El-Shamy, H., Ghany, A.A., 2014. Characterization of fatty acids, bioactive lipids, and radical scavenging activity of Canterbury bells seed oil. Grasas y Aceites, 65 (2), e019. https://doi.org/10.3989/gya.074413.
  • Ishida, S., Okasaka, M., Ramos, F., Kashiwada, Y., Takaishi, Y., Kodzhimatov, O.K., Ashurmetov, O., 2008. New alkaloid from the aerial parts of Codonopsis clematidea. Journal of Natural Medicines, 62 (2), 236-238.
  • Kim, H.-J., Son, D.C., Kim, H.-J., Choi, K., Oh, S.-H., Kang, S.-H., 2017. The chemotaxonomic classification of Korean Campanulaceae based on triterpene, sterol, and polyacetylene contents. Biochemical Systematics and Ecology, 74 , 11-18. https://doi.org/10.1016/j.bse.2017.07.002.
  • Kim, H.-Y., Lim, S.-H., Park, Y.-H., Ham, H.-J., Lee, K.-J., Park, D.-S., Kim, K.-H., Kim, S.-M., 2011. Screening of α-amylase, α-glucosidase and lipase inhibitory activity with Gangwon-do wild plants extracts. Journal of the Korean Society of Food Science and Nutrition, 40 (2), 308-315.
  • Kim, J.Y., Hwang, Y.P., Kim, D.H., HAN, E.H., Chung, Y.C., Roh, S.H., Jeong, H.G., 2006. Inhibitory effect of the saponins derived from roots of Platycodon grandiflorum on carrageenan-induced inflammation. Bioscience, Biotechnology, and Biochemistry, 70 (4), 858-864.
  • Korkmaz, B., Fandakli, S., Barut, B., Yildirim, S., Sener, S.O., Ozturk, E., Terzioglu, S., Yayli, N., 2020. Volatile and Phenolic Components and Antioxidant, Acetylcholinesterase, Tyrosinase, α-Glucosidase Inhibitory Effects of Extracts Obtained From Campanula latifolia L. subsp. latifolia. Journal of Essential Oil Bearing Plants, 23 (5), 1118-1131.
  • Lammers, T.G., 2007. World checklist and bibliography of Campanulaceae, Campanulaceae. Royal Botanic Gardens, Kew, p. 675.
  • Liu, R.H., 2004. Potential synergy of phytochemicals in cancer prevention: mechanism of action. The Journal of Nutrition, 134 (12), 3479S-3485S.
  • Majewski, M., Ruiz-Carmona, S., Barril, X., 2019. An investigation of structural stability in protein-ligand complexes reveals the balance between order and disorder. Communications Chemistry 2 (1), 110.
  • Malviya, N., Malviya, S., 2017. Bioassay guided fractionation-an emerging technique influence the isolation, identification and characterization of lead phytomolecules. Hosp. Pharm, 2 (5), 1-6.
  • Marah, S., Ipek, Y., Gul, F., Demirtas, I., Behcet, L., Ozen, T., 2024. Phytochemical profiles, bioactivities, and molecular docking and molecular dynamics approaches of endemic Campanula baskilensis Behçet (campanulaceae). Journal of the Indian Chemical Society, 101 (11), 101358.
  • Mayur, B., Sancheti, S., Shruti, S., Sung-Yum, S., 2010. Antioxidant and-glucosidase inhibitory properties of Carpesium abrotanoides L. Journal of Medicinal Plants Research, 4 (15), 1547-1553. https://doi.org/10.5897/JMPR.9000218.
  • McDougall, G.J., Kulkarni, N.N., Stewart, D., 2009. Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chemistry, 115 (1), 193-199. https://doi.org/10.1016/j.foodchem.2008.11.093.
  • Nastić, N., Švarc-Gajić, J., Delerue-Matos, C., Barroso, M.F., Soares, C., Moreira, M.M., Morais, S., Mašković, P., Srček, V.G., Slivac, I., 2018. Subcritical water extraction as an environmentally-friendly technique to recover bioactive compounds from traditional Serbian medicinal plants. Industrial Crops and Products 111, 579-589.
  • Newman, D.J., Cragg, G.M., 2016. Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79 (3), 629-661.
  • Nikolova, M., Aneva, I., Zhelev, P., Berkov, S., 2019. GC/MS Based Metabolite Profiling and Antioxidant Activity of Balkan and Bulgarian Endemic Plants. Agriculturae Conspectus Scientificus, 84 (1), 59-65.
  • Ouzounis, T., Fretté, X., Rosenqvist, E., Ottosen, C.-O., 2014. Spectral effects of supplementary lighting on the secondary metabolites in roses, chrysanthemums, and campanulas. Journal of Plant Physiology, 171 (16), 1491-1499. https://doi.org/10.1016/j.jplph.2014.06.012.
  • Qi, Y., Choi, S.-I., Son, S.-R., Han, H.-S., Ahn, H.S., Shin, Y.-K., Lee, S.H., Lee, K.-T., Kwon, H.C., Jang, D.S., 2020. Chemical constituents of the leaves of Campanula takesimana (Korean Bellflower) and their inhibitory effects on LPS-induced PGE2 production. Plants, 9 (9), 1232.
  • Rameau, J.-C., Mansion, D., Dumé, G., 1989. Flore forestière française: guide écologique illustré. Montagnes. Forêt privée française, France, 87-97.
  • Reller, L.B., Weinstein, M., Jorgensen, J.H., Ferraro, M.J., 2009. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clinical Infectious Diseases, 49 (11), 1749-1755. https://doi.org/10.1086/647952.
  • Russo, A., Izzo, A.A., Borrelli, F., Renis, M., Vanella, A., 2003. Free radical scavenging capacity and protective effect of Bacopa monniera L. on DNA damage. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 17 (8), 870-875. https://doi.org/10.1002/ptr.1061.
  • Salazar-Pereda, V., Martínez-Martínez, F.J., Contreras, R., Flores-Parra, A., 1997. NMR and X-ray diffraction study of some inositol derivatives. Journal of Carbohydrate Chemistry 16 (9), 1479-1507.
  • Sancheti, S., Sancheti, S., Seo, S.-Y., 2010. Evaluation of antiglycosidase and anticholinesterase activities of Boehmeria nivea. Pakistan Journal of Pharmaceutical Sciences, 23 (2), 236-240.
  • Sarker, S.D., Nahar, L., 2012. An introduction to natural products isolation. Natural Products Isolation, 1-25.
  • Sevgi, K., Tepe, B., Sarikurkcu, C., 2015. Antioxidant and DNA damage protection potentials of selected phenolic acids. Food and Chemical Toxicology, 77 , 12-21. https://doi.org/10.1016/j.fct.2014.12.006.
  • Sinek, K., Iskender, N.Y., YAYLI, N., 2012. Antimicrobial Activity and Chemical Composition of the Essential Oil from Campanula glomerata L. Subsp. Hispida (Witasek) Hayek. Asian Journal of Chemistry 24 (5), 1931-1934.
  • Singh, D., Chaudhuri, P.K., 2018. A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Industrial Crops and Products, 118, 367-382.
  • Tepe, B., Degerli, S., Arslan, S., Malatyali, E., Sarikurkcu, C., 2011. Determination of chemical profile, antioxidant, DNA damage protection and antiamoebic activities of Teucrium polium and Stachys iberica. Fitoterapia, 82 (2), 237-246. https://doi.org/10.1016/j.fitote.2010.10.006
  • Trentin, R., Custódio, L., Rodrigues, M.J., Moschin, E., Sciuto, K., da Silva, J.P., Moro, I., 2020. Exploring Ulva australis Areschoug for possible biotechnological applications: In vitro antioxidant and enzymatic inhibitory properties, and fatty acids contents. Algal Research, 50, 101980. https://doi.org/10.1016/j.algal.2020.101980.
  • Trott, O., Olson, A.J., 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31 (2), 455-461.
  • Valdés-Tresanco, M.S., Valdés-Tresanco, M.E., Valiente, P.A., Moreno, E., 2021. gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17 (10), 6281-6291.
  • Vergauwen, R., Van den Ende, W., Van Laere, A., 2000. The role of fructan in flowering of Campanula rapunculoides. Journal of Experimental Botany, 51 (348), 1261-1266.
  • Vincken, J.-P., Heng, L., de Groot, A., Gruppen, H., 2007. Saponins, classification and occurrence in the plant kingdom. Phytochemistry, 68 (3), 275-297.
  • Yildirim, H., 2018. Campanula leblebicii (Campanulaceae), a new chasmophyte species from western Turkey. Phytotaxa, 376 (2), 114-122.
  • Zarei, M.A., Tahazadeh, H., 2020. Alpha-glucosidase Inhibitory Activity in Methanol Extract of some Plants from Kurdistan Province. Journal of Medicinal Plants, 4 (72), 227-235.
  • Zhang, L., Mulrooney, S.B., Leung, A.F., Zeng, Y., Ko, B.B., Hausinger, R.P., Sun, H., 2006. Inhibition of urease by bismuth (III): implications for the mechanism of action of bismuth drugs. Biometals, 19 (5), 503-511. https://doi.org/10.1007/s10534-005-5449-0.

Bioactivity-guided isolation of inositol as acetylcholinesterase inhibitory from endemic Campanula baskilensis Behcet: In vitro bioactivity, PCA analysis, and silico supporting studies

Yıl 2025, Cilt: 28 Sayı: 3, 717 - 735
https://doi.org/10.18016/ksutarimdoga.vi.1632935

Öz

This study aimed to identify the bioactivity-guided molecule in the fractions of Campanula baskilensis leaf methanol: chloroform extract. The bioactivity of leaf fractions was investigated to assess and isolate bioactive molecule/molecules and structural configurations. Fractionation and isolation processes were done using advanced column chromatography techniques. In-vitro bioactivity tests were applied, including enzyme inhibition, antibacterial, and DNA protection activities. The isolated compound was characterized using the NMR technique. In silico analyses were investigated using molecular docking, molecular dynamics, and final-state free energy calculations. 14 different fractions were obtained (F1-F14) through the fractionation. F12 has the highest AChE inhibition (IC50; 6.97±2.90 μg/mL), F6 has significant inhibition against carbonic anhydrase and -amylase (IC50; 5.61±0.01 and 18.82±1.48 μg/mL). F12 and F11 have the highest antibacterial activity against E. coli (15.40±1.10 and 13.00±0.80 mm). F12 and F5 fractions have the highest protection activity in plasmid DNA, and F6 has the highest deoxyribose protection activity. Many fractions have high and varied bioactivity due to the bioactive compound components, as in F12. Principal component analysis showed that F12 positively correlated with the high inhibition activity for several bacteria and enzymes and high DNA protection. Therefore, further fractionation was applied using Sephadex LH-20 with ethyl acetate:methanol: hexane (5:5:1) to F12. Inositol was isolated according to results from the obtained fraction; the molecule characterization was clarified using the H-NMR and C13-NMR spectra. Molecular docking results showed binding between inositol and AChE. Further, molecular dynamics results showed the stability of inositol-AChE within 100 nanoseconds, and the energy calculations (gmx-MMPBSA) showed the strength of this interaction.

Etik Beyan

yok

Destekleyen Kurum

Ondokuz Mayis University

Proje Numarası

PYO.FEN.1904.20.003 ve PYO.FEN.1904.19.006

Teşekkür

The financial support of this study was provided by the Scientific Research Project Commission Fund of Ondokuz Mayis University, Turkey (Samsun), under the project numbers of PYO.FEN.1904.20.003 and PYO.FEN.1904.19.006.

Kaynakça

  • Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindahl, E., 2015. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19-25.
  • Addar, L., Bensouici, C., Zennia, S.S.A., Haroun, S.B., Mati, A., 2019. Antioxidant, tyrosinase, and urease inhibitory activities of camel αS-casein and its hydrolysate fractions. Small Ruminant Research, 173, 30-35. https://doi.org/10.1016/j.smallrumres.2019.01.015.
  • Akkoc, S., Karatas, H., Muhammed, M.T., Kökbudak, Z., Ceylan, A., Almalki, F., Laaroussi, H., Ben Hadda, T., 2023. Drug design of new therapeutic agents: Molecular docking, molecular dynamics simulation, DFT and POM analyses of new Schiff base ligands, and impact of substituents on bioactivity of their potential antifungal pharmacophore site. Journal of Biomolecular Structure and Dynamics, 41 (14), 6695-6708.
  • Alcitepe, E., 2011. New combinations in Campanula sect. Quinqueloculares from Turkey. Pakistan Journal of Botany, 43 (5), 2243-2254.
  • Baiseitova, A., Jenis, J., Kim, J.Y., Li, Z.P., Park, K.H., 2021. Phytochemical analysis of the aerial part of Ikonnikovia kaufmanniana and their protection of DNA damage. Natural Product Research, 35 (5), 880-883. https://doi.org/10.1080/14786419.2019.1607858
  • Başar, Y., Demirtaş, İ., Yenigün, S., İpek, Y., Özen, T., Behçet, L., 2024. Molecular docking, molecular dynamics, MM/PBSA approaches and bioactivity studies of nepetanudoside B isolated from endemic Nepeta aristata. Journal of Biomolecular Structure and Dynamics, 1-14. https://doi.org/10.1080/07391102.2024.2309641.
  • Behçet, L., İlçim, A., 2018. Campanula baskilensis sp. nov. (Campanulaceae), a new chasmophyte from Turkey with unusual capsule dehiscence. Nordic Journal of Botany, 36 (10), e01940. https://doi.org/10.1111/njb.01940.
  • Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., 2000. The protein data bank. Nucleic Acids Research 28 (1), 235-242. https://doi.org/10.1093/nar/28.1.235.
  • Bernhoft, A., 2010. A brief review on bioactive compounds in plants. Bioactive Compounds in Plants: Benefits and Risks for Man and Animals, 50, 11-17.
  • BIOVIA, D.S., 2017. BIOVIA Discovery Studio Visualizer. Software version 20, 779.
  • Bjelkmar, P., Larsson, P., Cuendet, M.A., Hess, B., Lindahl, E., 2010. Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. Journal of Chemical Theory and Computation, 6 (2), 459-466.
  • Brandt, K., Dötterl, S., Francke, W., Ayasse, M., Milet-Pinheiro, P., 2017. Flower Visitors of Campanula: Are Oligoleges More Sensitive to Host-Specific Floral Scents Than Polyleges? Journal of Chemical Ecology, 43 (1), 4-12.
  • Bucar, F., Wube, A., Schmid, M., 2013. Natural product isolation–how to get from biological material to pure compounds. Natural Product Reports, 30 (4), 525-545.
  • Chanda, J., Mukherjee, P.K., Biswas, R., Biswas, S., Tiwari, A.K., Pargaonkar, A., 2019. UPLC‐QTOF‐MS analysis of a carbonic anhydrase‐inhibiting extract and fractions of Luffa acutangula (L.) Roxb (ridge gourd). Phytochemical Analysis, 30 (2), 148-155. https://doi.org/10.1002/pca.2800.
  • Cuendet, M., Potterat, O., Hostettmann, K., 2001. Flavonoids and phenylpropanoid derivatives from Campanula barbata. Phytochemistry, 56 (6), 631-636.
  • Dillard, C.J., German, J.B., 2000. Phytochemicals: nutraceuticals and human health. Journal of the Science of Food and Agriculture, 80 (12), 1744-1756.
  • Dumlu, M., Gurkan, E., Tuzlaci, E., 2008. Chemical composition and antioxidant activity of Campanula alliariifolia. Natural Product Research, 22 (6), 477-482. https://doi.org/10.1080/14786410701640429.
  • Dzhumyrko, S., Shinkarenko, A., 1971. L-inositol from Campanula oblongifolia. Chemistry of Natural Compounds, 7 (5), 638-638.
  • Dzhumyrko, S., Shinkarenko, A., 1972. Mesoinositol from some species of the genus Campanula. Chemistry of Natural Compounds, 8 (3), 374-375.
  • Ellman, G.L., Courtney, K.D., Andres Jr, V., Featherstone, R.M., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7 (2), 88-95. https://doi.org/10.1016/0006-2952(61)90145-9.
  • Ercan, P., El, S.N., 2016. Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase. Food Chemistry, 205 , 163-169. https://doi.org/10.1016/j.foodchem.2016.03.012.
  • Harvey, A., 2000. Strategies for discovering drugs from previously unexplored natural products. Drug Discovery Today, 5 (7), 294-300.
  • Hassanien, M., El-Shamy, H., Ghany, A.A., 2014. Characterization of fatty acids, bioactive lipids, and radical scavenging activity of Canterbury bells seed oil. Grasas y Aceites, 65 (2), e019. https://doi.org/10.3989/gya.074413.
  • Ishida, S., Okasaka, M., Ramos, F., Kashiwada, Y., Takaishi, Y., Kodzhimatov, O.K., Ashurmetov, O., 2008. New alkaloid from the aerial parts of Codonopsis clematidea. Journal of Natural Medicines, 62 (2), 236-238.
  • Kim, H.-J., Son, D.C., Kim, H.-J., Choi, K., Oh, S.-H., Kang, S.-H., 2017. The chemotaxonomic classification of Korean Campanulaceae based on triterpene, sterol, and polyacetylene contents. Biochemical Systematics and Ecology, 74 , 11-18. https://doi.org/10.1016/j.bse.2017.07.002.
  • Kim, H.-Y., Lim, S.-H., Park, Y.-H., Ham, H.-J., Lee, K.-J., Park, D.-S., Kim, K.-H., Kim, S.-M., 2011. Screening of α-amylase, α-glucosidase and lipase inhibitory activity with Gangwon-do wild plants extracts. Journal of the Korean Society of Food Science and Nutrition, 40 (2), 308-315.
  • Kim, J.Y., Hwang, Y.P., Kim, D.H., HAN, E.H., Chung, Y.C., Roh, S.H., Jeong, H.G., 2006. Inhibitory effect of the saponins derived from roots of Platycodon grandiflorum on carrageenan-induced inflammation. Bioscience, Biotechnology, and Biochemistry, 70 (4), 858-864.
  • Korkmaz, B., Fandakli, S., Barut, B., Yildirim, S., Sener, S.O., Ozturk, E., Terzioglu, S., Yayli, N., 2020. Volatile and Phenolic Components and Antioxidant, Acetylcholinesterase, Tyrosinase, α-Glucosidase Inhibitory Effects of Extracts Obtained From Campanula latifolia L. subsp. latifolia. Journal of Essential Oil Bearing Plants, 23 (5), 1118-1131.
  • Lammers, T.G., 2007. World checklist and bibliography of Campanulaceae, Campanulaceae. Royal Botanic Gardens, Kew, p. 675.
  • Liu, R.H., 2004. Potential synergy of phytochemicals in cancer prevention: mechanism of action. The Journal of Nutrition, 134 (12), 3479S-3485S.
  • Majewski, M., Ruiz-Carmona, S., Barril, X., 2019. An investigation of structural stability in protein-ligand complexes reveals the balance between order and disorder. Communications Chemistry 2 (1), 110.
  • Malviya, N., Malviya, S., 2017. Bioassay guided fractionation-an emerging technique influence the isolation, identification and characterization of lead phytomolecules. Hosp. Pharm, 2 (5), 1-6.
  • Marah, S., Ipek, Y., Gul, F., Demirtas, I., Behcet, L., Ozen, T., 2024. Phytochemical profiles, bioactivities, and molecular docking and molecular dynamics approaches of endemic Campanula baskilensis Behçet (campanulaceae). Journal of the Indian Chemical Society, 101 (11), 101358.
  • Mayur, B., Sancheti, S., Shruti, S., Sung-Yum, S., 2010. Antioxidant and-glucosidase inhibitory properties of Carpesium abrotanoides L. Journal of Medicinal Plants Research, 4 (15), 1547-1553. https://doi.org/10.5897/JMPR.9000218.
  • McDougall, G.J., Kulkarni, N.N., Stewart, D., 2009. Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chemistry, 115 (1), 193-199. https://doi.org/10.1016/j.foodchem.2008.11.093.
  • Nastić, N., Švarc-Gajić, J., Delerue-Matos, C., Barroso, M.F., Soares, C., Moreira, M.M., Morais, S., Mašković, P., Srček, V.G., Slivac, I., 2018. Subcritical water extraction as an environmentally-friendly technique to recover bioactive compounds from traditional Serbian medicinal plants. Industrial Crops and Products 111, 579-589.
  • Newman, D.J., Cragg, G.M., 2016. Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79 (3), 629-661.
  • Nikolova, M., Aneva, I., Zhelev, P., Berkov, S., 2019. GC/MS Based Metabolite Profiling and Antioxidant Activity of Balkan and Bulgarian Endemic Plants. Agriculturae Conspectus Scientificus, 84 (1), 59-65.
  • Ouzounis, T., Fretté, X., Rosenqvist, E., Ottosen, C.-O., 2014. Spectral effects of supplementary lighting on the secondary metabolites in roses, chrysanthemums, and campanulas. Journal of Plant Physiology, 171 (16), 1491-1499. https://doi.org/10.1016/j.jplph.2014.06.012.
  • Qi, Y., Choi, S.-I., Son, S.-R., Han, H.-S., Ahn, H.S., Shin, Y.-K., Lee, S.H., Lee, K.-T., Kwon, H.C., Jang, D.S., 2020. Chemical constituents of the leaves of Campanula takesimana (Korean Bellflower) and their inhibitory effects on LPS-induced PGE2 production. Plants, 9 (9), 1232.
  • Rameau, J.-C., Mansion, D., Dumé, G., 1989. Flore forestière française: guide écologique illustré. Montagnes. Forêt privée française, France, 87-97.
  • Reller, L.B., Weinstein, M., Jorgensen, J.H., Ferraro, M.J., 2009. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clinical Infectious Diseases, 49 (11), 1749-1755. https://doi.org/10.1086/647952.
  • Russo, A., Izzo, A.A., Borrelli, F., Renis, M., Vanella, A., 2003. Free radical scavenging capacity and protective effect of Bacopa monniera L. on DNA damage. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 17 (8), 870-875. https://doi.org/10.1002/ptr.1061.
  • Salazar-Pereda, V., Martínez-Martínez, F.J., Contreras, R., Flores-Parra, A., 1997. NMR and X-ray diffraction study of some inositol derivatives. Journal of Carbohydrate Chemistry 16 (9), 1479-1507.
  • Sancheti, S., Sancheti, S., Seo, S.-Y., 2010. Evaluation of antiglycosidase and anticholinesterase activities of Boehmeria nivea. Pakistan Journal of Pharmaceutical Sciences, 23 (2), 236-240.
  • Sarker, S.D., Nahar, L., 2012. An introduction to natural products isolation. Natural Products Isolation, 1-25.
  • Sevgi, K., Tepe, B., Sarikurkcu, C., 2015. Antioxidant and DNA damage protection potentials of selected phenolic acids. Food and Chemical Toxicology, 77 , 12-21. https://doi.org/10.1016/j.fct.2014.12.006.
  • Sinek, K., Iskender, N.Y., YAYLI, N., 2012. Antimicrobial Activity and Chemical Composition of the Essential Oil from Campanula glomerata L. Subsp. Hispida (Witasek) Hayek. Asian Journal of Chemistry 24 (5), 1931-1934.
  • Singh, D., Chaudhuri, P.K., 2018. A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Industrial Crops and Products, 118, 367-382.
  • Tepe, B., Degerli, S., Arslan, S., Malatyali, E., Sarikurkcu, C., 2011. Determination of chemical profile, antioxidant, DNA damage protection and antiamoebic activities of Teucrium polium and Stachys iberica. Fitoterapia, 82 (2), 237-246. https://doi.org/10.1016/j.fitote.2010.10.006
  • Trentin, R., Custódio, L., Rodrigues, M.J., Moschin, E., Sciuto, K., da Silva, J.P., Moro, I., 2020. Exploring Ulva australis Areschoug for possible biotechnological applications: In vitro antioxidant and enzymatic inhibitory properties, and fatty acids contents. Algal Research, 50, 101980. https://doi.org/10.1016/j.algal.2020.101980.
  • Trott, O., Olson, A.J., 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31 (2), 455-461.
  • Valdés-Tresanco, M.S., Valdés-Tresanco, M.E., Valiente, P.A., Moreno, E., 2021. gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17 (10), 6281-6291.
  • Vergauwen, R., Van den Ende, W., Van Laere, A., 2000. The role of fructan in flowering of Campanula rapunculoides. Journal of Experimental Botany, 51 (348), 1261-1266.
  • Vincken, J.-P., Heng, L., de Groot, A., Gruppen, H., 2007. Saponins, classification and occurrence in the plant kingdom. Phytochemistry, 68 (3), 275-297.
  • Yildirim, H., 2018. Campanula leblebicii (Campanulaceae), a new chasmophyte species from western Turkey. Phytotaxa, 376 (2), 114-122.
  • Zarei, M.A., Tahazadeh, H., 2020. Alpha-glucosidase Inhibitory Activity in Methanol Extract of some Plants from Kurdistan Province. Journal of Medicinal Plants, 4 (72), 227-235.
  • Zhang, L., Mulrooney, S.B., Leung, A.F., Zeng, Y., Ko, B.B., Hausinger, R.P., Sun, H., 2006. Inhibition of urease by bismuth (III): implications for the mechanism of action of bismuth drugs. Biometals, 19 (5), 503-511. https://doi.org/10.1007/s10534-005-5449-0.
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmasotik Botanik
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Sarmad Marah 0000-0001-6765-4605

Yaşar İpek 0000-0002-1041-267X

Tevfik Ozen 0000-0003-0133-5630

İbrahim Demirtas 0000-0001-8946-647X

Lütfi Behçet 0000-0001-8334-7816

Proje Numarası PYO.FEN.1904.20.003 ve PYO.FEN.1904.19.006
Erken Görünüm Tarihi 1 Mayıs 2025
Yayımlanma Tarihi
Gönderilme Tarihi 5 Şubat 2025
Kabul Tarihi 10 Nisan 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 3

Kaynak Göster

APA Marah, S., İpek, Y., Ozen, T., Demirtas, İ., vd. (2025). Bioactivity-guided isolation of inositol as acetylcholinesterase inhibitory from endemic Campanula baskilensis Behcet: In vitro bioactivity, PCA analysis, and silico supporting studies. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(3), 717-735. https://doi.org/10.18016/ksutarimdoga.vi.1632935

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149