Araştırma Makalesi
BibTex RIS Kaynak Göster

Karaerik Ekstraktı ile Sentezlenen Gümüş Nanopartiküllerin Sisplatin ile Kombinasyonu: Meme Kanseri Hücrelerine Etkileri

Yıl 2025, Cilt: 28 Sayı: 5, 1228 - 1240
https://doi.org/10.18016/ksutarimdoga.vi.1554474

Öz

Nanopartikül bazlı tedaviler, azaltılmış yan etkilerle hedefe yönelik ilaç dağıtımı sağlayarak kanser tedavisinde umut vaat etmektedir. Bu çalışmada, yüksek antioksidan kapasiteye sahip bir üzüm çeşidi olan Karaerik üzümünden (Vitis vinifera L., Vitaceae) elde edilen yeşil sentezlenmiş gümüş nanopartiküllerin (AgNPs) tek başına ve sisplatin (CP) ile kombinasyon halinde MDA-MB-231 meme kanseri hücreleri üzerindeki antikanser ve oksidatif etkileri araştırılmaktadır. AgNP’ler bitki yaprağı ekstraktı kullanılarak sentezlenmiş ve UV-Vis, SEM-EDX ve FT-IR teknikleri ile karakterize edilmiştir. MDA-MB-231 hücreleri 10 ve 20 μg mL-¹ AgNP’lere, 25 μM CP’ye ve bunların kombinasyonlarına 24, 48 ve 72 saat boyunca maruz bırakılmıştır. Sitotoksisite MTT deneyi kullanılarak değerlendirilmiş ve IC₅₀ değerleri belirlenmiştir. Oksidatif denge bozulmasını belirlemek için toplam oksidan durum (TOS), toplam antioksidan durum (TAS) ve oksidatif stres indeksi (OSI) dahil olmak üzere oksidatif stres parametreleri analiz edilmiştir. AgNPs ve CP kombinasyonu, tek tek uygulamalara kıyasla hücre canlılığında önemli ölçüde daha büyük bir azalma ile sonuçlanmıştır (p<.05). CP’nin IC50 değeri AgNP’lerin varlığında azalmış ve bu da sitotoksik etkinin arttığını göstermiştir. Ek olarak, TOS ve OSI seviyelerindeki kayda değer artış ve TAS’daki düşüş, kombinasyon tedavisinin oksidatif stres aracılı hücre ölümüne neden olduğunu göstermiştir. Karaerik üzüm yapraklarından yeşil olarak sentezlenen AgNP’ler, oksidatif stres yolaklarını modüle ederek CP kaynaklı sitotoksisiteyi güçlendirmekte ve meme kanseri tedavisinde adjuvan olarak potansiyel rollerini ortaya koymaktadır. Bu bulgular, onkolojide yeşil nanoteknoloji tabanlı stratejilerin önemini vurgulamaktadır.

Kaynakça

  • Acay, H., Baran, M. F., & Eren, A. (2019). Investigating antimicrobial activity of silver nanoparticles produced through green synthesis using leaf extract of common grape (Vitis vinifera). Applied Ecology & Environmental Research, 17(2).
  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular Biology of the Cell, (3. Edition), New York: Garland Publishers, 966-996.
  • Al-Sheddi, E., Farshori, N., Al-Oqail, M., Al-Massarani, S., Saquib, Q., Wahab, R., Musarrat, J., Al-Khedhairy, A., & Siddiqui, M. (2018). Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorganic Chemistry and Applications, 2018(1), 9390784.
  • AshaRani, P.V., Low Kah Mun, G., Hande, M.P., & Valiyaveettil S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3(2), 279-90.
  • Becit, M., Aydın, S., & Başaran, N. (2017). Evaluation of therapeutic and toxic effects of curcumin: review. Journal of Literature Pharmacy Sciences, 6(2), 126-142.
  • Behboodi, S., Baghbani-Arani, F., Abdalan, S., & Sadat Shandiz, S.A. (2019). Green-engineered biomolecule-capped silver nanoparticles fabricated from Cichorium intybus extract: in vitro assessment on apoptosis properties toward human breast cancer (MCF-7) cells. Biological Trace Element Research, 187(2), 392-402.
  • Boulikas, T., & Vougiouka, M. (2003). Cisplatin and platinum drugs at the molecular level. Oncology reports, 10(6), 1663-1682.
  • Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal For Clinicians, 74(3), 229-263.
  • Cao, Q., Li, X., Zhang, Q., Zhou, K., Yu, Y., He, Z., Xiang, Z., Qiang, Y., & Qi, W. (2022). Big data analysis of manufacturing and preclinical studies of nanodrug-targeted delivery systems: a literature review. BioMed Research International, 1231446.
  • Chavez, K. J., Garimella, S. V., & Lipkowitz, S. (2010). Triple-negative breast cancer cell lines: one tool in the search for better treatment of triple-negative breast cancer. Breast Disease, 32(1- 2), 35.
  • Dasgupta, N., Ranjan, S., Mishra, D., & Ramalingam, C. (2018). Thermal Co-reduction engineered silver nanoparticles induce oxidative cell damage in human colon cancer cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Chemico-Biological İnteractions, 295, 109-118.
  • Davis, P. H. (1985). Flora of Turkey and the East Aegean Islands. Vols. 1-9, Edinburgh University Press, Edinburgh.
  • Davis, P. H., Miller, R. R., & Tan, K. (1988). Flora of Turkey and the Aegean Islands. Vol. 10, Edinburgh University Press, Edinburgh.
  • Della Vechia, I., Steiner, B., Freitas, M., Fidelis, G., Galvani, N., Ronchi, J., Possato, J., Fagundes, M., Rigo, F., Feuser, P., Araújo, P., & Machado-De-Ávila, R. (2020). Comparative cytotoxic effect of citrate-capped gold nanoparticles with different sizes on noncancerous and cancerous cell lines. Journal of Nanoparticle Research, 22, 1-11.
  • Divya, R., Supraja, N., & David, E. (2018). Synthesis and Characterization of ZnONPs from Vitis vinifera Peel Extract and Its Antimicrobial Efficacy. Advancements Bioequiv Availab, 2(2), 1-8.
  • Elbaz, N.M., Ziko, L., Siam, R., & Mamdouh, W. (2016). Core-shell silver/polymeric nanoparticles-based combinatorial therapy against breast cancer in-vitro. Scientific Reports, 6(1), 30729.
  • Florea, A.M., & Büsselberg, D. (2011). Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance, and induced side effects. Cancers, 3(1), 1351-1371.
  • Franco-Molina, M.A., Mendoza-Gamboa, E., Sierra-Rivera, C.A., Gómez-Flores, R.A., Zapata-Benavides, P., Castillo-Tello, P., Alcocer-González, J.M., Miranda-Hernández, D.F., Tamez-Guerra, R.S., & Rodríguez-Padilla, C. (2010). Antitumoractivity of colloidal silver on MCF-7 human breast cancer cells. Journal of Experimental and Clinical Cancer Research, 29(1), 148.
  • Frezza, M., Hindo, S., Chen, D., Davenport, A., Schmitt, S., Tomco, D. & PingDou, Q. (2010). Novel metals and metal complexes as platforms for cancer therapy. Current Pharmaceutical Design, 16(16), 1813-1825.
  • García-Oliveira, P., Otero, P., Pereira, A., Chamorro, F., Carpena, M., Echave, J., Fraga-Corral, M., Simal-Gándara, J., & Prieto, M. (2021). Status and Challenges of Plant-Anticancer Compounds in Cancer Treatment. Pharmaceuticals, 14(2), 157.
  • GLOBOCAN (2020). Data visualization tools for exploring the global cancer burden in 2020.
  • Gurunathan, S., Han, J.W., Eppakayala, V., Jeyaraj, M., & Kim, J.H. (2013). Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed Research International, 2013, 535796.
  • Gültekin, B. (2013). Investigation of effects of zinc on histologic changes caused by cis-platin toxicity in rats testicles (Thesis ID: 329275). [Doctoral Thesis, Selçuk University Institue of Health Department of Histology and Embryology] Konya. YÖK National Thesis Center.
  • Güner, A., Özhatay, N., Ekim, T., Başer, K. H. C., & Hedge, I. C. (eds.). (2000). Flora of Turkey and the East Aegean Islands: Volume 11, Supplement 2. Edinburgh University Press.
  • Gürbüz, V., Yilmaz, A., Gökçe, Ö., & Konaç, E. (2011). The apoptotic effects of cisplatin on human colon cancer Cell line (HT29). Marmara Medical Journal, 24(2), 100-105.
  • Hammamchi, H. (2019). Determination of bioactivities of organic/inorganic nanoparticles synthesized by biological pathway their therapeuti̇c uses (Thesis ID: 591214). [Doctoral Thesis, Hacettepe University Institute of Science and Technology Department of Biology] Ankara. YÖK National Thesis Center.
  • Hoeppner, J., & Bronsert, P. (2021). Metastasis and tumor cell migration of solid tumors. Cancers, 13(21), 5576. Jadhav, K., Deore, S., Dhamecha, D., R, R., Jagwani, S., Jalalpure, S., & Bohara, R. (2018). Phytosynthesis of silver nanoparticles: characterization, biocompatibility studies, and anticancer activity. ACS Biomaterials Science & Engineering, 4(3), 892-899.
  • Jing, M., Ah, K., & Kyung, I. (2011). Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria involved apoptosis. Toxicology Letters, 201(1), 92-100.
  • Kaur, M., Agarwal, C., & Agarwal, R. (2009). Anticancer and cancer chemopreventive potential of grape seed extract and other grape-based products. The Journal of Nutrition, 139(9), 1806S-1812S.
  • Kelland, L. (2007). The resurgence of platinum-based cancer chemotherapy. Nature Reviews Cancer, 7(8), 573.
  • Klaus-Joerger, T., Joerger, R., Olsson, E., & Granqvist, C. (2001). Bacteria as workers in the living factory: metal accumulating bacteria and their potential for materials science. Trends Biotechnology, 19(1), 15-20.
  • Kumkoon, T., Srisaisap, M., & Boonserm, P. (2023). Biosynthesized silver nanoparticles using Morus alba (white mulberry) leaf extract as potential antibacterial and anticancer agents. Molecules, 28(3), 1213.
  • Kuo, P. L., Lin, T. C., & Lin, C. C. (2002). The antiproliferative activity of aloe-emodin is through p53-dependent and p21-dependent apoptotic pathway in human hepatoma cell lines. Life Science, 71(16), 1879-1892.
  • Kupe, M., Karatas, N., Unal, M., Ercişli, S., Baroň, M., & Sochor, J. (2021). Phenolic composition and antioxidant activity of peel, pulp, and seed extracts of different clones of the Turkish grape cultivar ‘Karaerik’. Plants, 10(10), 2154.
  • Lee, K., Shameli, K., Mohamad, S., Yew, Y., Isa, E., Yap, H., Lim, W., & Teow, S. (2019). Bio-mediated synthesis and characterisation of silver nanocarrier, and ıts potent anticancer action. Nanomaterials, 9(10), 1423.
  • Li, Y., Guo, M., Lin, Z., Zhao, M., Xiao, M., Wang, C., & Zhu, B. (2016). Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis. International Journal of Nanomedicine, 6693-6702,
  • Lodish, H., Berk, A., Zipursky, S. l., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). Molecular Cell Biology, (4. edition), Whfreemanandco, Newyork.
  • Mohammed, A., Alghamdi, S., Shami, A., Suliman, R., Aabed, K., Alotaibi, M., & Rahman, I. (2023). In silico prediction of Malvaviscus arboreus metabolites and green synthesis of silver nanoparticles – opportunities for safer anti-bacterial and anti-cancer precision medicine. International Journal of Nanomedicine, 18, 2141-2162.
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55-63.
  • Munusamy, P., Wang, C., Engelhard, M. H., Baer, D. R., Smith, J. N., Liu, C., & Ryan, M. P. (2015). Comparison of 20 nm silver nanoparticles synthesized with and without a gold core: Structure, dissolution in cell culture media, and biological impact on macrophages. Biointerphases, 10(3), 031003.
  • Nagajyothi, P.C., Sreekanth, T.V., Lee, J.I., & Lee, K.D. (2014). Mycosynthesis: antibacterial, antioxidant, and antiproliferative activities of silver nanoparticles synthesized from Inonotus obliquus (Chaga mushroom) extract. Journal of Photochemistry and Photobiology B, 130(5), 299-304.
  • Nematollahi, F. (2015). Silver nanoparticles green synthesis using aqueous extract of Salvia limbata CA mey. International Journal of Biosciences, 6(2), 30-35.
  • Nikam, A., Pagar, T., Ghotekar, S., Pagar, K., & Pansambal, S. (2019). A review on plant extract mediated green synthesis of zirconia nanoparticles and their miscellaneous applications. Journal of Chemical Reviews, 1(3), 154-163.
  • Öztolüt, F. (2023). Investigation of antimicrobial and anti-cancer efficiency of silver nanoparticles prepared by green synthesis from Astragalus membranaceus (Thesis ID: 832889). [Master’s Thesis, Hitit University Institue of Natural and Applied Science Department of Molecular Biology and Genetics] Çorum. YÖK National Thesis Center.
  • Padinjarathil, H., Joseph, M. M., Unnikrishnan, B. S., Preethi, G. U., Shiji, R., Archana, M. G., Maya, S., Syama, H., & Sreelekha, T. T. (2018). Galactomannan endowed biogenic silver nanoparticles exposed enhanced cancer cytotoxicity with excellent biocompatibility. International Journal of Biological Macromolecules, 118, 1174-1182.
  • Patil, M.P. & Kim, G.D. (2017). Eco-friendly approach for nanoparticles synthesis and mechanism behind Antibacterial activity of silver and Anticancer activity of gold nanoparticles. Applied Microbiology And Biotechnology, 101(1), 79-92.
  • Pecere, T., Gazzola, M.V., Mucignat, C., Parolin, C., Vecchia, F. D., Cavaggioni, A., Basso, G., Diaspro, A., Salvato, B., Carli, M., & Palu, G. (2000). Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors. Cancer Research, 60(11), 2800- 2804.
  • Pecere, T., Sarinella, F., Salata, C., Gatto, B., Bet, A., Dalla Vecchia, F., Diaspro, A., Carli, M., Palumbo, M., & Palu, G. (2003). Involvement of p53 in spesific antineuroectodermal tumor activity of aloe-emodin, International Journal of Cancer, 106(6), 836-847.
  • Pérez-Navarro, J., Hermosín-Gutiérrez, I., Gómez-Alonso, S., Kurt-Celebi, A., Colak, N., Akpınar, E., Hayırlıoğlu-Ayaz, S., & Ayaz, F. (2022). Vitis vinifera Turkish novel table grape ‘Karaerik’. Part II: non-anthocyanin phenolic composition and antioxidant capacity. Journal of The Science of Food and Agriculture, 102, 813-822.
  • Pugazhendhia, A., Edison, T.N.J.I., Karuppusamy, I., & Kathirvel, B. (2018). Inorganic nanoparticles: A potential cancer therapy for human welfare. International Journal of Pharmaceutics, 539, 104-111.
  • Rank Miranda, R., Pereira da Fonseca, M., Korzeniowska, B., Skytte, L., Lund Rasmussen, K., & Kjeldsen, F. (2020). Elucidating the cellular response of silver nanoparticles as a potential combinatorial agent for cisplatin chemotherapy. Journal of Nanobiotechnology, 18, 1-15.
  • Rudrappa, M., Rudayni, H., Assiri, R., Bepari, A., Basavarajappa, D., Nagaraja, S., Chakraborty, B., Swamy, P., Agadi, S., Niazi, S., & Nayaka, S. (2022). Plumeria alba-mediated green synthesis of silver nanoparticles exhibits antimicrobial effect and anti-oncogenic activity against glioblastoma U118 MG cancer cell line. Nanomaterials, 12(3), 493.
  • Qian, X., Ge, L., Yuan, K., Li, C., Zhen, X., Cai, W., Cheng, R., & Jiang, X. (2019). Targeting and microenvironment-improving of phenylboronic acid-decorated soy protein nanoparticles with different sizes to tumor. Theranostics, 9, 7417- 7430.
  • Sadat Shandiz, S.A., Shafiee Ardestani, M., Shahbazzadeh, D., Assadi, A., Ahangari Cohan, R. & Asgary, V. (2017). Novel imatinib-loaded silver nanoparticles for enhanced apoptosis of human breast cancer MCF-7 cells. Artificial Cells Nanomed Biotechnology, 45, 1-10.
  • Said, M. I., & Othman, A. A. (2019). Fast green synthesis of silver nanoparticles using grape leaves extract. Materials Research Express, 6(5), 055029.
  • Souza, de T.A.J., Souza, L.R.R., & Franchi, L.P. (2019). Silver nanoparticles: An integrated view of gren synthesis methods, transformation in the environment, and toxicity. Ecotoxicology and Environmental Safety, 30, 691-700.
  • Suman, T.Y., Rajasree, S.R., Kanchana, A., & Elizabeth, S.B. (2013). Biosynthesis, characterization and cytotoxic effect of plant-mediated silver nanoparticles using Morinda citrifolia root extract. Colloids and Surfaces B: Biointerfaces, 106, 74-78.
  • Yılmaz, E., & Altunok, V. (2011). Cancer and p53 gene. Journal of Adana Veterinary Control and Research Institute, 1, 19-23.
  • Yi, X., Zeng, W., Wang, C., Chen, Y., Zheng, L., Zhu, X., Ke, Y., He, X., Kuang, Y., & Huang, Q. (2022). A step-by-step multiple stimuli-responsive metal-phenolic network prodrug nanoparticles for chemotherapy. Nano Research, 1205-1212.
  • Yokota, J., & Kohno, T. (2004). Molecular footprints of human lung cancer progression. Cancer Science, 95(3), 197-204.
  • Yu, M., Huang, S., Yu, K., & Clyne, A. (2012). Dextran and Polymer Polyethylene Glycol (PEG) Coating Reduce Both 5 and 30 nm Iron Oxide Nanoparticle Cytotoxicity in 2D and 3D Cell Culture. International Journal of Molecular Sciences, 13, 5554- 5570.
  • Yuan, Y., & Gurunathan, S. (2017). Combination of graphene oxide–silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. International Journal of Nanomedicine, 12, 6537-6558.
  • Zhao, Y., Chen, G., Meng, Z., Gong, G., Zhao, W., Wang, K., & Liu, T. (2019). A novel nanoparticle drug delivery system based on PEGylated hemoglobin for cancer therapy. Drug Delivery, 26(1), 717-723.

Combination of Silver Nanoparticles Synthesized Using Karaerik Extract and Cisplatin: Effects on Breast Cancer Cells

Yıl 2025, Cilt: 28 Sayı: 5, 1228 - 1240
https://doi.org/10.18016/ksutarimdoga.vi.1554474

Öz

Nanoparticle-based therapies provide targeted drug delivery with reduced side effects, making them promising options for cancer treatment. This study examines the anticancer and oxidative effects of green-synthesized silver nanoparticles (AgNPs) derived from the Karaerik grape (Vitis vinifera L., Vitaceae), a variety known for its high antioxidant capacity, both alone and in combination with cisplatin (CP) on MDA-MB-231 breast cancer cells. AgNPs were synthesized using the plant leaf extract and characterized through UV-Vis, SEM-EDX, and FT-IR techniques. MDA-MB-231 cells were exposed to 10 and 20 μg mL⁻¹ AgNPs, 25 μM CP, and their combinations for 24, 48, and 72 hours. Cytotoxicity was analyzed using the MTT assay, and IC50 values were determined. Parameters of oxidative stress, including total oxidant status (TOS), total antioxidant status (TAS), and oxidative stress index (OSI), were evaluated to assess oxidative balance disruption. The combination of AgNPs and CP led to a significantly greater reduction in cell viability compared to individual treatments (p<.05). The IC50 value of CP decreased in the presence of AgNPs, indicating an enhanced cytotoxic effect. Additionally, a significant increase in TOS and OSI levels, along with a decrease in TAS, suggested that the combination therapy induced oxidative stress-mediated cell death. Green-synthesized AgNPs from Karaerik grape leaves enhance CP-induced cytotoxicity by modulating oxidative stress pathways, indicating their potential role as adjuvants in breast cancer therapy. These findings underscore the importance of green nanotechnology-based strategies in oncology.

Kaynakça

  • Acay, H., Baran, M. F., & Eren, A. (2019). Investigating antimicrobial activity of silver nanoparticles produced through green synthesis using leaf extract of common grape (Vitis vinifera). Applied Ecology & Environmental Research, 17(2).
  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular Biology of the Cell, (3. Edition), New York: Garland Publishers, 966-996.
  • Al-Sheddi, E., Farshori, N., Al-Oqail, M., Al-Massarani, S., Saquib, Q., Wahab, R., Musarrat, J., Al-Khedhairy, A., & Siddiqui, M. (2018). Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorganic Chemistry and Applications, 2018(1), 9390784.
  • AshaRani, P.V., Low Kah Mun, G., Hande, M.P., & Valiyaveettil S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3(2), 279-90.
  • Becit, M., Aydın, S., & Başaran, N. (2017). Evaluation of therapeutic and toxic effects of curcumin: review. Journal of Literature Pharmacy Sciences, 6(2), 126-142.
  • Behboodi, S., Baghbani-Arani, F., Abdalan, S., & Sadat Shandiz, S.A. (2019). Green-engineered biomolecule-capped silver nanoparticles fabricated from Cichorium intybus extract: in vitro assessment on apoptosis properties toward human breast cancer (MCF-7) cells. Biological Trace Element Research, 187(2), 392-402.
  • Boulikas, T., & Vougiouka, M. (2003). Cisplatin and platinum drugs at the molecular level. Oncology reports, 10(6), 1663-1682.
  • Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal For Clinicians, 74(3), 229-263.
  • Cao, Q., Li, X., Zhang, Q., Zhou, K., Yu, Y., He, Z., Xiang, Z., Qiang, Y., & Qi, W. (2022). Big data analysis of manufacturing and preclinical studies of nanodrug-targeted delivery systems: a literature review. BioMed Research International, 1231446.
  • Chavez, K. J., Garimella, S. V., & Lipkowitz, S. (2010). Triple-negative breast cancer cell lines: one tool in the search for better treatment of triple-negative breast cancer. Breast Disease, 32(1- 2), 35.
  • Dasgupta, N., Ranjan, S., Mishra, D., & Ramalingam, C. (2018). Thermal Co-reduction engineered silver nanoparticles induce oxidative cell damage in human colon cancer cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Chemico-Biological İnteractions, 295, 109-118.
  • Davis, P. H. (1985). Flora of Turkey and the East Aegean Islands. Vols. 1-9, Edinburgh University Press, Edinburgh.
  • Davis, P. H., Miller, R. R., & Tan, K. (1988). Flora of Turkey and the Aegean Islands. Vol. 10, Edinburgh University Press, Edinburgh.
  • Della Vechia, I., Steiner, B., Freitas, M., Fidelis, G., Galvani, N., Ronchi, J., Possato, J., Fagundes, M., Rigo, F., Feuser, P., Araújo, P., & Machado-De-Ávila, R. (2020). Comparative cytotoxic effect of citrate-capped gold nanoparticles with different sizes on noncancerous and cancerous cell lines. Journal of Nanoparticle Research, 22, 1-11.
  • Divya, R., Supraja, N., & David, E. (2018). Synthesis and Characterization of ZnONPs from Vitis vinifera Peel Extract and Its Antimicrobial Efficacy. Advancements Bioequiv Availab, 2(2), 1-8.
  • Elbaz, N.M., Ziko, L., Siam, R., & Mamdouh, W. (2016). Core-shell silver/polymeric nanoparticles-based combinatorial therapy against breast cancer in-vitro. Scientific Reports, 6(1), 30729.
  • Florea, A.M., & Büsselberg, D. (2011). Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance, and induced side effects. Cancers, 3(1), 1351-1371.
  • Franco-Molina, M.A., Mendoza-Gamboa, E., Sierra-Rivera, C.A., Gómez-Flores, R.A., Zapata-Benavides, P., Castillo-Tello, P., Alcocer-González, J.M., Miranda-Hernández, D.F., Tamez-Guerra, R.S., & Rodríguez-Padilla, C. (2010). Antitumoractivity of colloidal silver on MCF-7 human breast cancer cells. Journal of Experimental and Clinical Cancer Research, 29(1), 148.
  • Frezza, M., Hindo, S., Chen, D., Davenport, A., Schmitt, S., Tomco, D. & PingDou, Q. (2010). Novel metals and metal complexes as platforms for cancer therapy. Current Pharmaceutical Design, 16(16), 1813-1825.
  • García-Oliveira, P., Otero, P., Pereira, A., Chamorro, F., Carpena, M., Echave, J., Fraga-Corral, M., Simal-Gándara, J., & Prieto, M. (2021). Status and Challenges of Plant-Anticancer Compounds in Cancer Treatment. Pharmaceuticals, 14(2), 157.
  • GLOBOCAN (2020). Data visualization tools for exploring the global cancer burden in 2020.
  • Gurunathan, S., Han, J.W., Eppakayala, V., Jeyaraj, M., & Kim, J.H. (2013). Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed Research International, 2013, 535796.
  • Gültekin, B. (2013). Investigation of effects of zinc on histologic changes caused by cis-platin toxicity in rats testicles (Thesis ID: 329275). [Doctoral Thesis, Selçuk University Institue of Health Department of Histology and Embryology] Konya. YÖK National Thesis Center.
  • Güner, A., Özhatay, N., Ekim, T., Başer, K. H. C., & Hedge, I. C. (eds.). (2000). Flora of Turkey and the East Aegean Islands: Volume 11, Supplement 2. Edinburgh University Press.
  • Gürbüz, V., Yilmaz, A., Gökçe, Ö., & Konaç, E. (2011). The apoptotic effects of cisplatin on human colon cancer Cell line (HT29). Marmara Medical Journal, 24(2), 100-105.
  • Hammamchi, H. (2019). Determination of bioactivities of organic/inorganic nanoparticles synthesized by biological pathway their therapeuti̇c uses (Thesis ID: 591214). [Doctoral Thesis, Hacettepe University Institute of Science and Technology Department of Biology] Ankara. YÖK National Thesis Center.
  • Hoeppner, J., & Bronsert, P. (2021). Metastasis and tumor cell migration of solid tumors. Cancers, 13(21), 5576. Jadhav, K., Deore, S., Dhamecha, D., R, R., Jagwani, S., Jalalpure, S., & Bohara, R. (2018). Phytosynthesis of silver nanoparticles: characterization, biocompatibility studies, and anticancer activity. ACS Biomaterials Science & Engineering, 4(3), 892-899.
  • Jing, M., Ah, K., & Kyung, I. (2011). Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria involved apoptosis. Toxicology Letters, 201(1), 92-100.
  • Kaur, M., Agarwal, C., & Agarwal, R. (2009). Anticancer and cancer chemopreventive potential of grape seed extract and other grape-based products. The Journal of Nutrition, 139(9), 1806S-1812S.
  • Kelland, L. (2007). The resurgence of platinum-based cancer chemotherapy. Nature Reviews Cancer, 7(8), 573.
  • Klaus-Joerger, T., Joerger, R., Olsson, E., & Granqvist, C. (2001). Bacteria as workers in the living factory: metal accumulating bacteria and their potential for materials science. Trends Biotechnology, 19(1), 15-20.
  • Kumkoon, T., Srisaisap, M., & Boonserm, P. (2023). Biosynthesized silver nanoparticles using Morus alba (white mulberry) leaf extract as potential antibacterial and anticancer agents. Molecules, 28(3), 1213.
  • Kuo, P. L., Lin, T. C., & Lin, C. C. (2002). The antiproliferative activity of aloe-emodin is through p53-dependent and p21-dependent apoptotic pathway in human hepatoma cell lines. Life Science, 71(16), 1879-1892.
  • Kupe, M., Karatas, N., Unal, M., Ercişli, S., Baroň, M., & Sochor, J. (2021). Phenolic composition and antioxidant activity of peel, pulp, and seed extracts of different clones of the Turkish grape cultivar ‘Karaerik’. Plants, 10(10), 2154.
  • Lee, K., Shameli, K., Mohamad, S., Yew, Y., Isa, E., Yap, H., Lim, W., & Teow, S. (2019). Bio-mediated synthesis and characterisation of silver nanocarrier, and ıts potent anticancer action. Nanomaterials, 9(10), 1423.
  • Li, Y., Guo, M., Lin, Z., Zhao, M., Xiao, M., Wang, C., & Zhu, B. (2016). Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis. International Journal of Nanomedicine, 6693-6702,
  • Lodish, H., Berk, A., Zipursky, S. l., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). Molecular Cell Biology, (4. edition), Whfreemanandco, Newyork.
  • Mohammed, A., Alghamdi, S., Shami, A., Suliman, R., Aabed, K., Alotaibi, M., & Rahman, I. (2023). In silico prediction of Malvaviscus arboreus metabolites and green synthesis of silver nanoparticles – opportunities for safer anti-bacterial and anti-cancer precision medicine. International Journal of Nanomedicine, 18, 2141-2162.
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55-63.
  • Munusamy, P., Wang, C., Engelhard, M. H., Baer, D. R., Smith, J. N., Liu, C., & Ryan, M. P. (2015). Comparison of 20 nm silver nanoparticles synthesized with and without a gold core: Structure, dissolution in cell culture media, and biological impact on macrophages. Biointerphases, 10(3), 031003.
  • Nagajyothi, P.C., Sreekanth, T.V., Lee, J.I., & Lee, K.D. (2014). Mycosynthesis: antibacterial, antioxidant, and antiproliferative activities of silver nanoparticles synthesized from Inonotus obliquus (Chaga mushroom) extract. Journal of Photochemistry and Photobiology B, 130(5), 299-304.
  • Nematollahi, F. (2015). Silver nanoparticles green synthesis using aqueous extract of Salvia limbata CA mey. International Journal of Biosciences, 6(2), 30-35.
  • Nikam, A., Pagar, T., Ghotekar, S., Pagar, K., & Pansambal, S. (2019). A review on plant extract mediated green synthesis of zirconia nanoparticles and their miscellaneous applications. Journal of Chemical Reviews, 1(3), 154-163.
  • Öztolüt, F. (2023). Investigation of antimicrobial and anti-cancer efficiency of silver nanoparticles prepared by green synthesis from Astragalus membranaceus (Thesis ID: 832889). [Master’s Thesis, Hitit University Institue of Natural and Applied Science Department of Molecular Biology and Genetics] Çorum. YÖK National Thesis Center.
  • Padinjarathil, H., Joseph, M. M., Unnikrishnan, B. S., Preethi, G. U., Shiji, R., Archana, M. G., Maya, S., Syama, H., & Sreelekha, T. T. (2018). Galactomannan endowed biogenic silver nanoparticles exposed enhanced cancer cytotoxicity with excellent biocompatibility. International Journal of Biological Macromolecules, 118, 1174-1182.
  • Patil, M.P. & Kim, G.D. (2017). Eco-friendly approach for nanoparticles synthesis and mechanism behind Antibacterial activity of silver and Anticancer activity of gold nanoparticles. Applied Microbiology And Biotechnology, 101(1), 79-92.
  • Pecere, T., Gazzola, M.V., Mucignat, C., Parolin, C., Vecchia, F. D., Cavaggioni, A., Basso, G., Diaspro, A., Salvato, B., Carli, M., & Palu, G. (2000). Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors. Cancer Research, 60(11), 2800- 2804.
  • Pecere, T., Sarinella, F., Salata, C., Gatto, B., Bet, A., Dalla Vecchia, F., Diaspro, A., Carli, M., Palumbo, M., & Palu, G. (2003). Involvement of p53 in spesific antineuroectodermal tumor activity of aloe-emodin, International Journal of Cancer, 106(6), 836-847.
  • Pérez-Navarro, J., Hermosín-Gutiérrez, I., Gómez-Alonso, S., Kurt-Celebi, A., Colak, N., Akpınar, E., Hayırlıoğlu-Ayaz, S., & Ayaz, F. (2022). Vitis vinifera Turkish novel table grape ‘Karaerik’. Part II: non-anthocyanin phenolic composition and antioxidant capacity. Journal of The Science of Food and Agriculture, 102, 813-822.
  • Pugazhendhia, A., Edison, T.N.J.I., Karuppusamy, I., & Kathirvel, B. (2018). Inorganic nanoparticles: A potential cancer therapy for human welfare. International Journal of Pharmaceutics, 539, 104-111.
  • Rank Miranda, R., Pereira da Fonseca, M., Korzeniowska, B., Skytte, L., Lund Rasmussen, K., & Kjeldsen, F. (2020). Elucidating the cellular response of silver nanoparticles as a potential combinatorial agent for cisplatin chemotherapy. Journal of Nanobiotechnology, 18, 1-15.
  • Rudrappa, M., Rudayni, H., Assiri, R., Bepari, A., Basavarajappa, D., Nagaraja, S., Chakraborty, B., Swamy, P., Agadi, S., Niazi, S., & Nayaka, S. (2022). Plumeria alba-mediated green synthesis of silver nanoparticles exhibits antimicrobial effect and anti-oncogenic activity against glioblastoma U118 MG cancer cell line. Nanomaterials, 12(3), 493.
  • Qian, X., Ge, L., Yuan, K., Li, C., Zhen, X., Cai, W., Cheng, R., & Jiang, X. (2019). Targeting and microenvironment-improving of phenylboronic acid-decorated soy protein nanoparticles with different sizes to tumor. Theranostics, 9, 7417- 7430.
  • Sadat Shandiz, S.A., Shafiee Ardestani, M., Shahbazzadeh, D., Assadi, A., Ahangari Cohan, R. & Asgary, V. (2017). Novel imatinib-loaded silver nanoparticles for enhanced apoptosis of human breast cancer MCF-7 cells. Artificial Cells Nanomed Biotechnology, 45, 1-10.
  • Said, M. I., & Othman, A. A. (2019). Fast green synthesis of silver nanoparticles using grape leaves extract. Materials Research Express, 6(5), 055029.
  • Souza, de T.A.J., Souza, L.R.R., & Franchi, L.P. (2019). Silver nanoparticles: An integrated view of gren synthesis methods, transformation in the environment, and toxicity. Ecotoxicology and Environmental Safety, 30, 691-700.
  • Suman, T.Y., Rajasree, S.R., Kanchana, A., & Elizabeth, S.B. (2013). Biosynthesis, characterization and cytotoxic effect of plant-mediated silver nanoparticles using Morinda citrifolia root extract. Colloids and Surfaces B: Biointerfaces, 106, 74-78.
  • Yılmaz, E., & Altunok, V. (2011). Cancer and p53 gene. Journal of Adana Veterinary Control and Research Institute, 1, 19-23.
  • Yi, X., Zeng, W., Wang, C., Chen, Y., Zheng, L., Zhu, X., Ke, Y., He, X., Kuang, Y., & Huang, Q. (2022). A step-by-step multiple stimuli-responsive metal-phenolic network prodrug nanoparticles for chemotherapy. Nano Research, 1205-1212.
  • Yokota, J., & Kohno, T. (2004). Molecular footprints of human lung cancer progression. Cancer Science, 95(3), 197-204.
  • Yu, M., Huang, S., Yu, K., & Clyne, A. (2012). Dextran and Polymer Polyethylene Glycol (PEG) Coating Reduce Both 5 and 30 nm Iron Oxide Nanoparticle Cytotoxicity in 2D and 3D Cell Culture. International Journal of Molecular Sciences, 13, 5554- 5570.
  • Yuan, Y., & Gurunathan, S. (2017). Combination of graphene oxide–silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. International Journal of Nanomedicine, 12, 6537-6558.
  • Zhao, Y., Chen, G., Meng, Z., Gong, G., Zhao, W., Wang, K., & Liu, T. (2019). A novel nanoparticle drug delivery system based on PEGylated hemoglobin for cancer therapy. Drug Delivery, 26(1), 717-723.
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Tuğba Atici 0000-0002-4798-935X

Deniz Altun Çolak 0000-0002-3576-0355

Erken Görünüm Tarihi 25 Temmuz 2025
Yayımlanma Tarihi
Gönderilme Tarihi 23 Eylül 2024
Kabul Tarihi 16 Mayıs 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 5

Kaynak Göster

APA Atici, T., & Altun Çolak, D. (2025). Combination of Silver Nanoparticles Synthesized Using Karaerik Extract and Cisplatin: Effects on Breast Cancer Cells. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(5), 1228-1240. https://doi.org/10.18016/ksutarimdoga.vi.1554474

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149