Araştırma Makalesi
BibTex RIS Kaynak Göster

Isolation, Identification and Determination of Biocontrol Activities of Rhizobacteria against Cown Rot Disease Agent Rhizoctonia solani AG 2-2 in Sugar Beet (Beta vulgaris L.)

Yıl 2025, Cilt: 28 Sayı: 5, 1241 - 1258
https://doi.org/10.18016/ksutarimdoga.vi.1611970

Öz

This study aims to investigate the biocontrol potential of antagonistic and plant growth-promoting rhizobacteria (PGPR) isolated from plant roots and soils against the crown rot pathogen Rhizoctonia solani AG 2-2 in sugar beet (Beta vulgaris L.) tubers. A total of 219 soil samples were collected from 20 provinces to obtain putative bacterial PGPR isolates that could potentially be used as biological control agents (BCAs). A total of 752 bacterial isolates were obtained, and there in vitro antifungal activity against R. solani AG-2.2 was tested in double culture experiments. The result was that 117 PGPR bacterial isolates exhibited antibiotic properties that inhibited mycelial growth of the fungal pathogen. These isolates were also characterized for their antagonistic and plant growth-promoting properties, including phosphorus solubility, hydrogen cyanide (HCN) activity, siderophore production, ACC deaminase activity, and indole-3-acetic acid (IAA) production. The 12 best PGPR isolates were then subjected to an in vivo pot test using a weighted scoring system. The isolate Bacillus subtilis 119.2 was identified as the most effective isolate that completely inhibited the outbreak of the disease caused by R. solani AG-2.2 in sugar beet. Considering the results of the in vitro and in vivo studies, the B. subtilis 119.2 isolate showed its potential as an environmentally friendly biological control agent against R. solani in sugar beet. Overall, B. subtilis 119.2 is a PGPR isolate with potential for use as a biofertilizer or biofungicide.

Destekleyen Kurum

The project has been supported by the Selçuk University Faculty Member Placement Program with the project number 2019-ÖYP-011 for its execution.

Proje Numarası

2019-ÖYP-011

Kaynakça

  • Abdeljalil, N. O. B., Vallance, J., Gerbore, J., Yacoub, A., Daami-Remadi, M., & Rey, P. (2021). Combining potential oomycete and bacterial biocontrol agents as a tool to fight tomato Rhizoctonia root rot. Biological control, 155, 104521. https://doi.org/10.1016/j.biocontrol.2020.104521
  • Agrawal, D. P. K. & Agrawal, S. (2013). Characterization of Bacillus sp. strains isolated from rhizosphere of tomato plants (Lycopersicon esculentum) for their use as potential plant growth promoting rhizobacteria. Int. J. Curr. Microbiol. App. Sci, 2(10), 406-417. http://www.ijcmas.com
  • Ahemad, M. & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King saud University-science, 26(1), 1-20. https://doi.org/10.1016/j.jksus.2013.05.001
  • Akbaba, M. (2014). Bitki gelişimini arttıran bakteriyel endofitlerin hıyar bakteriyel köşeli yaprak leke hastalığının (Pseudomonas syringae pv. lachrymans) önlenmesinde kullanılma olanakları (371300). [Yüksek lisans tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü Bitki Koruma Anabilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Akköprü, A. (2012). Hıyar Bakteriyel Köşeli Yaprak Leke Hastalığının (Pseudomonas syringae pv. lachrymans) Bazı Kök Bakterileriyle Biyolojik Savaşımı Üzerinde Araştırmalar (315688). [Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü Bitki Koruma Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Aksoy, C. (2019). Bazı kök bakterilerinin şeker pancarı kök çürüklüğü hastalıklarına etkilerinin belirlenmesi (556283). [Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü Bitki Koruma Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Aktan, Z. C. & Soylu, S. (2020). Diyarbakır ilinde yetişen badem ağaçlarından endofit ve epifit bakteri türlerinin izolasyonu ve bitki gelişimini teşvik eden mekanizmalarının karakterizasyonu. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(3), 641-654. https://doi.org/10.18016/ksutarimdoga.vi.659802
  • Almaghrabi, O. A., Massoud, S. I. & Abdelmoneim, T. S. (2013). Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi journal of biological sciences, 20(1), 57-61. https://doi.org/10.1016/j.sjbs.2012.10.004
  • Ambrosini, A. & Passaglia, L. M. (2017). Plant growth–promoting bacteria (PGPB): isolation and screening of PGP activities. Current protocols in plant biology, 2(3), 190-209. https://doi.org/10.1002/pb.20054
  • Avan, M. & Katırcıoğlu, Y. Z. (2019). Şeker Pancarlarında Görülen Rhizoctonia Türlerinin Özellikleri, Oluşturduğu Hastalıklar ve Korunma Yolları. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 16(1), 105-112. https://doi.org/10.25308/aduziraat.453302
  • Aydın, M. (2008). Patates yetiştiriciliğinde sorun olan Rhizoctonia solani’nin biyolojik savaşımı ve bunun kimyasal savaşla entegrasyonu (215957). [Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü Bitki Koruma Ana Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Babier, Y. & Akköprü, A. (2020). Çeşitli kültür bitkilerinden izole edilen endofitik bakterilerin karakterizasyonu ve bitki patojeni bakterilere karşı antagonistik etkilerinin belirlenmesi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 30(3), 521-534. https://doi.org/10.29133/yyutbd.727138
  • Bakker, A. W. & Schippers, B. (1987). Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biology and Biochemistry, 19(4), 451-457. https://doi.org/10.1016/0038-0717(87)90037-X
  • Barreto, A., Paulus, S., Varrelmann, M. & Mahlein, A.K. (2020). Hyperspectral imaging of symptoms induced by Rhizoctonia solani in sugar beet: Comparison of input data and different machine learning algorithms. Journal of Plant Diseases and Protection, 127(4), 441-451. https://doi.org/10.1007/s41348-020-00344-8
  • Basbagci, G., Unal, F., Uysal, A. & Dolar, F. S. (2019). Identification and pathogenicity of Rhizoctonia solani AG-4 causing root rot on chickpea in Turkey. Spanish Journal of Agricultural Research, 17(2), 1007. https://doi.org/10.5424/sjar/2019172-13789
  • Bektaş, İ. (2021). Toprakta Bazı Bakterilerin Fosfat Çözünürlüğü ile Organik Asit Üretimi Arasındaki İlişkinin Belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 8(1), 66-76. https://doi.org/10.30910/turkjans.677316
  • Bienkowski, D. (2012). Biological control of Rhizoctonia diseases of potato. [PhD Thesis, Lincoln University]. https://researcharchive.lincoln.ac.nz/bitstreams/ac42fc9b-d728-4bbe-965c-ce7a0dd17867/download
  • Billah, M., Khan, M., Bano, A., Hassan, T. U., Munir, A. & Gurmani, A. R. (2019). Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 36(10), 904-916. https://doi.org/10.1080/01490451.2019.1654043
  • Buhur, N. (2014). Aydın ilinde çeşitli kültür bitkilerinden elde edilen patojen Rhizoctonia spp. izolatlarının anastomosis gruplarının belirlenmesi (377302). [Yüksek Lisans Tezi, Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, Bitki Koruma Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Carling, D. E. (1996). Grouping in Rhizoctonia solani by hyphal anastomosis reaction. In B. Sneh, S. Jabaji-Hare, S. Neate, G. Dijst (Eds.), Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Springer, p. 37-47.
  • Carling, D.E. & Sumner, D.R. (1992). Rhizoctonia. In L. L. Singleton, J. D. Mihail & C. M. Rush (Eds.) Methods for research on soilborne phytopathologenic fungi. American Phytopathological Society, 157-165.
  • Chen, W., Wang, Z., Xu, W. & Hu, Y. (2024). Genome sequence of Leclarcia adecarboxylata QDSM01 with multiple plant growth promoting properties. Plant Growth Regulation, 102(2), 445-459. https://doi.org/10.1007/s10725-023-01071-4
  • Çakmakçı, R. (2009). Stres koşullarında ACC deaminaze üretici bakteriler tarafından bitki gelişiminin teşvik edilmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 40(1), 109-125.
  • Dinu, S., Boiu-Sicuia, O.-A. & Constantinescu, F. (2019). Influence of Bacillus spp. Based Bioproducts on Potato Plant Growth and Control of Rhizoctonia solani. Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca. Animal Science & Biotechnologies, 76(1). doi:10.15835/buasvmcn-asb: 2018-0022
  • Dönmez, M. F., Uysal, B., Demirci, E., Ercisli, S. & Cakmakci, R. (2015). Biological control of root rot disease caused by Rhizoctonia solani Kuhn on potato and bean using antagonist bacteria. Acta Scientiarum Polonorum-Hortorum Cultus, 14(5), 29-40.
  • Duman, K., & Soylu, S. (2019). Characterization of plant growth-promoting traits and antagonistic potentials of endophytic bacteria from bean plants against Pseudomonas syringae pv. phaseolicola. Bitki Koruma Bülteni, 59, 59-69. https://doi.org/10.16955/bitkorb.597214
  • Dworkin, M. ve Foster, J. (1958). Experiments with some microorganisms which utilize ethane and hydrogen. Journal of bacteriology, 75(5), 592-603.
  • Elkahoui, S., Djébali, N., Tabbene, O., Hadjbrahim, A., Mnasri, B., Mhamdi, R., Shaaban, M. & Limam, F. (2012). Evaluation of antifungal activity from Bacillus strains against Rhizoctonia solani. African Journal of Biotechnology, 11(18), 4196-4201. doi:10.5897/AJB11.3354
  • El-Sayed, W.S., Akhkha, A., El-Naggar, M.Y. & Elbadry, M. (2014). In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Frontiers in microbiology, 5, 1118165. https://doi.org/10.3389/fmicb.2014.00651
  • Farhaoui, A., Adadi, A., Tahiri, A., El Alami, N., Khayi, S., Mentag, Radouane, N., Mokrini, F., Belabess, Z. & Lahlali, R. (2022). Biocontrol potential of plant growth-promoting rhizobacteria (PGPR) against Sclerotiorum rolfsii diseases on sugar beet (Beta vulgaris L.). Physiological and Molecular Plant Pathology, 119, 101829. https://doi.org/10.1016/j.pmpp.2022.101829
  • Farhaoui, A., El Alami, N., Khadiri, M., Ezrari, S., Radouane, N., Baala, M., Tahiri, A., Lahlali, R. (2023). Biological control of diseases caused by Rhizoctonia solani AG-2-2 in sugar beet (Beta vulgaris L.) using plant growth-promoting rhizobacteria (PGPR). Physiological and Molecular Plant Pathology, 124, 101966. https://doi.org/10.1016/j.pmpp.2023.101966
  • Ghazy, N. & El-Nahrawy, S. (2021). Siderophore production by Bacillus subtilis MF497446 and Pseudomonas koreensis MG209738 and their efficacy in controlling Cephalosporium maydis in maize plant. Archives of microbiology, 203(3), 1195-1209. https://doi.org/10.1007/s00203-020-02113-5
  • Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological research, 169(1), 30-39. https://doi.org/10.1016/j.micres.2013.09.009
  • Gordon, S.A., Weber, R.P. (1951). Colorimetric estimation of indoleacetic acid. Plant Physiol. Jan;26(1):192-5. doi: 10.1104/pp.26.1.192.
  • Guo, J.H., Jiang, C.H., Xie, P., Huang, Z.Y. & Fa, Z.H. (2015). The plant healthy and safety guards plant growth promoting rhizo bacteria (PGPR). Transcriptomics, 3(109), 2. http://dx.doi.org/10.4172/2329-8936.1000109
  • Gupta, S. ve Pandey, S. (2019). ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Frontiers in Microbiology, 10, 1506. https://doi.org/10.3389/fmicb.2019.01506
  • Gümüş, Y., & Soylu, E. M. (2024). Endofit ve Epifit Bakteri İzolatlarının Bazı Turunçgil Fungal Hastalık Etmenlerine Karşı in vitro Biyokontrol Etkinlik ve Etki Mekanizmalarının Belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 27(6), 1376-1391. https://doi.org/10.18016/ksutarimdoga.vi.1459337
  • Güney, E. (2014). Bacillus sp. türlerinde siderofor üretimi ve Bacillus cereus DSM 4312de siderofor üretiminin optimizasyonu (355374). [Yüksek Lisans Tezi, Gebze Yüksek Teknoloji Mühendislik ve Fen Bilimleri Enstitüsü Moleküler Biyoloji ve Genetik Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Holmquist, L. (2018). Rhizoctonia solani and sugar beet responses. [Doctoral Thesis, Swedish University of Agricultural Sciences, Deparment of Plant Biology].
  • Hough, R. L. (2021). A world view of pesticides. Nature Geoscience, 14(4), 183-184. https://doi.org/10.1038/s41561-021-00723-2
  • Ji, S. H., Paul, N. C., Deng, J. X., Kim, Y. S., Yun, B.-S. & Yu, S. H. (2013). Biocontrol activity of Bacillus amyloliquefaciens CNU114001 against fungal plant diseases. Mycobiology, 41(4), 234-242. https://doi.org/10.5941/MYCO.2013.41.4.234
  • Kankam, F., Larbi-Koranteng, S. & Adomako, J. (2021). Rhizoctonia disease of potato: Epidemiology, toxin types and management. Egyptian Journal of Phytopathology, 49(1), 197-209. Doi: 10.21608/ejp.2021.72057.1028
  • Kara, M. & Soylu, S. (2022). Isolation of endophytic bacterial isolates from healthy banana trees and determination of their in vitro antagonistic activities against crown rot disease agent Fusarium verticillioides. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 27(1), 36-46. https://doi.org/10.37908/mkutbd.1021349
  • Kara, M., Soylu, S., Kurt, Ş., Soylu, E.M. & Uysal, A. (2020). Determination of antagonistic traits of bacterial isolates obtained from apricot against green fruit rot disease agent Sclerotinia sclerotiorum. Acta Horticulturae, 1290, 135-142. https://doi.org/10.17660/ActaHortic.2020.1290.25
  • Kara, M., Soylu, S., Soylu, E.M., Uysal, A., Kurt, Ş., & Türkmen, M. (2024). Determination of the antifungal activity of wood vinegar (pyroligneous acid) against the onion bulb rot disease agent Fusarium proliferatum, chemical composition and its effect on the bacterial community in the soil. Gesunde Pflanzen, 76, 75-85. https://doi.org/10.1007/s10343-023-00931-3
  • Karimi, E., Safaie, N., Shams-Baksh, M. & Mahmoudi, B. (2016). Bacillus amyloliquefaciens SB14 from rhizosphere alleviates Rhizoctonia damping-off disease on sugar beet. Microbiological research, 192, 221-230. https://doi.org/10.1016/j.micres.2016.06.011
  • Kaya Özdoğan, D. (2020). Ankara ili topraklarından bitki büyümesini teşvik edici bakterilerin izolasyonu, tanımlanması ve genetik çeşitliliklerinin belirlenmesi (618939). [Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Khedher, S. B., Kilani-Feki, O., Dammak, M., Jabnoun-Khiareddine, H., Daami-Remadi, M. & Tounsi, S. (2015). Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato. Comptes Rendus Biologies, 338(12), 784-792. DOI: 10.1016/j.crvi.2015.09.005
  • Khoso, M.A., Wagan, S., Alam, I., Hussain, A., Ali, Q., Saha, S., Poudel, T.R., Manghwar, H. & Liu, F. (2023). Impact of plant-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: Current perspective. Plant Stress, 100341. https://doi.org/10.1016/j.stress.2023.100341
  • Klement, Z. R. K. & Sands D. C. (1990). Methods in Phytopathology, Akademiai Kiado Budapest, p.17-44.
  • Koçak, R. & Salman, Ö. (2023). Bazı endofitik ve rizosferik bakterilerin fasulyede Macrophomina phaseolina’ya karşı etkinliklerinin in vitro koşullarda belirlenmesi. Harran Tarım ve Gıda Bilimleri Dergisi, 27(1), 42-51. https://doi.org/10.29050/harranziraat.1195672
  • Kotan, R. (2020). Tarımda biyolojik çözümler. Harman Yayıncılık, İstanbul, 158.
  • Kumar, P., Dubey, R.C. & Rai, A.K. (2022). Plant growth promoting and antagonistic Enterobacter sp. EPR4 from common bean rhizosphere of garhwal himalayan inhibits a soil-borne pathogen Sclerotinia sclerotiorum. Plant Science Today, 9(4), 837-843. DOI: https://doi.org/10.14719/pst.1662
  • Küsek, M. (2007). Asmada (Vitis vinifera L.) ura neden olan Agrobacterium vitis‘in tanılanması ve mücadele olanaklarının araştırılması (199947). [Çukurova Üniversitesi, Fen Bilimleri Enstitüsü Bitki Koruma Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Larkin, R. P. & Brewer, M. T. (2020). Effects of crop rotation and biocontrol amendments on Rhizoctonia disease of potato and soil microbial communities. Agriculture, 10(4), 128. https://doi.org/10.3390/agriculture10040128
  • Lehtonen, M. (2009). Rhizoctonia solani as a potato pathogen: Variation of isolates in Finland and host response. [University of Helsinki, Viikki Graduate School in Molecular Biosciences]. http://hdl.handle.net/10138/20748
  • Liu, Y., Qi, A. & Khan, M. F. (2019). Age-dependent resistance to Rhizoctonia solani in sugar beet. Plant disease, 103(9), 2322-2329. https://doi.org/10.1094/PDIS-11-18-2001-RE
  • Maheshwari, R., Bhutani, N. & Suneja, P. (2020). Isolation and characterization of ACC deaminase producing endophytic Bacillus mojavensis PRN2 from Pisum sativum. Iranian Journal of Biotechnology, 18(2), e2308. doi: 10.30498/IJB.2020.137279.2308
  • Mahmoud, A. F. (2016). Suppression of sugar beet damping-off caused by Rhizoctonia solani using bacterial and fungal antagonists. Archives of phytopathology and plant protection, 49(19-20), 575-585. https://doi.org/10.1080/03235408.2016.1245052
  • Misra, V., Mall, A.K. & Singh, D. (2023). Rhizoctonia root-rot diseases in sugar beet: Pathogen diversity, pathogenesis and cutting-edge advancements in management research. The Microbe, 100011. https://doi.org/10.1016/j.microb.2023.100011
  • Molefe, R. R., Amoo, A.E. & Babalola, O.O. (2023). Communication between plant roots and the soil microbiome; involvement in plant growth and development. Symbiosis, 90(3), 231-239. https://link.springer.com/article/10.1007/s13199-023-00941-9
  • Moussa, T. A. (2002). Studies on biological control of sugarbeet pathogen Rhizoctonia solani Kühn. J. Biol. Sci, 2(12), 800-804. DOI: 10.3923/jbs.2002.800.804
  • Muyolo, N. G. L., P. E. & Schmıtthenner, A. F. (1993). Reactions of dry bean, lima bean, and soybean cultivars to Rhizoctonia root and hypocotyl rot and web blight. Plant disease, 77, 234-238. DOI: 10.1094/PD-77-0234
  • Özdal, M., Özdal, Ö. G., Sezen, A. & Algur, Ö. F. (2016). Biosynthesis of indole-3-acetic acid by Bacillus cereus immobilized cells. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 37(3), 212-222. https://doi.org/10.17776/csj.34085
  • Penrose, D. M. & Glick, B.R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia plantarum, 118(1), 10-15. https://doi.org/10.1034/j.1399-3054.2003.00086.x
  • Pikovskaya, R. I. (1948). Mobilization of Phosphorus in Soil Connection with the Vital Activity of Some Microbial Species. Microbiology spectrum, 17, 362-370.
  • Qingwei, Z., Lushi, T., Yu, Z., Yu, S., Wanting, W., Jiangchuan, W., Xiaolei, D., Xuejiao, H. & Bilal, M. (2023). Isolation and characterization of phosphate-solubilizing bacteria from rhizosphere of poplar on road verge and their antagonistic potential against various phytopathogens. BMC microbiology, 23(1), 221.
  • Rodrı guez, H. & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology advances, 17(4-5), 319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
  • Salman, Ö. & Boyraz, N. (2023). Determination of Disease Severity of Rhizoctonia solani Kühn (Telemorph: Thanatephorus cucumeris ((Frank) Donk) Isolates from Bean, Sugar Beet and Potato Planting Areas in Konya. Selcuk Journal of Agriculture and Food Sciences, 37(1), 119-132. DOI: 10.15316/SJAFS.2023.013
  • Salman, Ö. (2023). Bazı Bitkilerde Rhizoctonia spp.’lerinin Biyolojik Mücadele İmkanlarının Araştırılması (797011). [Selçuk Üniversitesi, Fen Bilimleri Enstitüsü Bitki Koruma Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Schmid, M., Iversen, C., Gontia, I., Stephan, R., Hofmann, A., Hartmann, A., Jha, B., Eberl, L., Riedel, K. & Lehner, A. (2009). Evidence for a plant associated natural habitat for Cronobacter spp. Research in Microbiology, 160, 8, 608-614. https://doi.org/10.1016/j.resmic.2009.08.013
  • Schmiedeknecht, G., Bochow, H. & Junge, H. (1998). Use of Bacillus subtilis as biocontrol agent. II. Biological control of potato diseases/Anwendung von Bacillus subtilis als Mittel für den biologischen Pflanzenschutz. II. Biologische Bekämpfung von Kartoffelkrankheiten, Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection, 376-386. https://www.jstor.org/stable/43215255
  • Scholten, O. E., Panella, L. W., De Bock, T. S. & Lange, W. (2001). A greenhouse test for screening sugar beet (Beta vulgaris) for resistance to Rhizoctonia solani, European Journal of Plant Pathology, 107(2), 161-166. https://doi.org/10.1023/A:1011208903344
  • Schwyn, B. & Neilands, J. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical biochemistry, 160(1), 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  • Sehrawat, A., Sindhu, S. S. & Glick, B. R. (2022). Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere, 32(1), 15-38. https://doi.org/10.1016/S1002-0160(21)60058-9
  • Selva Kumar, S., Ram Krishna Rao, M., Deepak Kumar, R., Panwar, S. & Prasad, C. (2013). Biocontrol by plant growth promoting rhizobacteria against black scurf and stem canker disease of potato caused by Rhizoctonia solani. Archives of phytopathology and plant protection, 46(4), 487-502. https://doi.org/10.1080/03235408.2012.745054
  • Sendi, Y., Pfeiffer, T., Koch, E., Mhadhbi, H. & Mrabet, M. (2020). Potential of common bean (Phaseolus vulgaris L.) root microbiome in the biocontrol of root rot disease and traits of performance. Journal of Plant Diseases and Protection, 127(4), 453-462. https://doi.org/10.1007/s41348-020-00338-6
  • Soylu, E. M., Soylu, S., Kara, M., & Kurt, Ş. (2020). Determinations of in vitro antagonistic effects of microbiomes isolated from vermicompost against major plant fungal disease agents of vegetables. KSU Tarım ve Doğa Dergisi 23(1), 7-18. https://doi.org/10.18016/ksutarimdoga.vi.601936
  • Soylu, S., Kara, M., Uysal, A., Kurt, Ş., & Soylu, E. M. (2021). Determination of antagonistic potential of endophytic bacteria isolated from lettuce against lettuce white mould disease caused by Sclerotinia sclerotiorum. Zemdirbyste-Agriculture, 108(3), 303–312. https://doi.org/10.13080/z-a.2021.108.039
  • Strausbaugh, C. A., Eujayl, I. A., Panella, L. W. & Hanson, L. E. (2011). Virulence, distribution and diversity of Rhizoctonia solani from sugar beet in Idaho and Oregon. Canadian Journal of Plant Pathology, 33(2), 210-226. https://doi.org/10.1080/07060661.2011.558523
  • Sundara, B., Natarajan, V. & Hari, K. (2002). Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Research, 77(1), 43-49. https://doi.org/10.1016/S0378-4290(02)00048-5
  • Şahin, K. (2022). Kayseri ilinde şeker pancarı kota uygulamalarının şeker pancarı üretimine etkileri. Journal of the Institute of Science and Technology,12(3), 1801-1807. https://doi.org/10.21597/jist.1030385
  • Şahiner, A. (2020). Kırşehir Ekolojik koşullarında bazı şeker pancarı (Beta vulgaris L.) çeşitlerinin verim ve kalite özelliklerinin belirlenmesi (615138). [Yüksek Lisans Tezi, Kırşehir Ahi Evran Üniversitesi Fen Bilimleri Enstitüsü, Tarla Bitkileri Anabilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Tamura K. & Nei M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10:512-526. https://doi.org/10.1093/oxfordjournals.molbev.a040023
  • Tamura K., Stecher G. & Kumar S. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msab120
  • Tariq, M., Yasmin, S. & Hafeez, F. Y. (2010). Biological control of potato black scurf by rhizosphere associated bacteria. Brazilian Journal of Microbiology, 41, 439-451. https://doi.org/10.1590/S1517-83822010000200026
  • Towsend, G. R. H., J W. (1943). Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Reporter, 27, 340-343.
  • Tsror, L. (2010). Biology, epidemiology and management of Rhizoctonia solani on potato. Journal of Phytopathology, 158(10), 649-658. https://doi.org/10.1111/j.1439-0434.2010.01671.x
  • Turan, M., Ekinci, M., Yildirim, E., Güneş, A., Karagöz, K., Kotan, R. & Dursun, A. (2014). Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turkish Journal of Agriculture and Forestry, 38(3), 327-333. https://doi.org/10.3906/tar-1308-62
  • Vacheron, J., Desbrosses, G., Bouffaud, M.L., Touraine, B., Moenne-Loccoz, Muller, D., Legendre, L., Wisniewski-Dye, F., Prigent-Combaret, C. (2013). Plant growth-promoting rhizobacteria and root system functioning. Frontiers in plant science, 4, 356
  • Wagi, S. & Ahmed, A. (2019). Bacillus spp.: potent microfactories of bacterial IAA. PeerJ, 7, e7258.
  • Wang, Y., Pei, Y., Wang, X., Dai, X., & Zhu, M. (2024). Antimicrobial metabolites produced by the plant growth-promoting rhizobacteria (PGPR): Bacillus and Pseudomonas. Advanced Agrochem. https://doi.org/10.1016/j.aac.2024.07.007
  • Webb, K.M., Harveson, R.M. & West, M.S. (2015). Evaluation of Rhizoctonia zeae as a potential biological control option for fungal root diseases of sugar beet. Annals of Applied Biology, 167(1), 75-89. https://doi.org/10.1111/aab.12210
  • Weisburg, W.G., Barns, S.M., Pelletier, D. A. & Lane, D.J. (1991). 16 S ribosomal DNA amplification for phylogenetic study. J. Bacteriol 173(2):697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  • Widawati, S. (2020). Isolation of Indole Acetic Acid (IAA) producing Bacillus siamensis from peat and optimization of the culture conditions for maximum IAA production. IOP Conference Series: Earth and Environmental Science, 012025. DOI 10.1088/1755-1315/572/1/012025
  • Zahir, Z. A., Ghani, U., Naveed, M., Nadeem, S. M. & Asghar, H. N. (2009). Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Archives of microbiology, 191(5), 415-424. https://doi.org/10.1007/s00203-009-0466-y
  • Zhao, C., Li, Y., Wu, S., P., Han, C. & Wu, X. (2019). Anastomosis group and pathogenicity of Rhizoctonia spp. associated with seedling damping-off of sugar beet in China. European journal of plant pathology, 153, 869-878. https://doi.org/10.1007/s10658-018-1603-8

Şeker Pancarında (Beta vulgaris L.) Taç Çürüklüğü Hastalık Etmeni Rhizoctonia solani AG 2-2’ye Karşı Kökbakterilerinin İzolasyonu, Tanılanması ve Biyokontrol Etkinliklerinin Belirlenmesi

Yıl 2025, Cilt: 28 Sayı: 5, 1241 - 1258
https://doi.org/10.18016/ksutarimdoga.vi.1611970

Öz

Bu çalışmanın amacı, şeker pancarı (Beta vulgaris L.) yumrularında sorun taç çürüklüğü hastalık etmeni Rhizoctonia solani AG 2-2'ye karşı bitki kök ve topraklardan izole edilmiş potansiyel antagonistik (BCAs) ve bitki gelişimini teşvik eden kökbakterilerinin (PGPR) hastalık etmenine karşı biyokontrol potansiyelini araştırmaktır. Potansiyel biyolojik kontrol etmeni bakteri izolatlarını elde etmek için 20 ilden toplam 219 toprak örneği toplanmıştır. Bu örneklerden 752 bakteri izolatı elde edilmiş ve bu bakterilerin, R. solani AG-2.2'ye karşı in vitro antifungal etkinlikleri, ikili kültür denemeleri ile test edilmiştir. Sonuçta, 117 bakteri izolatının misel gelişimini engelleyen antibiyosis özelliği gösterdiği belirlenmiştir. Bu izolatların antibiyosis etkinliklerinin yanısıra, fosfor çözünürlüğü, hidrojen siyanür (HCN) aktivitesi, siderofor üretimi, ACC deaminaz aktivitesi ve indol-3-asetik asit (IAA) üretimi gibi bitki gelişimini teşvik edici özellikleri karakterize edilmiştir. Test edilen PGPR izolatlar arasında, en iyi 12 bakteri, tartılı derecelendirme sistemi kullanılarak in vivo saksı testlerine tabi tutulmuştur. Bacillus subtilis 119.2 izolatı, şeker pancarında R. solani AG-2.2' kaynaklı hastalık çıkışının engellenmesinde %100 oranla en etkili izolat olarak belirlenmiştir. Hem in vitro hem de in vivo çalışma sonuçları göz önünde bulundurulduğunda, B. subtilis 119.2 izolatının şeker pancarı tarımında R. solani'ye karşı çevre dostu biyolojik mücadele etmeni olarak potansiyelinin bulunduğunu göstermiştir. Tüm sonuçlar birlikte değerlendirildiğinde B. subtilis 119.2 biyolojik gübre veya biyolojik fungisit olarak kullanım potansiyeline sahip PGPR izolatıdır.

Destekleyen Kurum

Çalışmanın yürütülebilmesi için Selçuk Üniversitesi Öğretim Üyesi Yerleştirme Programı tarafından 2019-ÖYP-011 nolu proje ile destek sağlanmıştır.

Proje Numarası

2019-ÖYP-011

Kaynakça

  • Abdeljalil, N. O. B., Vallance, J., Gerbore, J., Yacoub, A., Daami-Remadi, M., & Rey, P. (2021). Combining potential oomycete and bacterial biocontrol agents as a tool to fight tomato Rhizoctonia root rot. Biological control, 155, 104521. https://doi.org/10.1016/j.biocontrol.2020.104521
  • Agrawal, D. P. K. & Agrawal, S. (2013). Characterization of Bacillus sp. strains isolated from rhizosphere of tomato plants (Lycopersicon esculentum) for their use as potential plant growth promoting rhizobacteria. Int. J. Curr. Microbiol. App. Sci, 2(10), 406-417. http://www.ijcmas.com
  • Ahemad, M. & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King saud University-science, 26(1), 1-20. https://doi.org/10.1016/j.jksus.2013.05.001
  • Akbaba, M. (2014). Bitki gelişimini arttıran bakteriyel endofitlerin hıyar bakteriyel köşeli yaprak leke hastalığının (Pseudomonas syringae pv. lachrymans) önlenmesinde kullanılma olanakları (371300). [Yüksek lisans tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü Bitki Koruma Anabilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Akköprü, A. (2012). Hıyar Bakteriyel Köşeli Yaprak Leke Hastalığının (Pseudomonas syringae pv. lachrymans) Bazı Kök Bakterileriyle Biyolojik Savaşımı Üzerinde Araştırmalar (315688). [Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü Bitki Koruma Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Aksoy, C. (2019). Bazı kök bakterilerinin şeker pancarı kök çürüklüğü hastalıklarına etkilerinin belirlenmesi (556283). [Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü Bitki Koruma Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Aktan, Z. C. & Soylu, S. (2020). Diyarbakır ilinde yetişen badem ağaçlarından endofit ve epifit bakteri türlerinin izolasyonu ve bitki gelişimini teşvik eden mekanizmalarının karakterizasyonu. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(3), 641-654. https://doi.org/10.18016/ksutarimdoga.vi.659802
  • Almaghrabi, O. A., Massoud, S. I. & Abdelmoneim, T. S. (2013). Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi journal of biological sciences, 20(1), 57-61. https://doi.org/10.1016/j.sjbs.2012.10.004
  • Ambrosini, A. & Passaglia, L. M. (2017). Plant growth–promoting bacteria (PGPB): isolation and screening of PGP activities. Current protocols in plant biology, 2(3), 190-209. https://doi.org/10.1002/pb.20054
  • Avan, M. & Katırcıoğlu, Y. Z. (2019). Şeker Pancarlarında Görülen Rhizoctonia Türlerinin Özellikleri, Oluşturduğu Hastalıklar ve Korunma Yolları. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 16(1), 105-112. https://doi.org/10.25308/aduziraat.453302
  • Aydın, M. (2008). Patates yetiştiriciliğinde sorun olan Rhizoctonia solani’nin biyolojik savaşımı ve bunun kimyasal savaşla entegrasyonu (215957). [Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü Bitki Koruma Ana Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Babier, Y. & Akköprü, A. (2020). Çeşitli kültür bitkilerinden izole edilen endofitik bakterilerin karakterizasyonu ve bitki patojeni bakterilere karşı antagonistik etkilerinin belirlenmesi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 30(3), 521-534. https://doi.org/10.29133/yyutbd.727138
  • Bakker, A. W. & Schippers, B. (1987). Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biology and Biochemistry, 19(4), 451-457. https://doi.org/10.1016/0038-0717(87)90037-X
  • Barreto, A., Paulus, S., Varrelmann, M. & Mahlein, A.K. (2020). Hyperspectral imaging of symptoms induced by Rhizoctonia solani in sugar beet: Comparison of input data and different machine learning algorithms. Journal of Plant Diseases and Protection, 127(4), 441-451. https://doi.org/10.1007/s41348-020-00344-8
  • Basbagci, G., Unal, F., Uysal, A. & Dolar, F. S. (2019). Identification and pathogenicity of Rhizoctonia solani AG-4 causing root rot on chickpea in Turkey. Spanish Journal of Agricultural Research, 17(2), 1007. https://doi.org/10.5424/sjar/2019172-13789
  • Bektaş, İ. (2021). Toprakta Bazı Bakterilerin Fosfat Çözünürlüğü ile Organik Asit Üretimi Arasındaki İlişkinin Belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 8(1), 66-76. https://doi.org/10.30910/turkjans.677316
  • Bienkowski, D. (2012). Biological control of Rhizoctonia diseases of potato. [PhD Thesis, Lincoln University]. https://researcharchive.lincoln.ac.nz/bitstreams/ac42fc9b-d728-4bbe-965c-ce7a0dd17867/download
  • Billah, M., Khan, M., Bano, A., Hassan, T. U., Munir, A. & Gurmani, A. R. (2019). Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 36(10), 904-916. https://doi.org/10.1080/01490451.2019.1654043
  • Buhur, N. (2014). Aydın ilinde çeşitli kültür bitkilerinden elde edilen patojen Rhizoctonia spp. izolatlarının anastomosis gruplarının belirlenmesi (377302). [Yüksek Lisans Tezi, Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, Bitki Koruma Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Carling, D. E. (1996). Grouping in Rhizoctonia solani by hyphal anastomosis reaction. In B. Sneh, S. Jabaji-Hare, S. Neate, G. Dijst (Eds.), Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Springer, p. 37-47.
  • Carling, D.E. & Sumner, D.R. (1992). Rhizoctonia. In L. L. Singleton, J. D. Mihail & C. M. Rush (Eds.) Methods for research on soilborne phytopathologenic fungi. American Phytopathological Society, 157-165.
  • Chen, W., Wang, Z., Xu, W. & Hu, Y. (2024). Genome sequence of Leclarcia adecarboxylata QDSM01 with multiple plant growth promoting properties. Plant Growth Regulation, 102(2), 445-459. https://doi.org/10.1007/s10725-023-01071-4
  • Çakmakçı, R. (2009). Stres koşullarında ACC deaminaze üretici bakteriler tarafından bitki gelişiminin teşvik edilmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 40(1), 109-125.
  • Dinu, S., Boiu-Sicuia, O.-A. & Constantinescu, F. (2019). Influence of Bacillus spp. Based Bioproducts on Potato Plant Growth and Control of Rhizoctonia solani. Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca. Animal Science & Biotechnologies, 76(1). doi:10.15835/buasvmcn-asb: 2018-0022
  • Dönmez, M. F., Uysal, B., Demirci, E., Ercisli, S. & Cakmakci, R. (2015). Biological control of root rot disease caused by Rhizoctonia solani Kuhn on potato and bean using antagonist bacteria. Acta Scientiarum Polonorum-Hortorum Cultus, 14(5), 29-40.
  • Duman, K., & Soylu, S. (2019). Characterization of plant growth-promoting traits and antagonistic potentials of endophytic bacteria from bean plants against Pseudomonas syringae pv. phaseolicola. Bitki Koruma Bülteni, 59, 59-69. https://doi.org/10.16955/bitkorb.597214
  • Dworkin, M. ve Foster, J. (1958). Experiments with some microorganisms which utilize ethane and hydrogen. Journal of bacteriology, 75(5), 592-603.
  • Elkahoui, S., Djébali, N., Tabbene, O., Hadjbrahim, A., Mnasri, B., Mhamdi, R., Shaaban, M. & Limam, F. (2012). Evaluation of antifungal activity from Bacillus strains against Rhizoctonia solani. African Journal of Biotechnology, 11(18), 4196-4201. doi:10.5897/AJB11.3354
  • El-Sayed, W.S., Akhkha, A., El-Naggar, M.Y. & Elbadry, M. (2014). In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Frontiers in microbiology, 5, 1118165. https://doi.org/10.3389/fmicb.2014.00651
  • Farhaoui, A., Adadi, A., Tahiri, A., El Alami, N., Khayi, S., Mentag, Radouane, N., Mokrini, F., Belabess, Z. & Lahlali, R. (2022). Biocontrol potential of plant growth-promoting rhizobacteria (PGPR) against Sclerotiorum rolfsii diseases on sugar beet (Beta vulgaris L.). Physiological and Molecular Plant Pathology, 119, 101829. https://doi.org/10.1016/j.pmpp.2022.101829
  • Farhaoui, A., El Alami, N., Khadiri, M., Ezrari, S., Radouane, N., Baala, M., Tahiri, A., Lahlali, R. (2023). Biological control of diseases caused by Rhizoctonia solani AG-2-2 in sugar beet (Beta vulgaris L.) using plant growth-promoting rhizobacteria (PGPR). Physiological and Molecular Plant Pathology, 124, 101966. https://doi.org/10.1016/j.pmpp.2023.101966
  • Ghazy, N. & El-Nahrawy, S. (2021). Siderophore production by Bacillus subtilis MF497446 and Pseudomonas koreensis MG209738 and their efficacy in controlling Cephalosporium maydis in maize plant. Archives of microbiology, 203(3), 1195-1209. https://doi.org/10.1007/s00203-020-02113-5
  • Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological research, 169(1), 30-39. https://doi.org/10.1016/j.micres.2013.09.009
  • Gordon, S.A., Weber, R.P. (1951). Colorimetric estimation of indoleacetic acid. Plant Physiol. Jan;26(1):192-5. doi: 10.1104/pp.26.1.192.
  • Guo, J.H., Jiang, C.H., Xie, P., Huang, Z.Y. & Fa, Z.H. (2015). The plant healthy and safety guards plant growth promoting rhizo bacteria (PGPR). Transcriptomics, 3(109), 2. http://dx.doi.org/10.4172/2329-8936.1000109
  • Gupta, S. ve Pandey, S. (2019). ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Frontiers in Microbiology, 10, 1506. https://doi.org/10.3389/fmicb.2019.01506
  • Gümüş, Y., & Soylu, E. M. (2024). Endofit ve Epifit Bakteri İzolatlarının Bazı Turunçgil Fungal Hastalık Etmenlerine Karşı in vitro Biyokontrol Etkinlik ve Etki Mekanizmalarının Belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 27(6), 1376-1391. https://doi.org/10.18016/ksutarimdoga.vi.1459337
  • Güney, E. (2014). Bacillus sp. türlerinde siderofor üretimi ve Bacillus cereus DSM 4312de siderofor üretiminin optimizasyonu (355374). [Yüksek Lisans Tezi, Gebze Yüksek Teknoloji Mühendislik ve Fen Bilimleri Enstitüsü Moleküler Biyoloji ve Genetik Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Holmquist, L. (2018). Rhizoctonia solani and sugar beet responses. [Doctoral Thesis, Swedish University of Agricultural Sciences, Deparment of Plant Biology].
  • Hough, R. L. (2021). A world view of pesticides. Nature Geoscience, 14(4), 183-184. https://doi.org/10.1038/s41561-021-00723-2
  • Ji, S. H., Paul, N. C., Deng, J. X., Kim, Y. S., Yun, B.-S. & Yu, S. H. (2013). Biocontrol activity of Bacillus amyloliquefaciens CNU114001 against fungal plant diseases. Mycobiology, 41(4), 234-242. https://doi.org/10.5941/MYCO.2013.41.4.234
  • Kankam, F., Larbi-Koranteng, S. & Adomako, J. (2021). Rhizoctonia disease of potato: Epidemiology, toxin types and management. Egyptian Journal of Phytopathology, 49(1), 197-209. Doi: 10.21608/ejp.2021.72057.1028
  • Kara, M. & Soylu, S. (2022). Isolation of endophytic bacterial isolates from healthy banana trees and determination of their in vitro antagonistic activities against crown rot disease agent Fusarium verticillioides. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 27(1), 36-46. https://doi.org/10.37908/mkutbd.1021349
  • Kara, M., Soylu, S., Kurt, Ş., Soylu, E.M. & Uysal, A. (2020). Determination of antagonistic traits of bacterial isolates obtained from apricot against green fruit rot disease agent Sclerotinia sclerotiorum. Acta Horticulturae, 1290, 135-142. https://doi.org/10.17660/ActaHortic.2020.1290.25
  • Kara, M., Soylu, S., Soylu, E.M., Uysal, A., Kurt, Ş., & Türkmen, M. (2024). Determination of the antifungal activity of wood vinegar (pyroligneous acid) against the onion bulb rot disease agent Fusarium proliferatum, chemical composition and its effect on the bacterial community in the soil. Gesunde Pflanzen, 76, 75-85. https://doi.org/10.1007/s10343-023-00931-3
  • Karimi, E., Safaie, N., Shams-Baksh, M. & Mahmoudi, B. (2016). Bacillus amyloliquefaciens SB14 from rhizosphere alleviates Rhizoctonia damping-off disease on sugar beet. Microbiological research, 192, 221-230. https://doi.org/10.1016/j.micres.2016.06.011
  • Kaya Özdoğan, D. (2020). Ankara ili topraklarından bitki büyümesini teşvik edici bakterilerin izolasyonu, tanımlanması ve genetik çeşitliliklerinin belirlenmesi (618939). [Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Khedher, S. B., Kilani-Feki, O., Dammak, M., Jabnoun-Khiareddine, H., Daami-Remadi, M. & Tounsi, S. (2015). Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato. Comptes Rendus Biologies, 338(12), 784-792. DOI: 10.1016/j.crvi.2015.09.005
  • Khoso, M.A., Wagan, S., Alam, I., Hussain, A., Ali, Q., Saha, S., Poudel, T.R., Manghwar, H. & Liu, F. (2023). Impact of plant-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: Current perspective. Plant Stress, 100341. https://doi.org/10.1016/j.stress.2023.100341
  • Klement, Z. R. K. & Sands D. C. (1990). Methods in Phytopathology, Akademiai Kiado Budapest, p.17-44.
  • Koçak, R. & Salman, Ö. (2023). Bazı endofitik ve rizosferik bakterilerin fasulyede Macrophomina phaseolina’ya karşı etkinliklerinin in vitro koşullarda belirlenmesi. Harran Tarım ve Gıda Bilimleri Dergisi, 27(1), 42-51. https://doi.org/10.29050/harranziraat.1195672
  • Kotan, R. (2020). Tarımda biyolojik çözümler. Harman Yayıncılık, İstanbul, 158.
  • Kumar, P., Dubey, R.C. & Rai, A.K. (2022). Plant growth promoting and antagonistic Enterobacter sp. EPR4 from common bean rhizosphere of garhwal himalayan inhibits a soil-borne pathogen Sclerotinia sclerotiorum. Plant Science Today, 9(4), 837-843. DOI: https://doi.org/10.14719/pst.1662
  • Küsek, M. (2007). Asmada (Vitis vinifera L.) ura neden olan Agrobacterium vitis‘in tanılanması ve mücadele olanaklarının araştırılması (199947). [Çukurova Üniversitesi, Fen Bilimleri Enstitüsü Bitki Koruma Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Larkin, R. P. & Brewer, M. T. (2020). Effects of crop rotation and biocontrol amendments on Rhizoctonia disease of potato and soil microbial communities. Agriculture, 10(4), 128. https://doi.org/10.3390/agriculture10040128
  • Lehtonen, M. (2009). Rhizoctonia solani as a potato pathogen: Variation of isolates in Finland and host response. [University of Helsinki, Viikki Graduate School in Molecular Biosciences]. http://hdl.handle.net/10138/20748
  • Liu, Y., Qi, A. & Khan, M. F. (2019). Age-dependent resistance to Rhizoctonia solani in sugar beet. Plant disease, 103(9), 2322-2329. https://doi.org/10.1094/PDIS-11-18-2001-RE
  • Maheshwari, R., Bhutani, N. & Suneja, P. (2020). Isolation and characterization of ACC deaminase producing endophytic Bacillus mojavensis PRN2 from Pisum sativum. Iranian Journal of Biotechnology, 18(2), e2308. doi: 10.30498/IJB.2020.137279.2308
  • Mahmoud, A. F. (2016). Suppression of sugar beet damping-off caused by Rhizoctonia solani using bacterial and fungal antagonists. Archives of phytopathology and plant protection, 49(19-20), 575-585. https://doi.org/10.1080/03235408.2016.1245052
  • Misra, V., Mall, A.K. & Singh, D. (2023). Rhizoctonia root-rot diseases in sugar beet: Pathogen diversity, pathogenesis and cutting-edge advancements in management research. The Microbe, 100011. https://doi.org/10.1016/j.microb.2023.100011
  • Molefe, R. R., Amoo, A.E. & Babalola, O.O. (2023). Communication between plant roots and the soil microbiome; involvement in plant growth and development. Symbiosis, 90(3), 231-239. https://link.springer.com/article/10.1007/s13199-023-00941-9
  • Moussa, T. A. (2002). Studies on biological control of sugarbeet pathogen Rhizoctonia solani Kühn. J. Biol. Sci, 2(12), 800-804. DOI: 10.3923/jbs.2002.800.804
  • Muyolo, N. G. L., P. E. & Schmıtthenner, A. F. (1993). Reactions of dry bean, lima bean, and soybean cultivars to Rhizoctonia root and hypocotyl rot and web blight. Plant disease, 77, 234-238. DOI: 10.1094/PD-77-0234
  • Özdal, M., Özdal, Ö. G., Sezen, A. & Algur, Ö. F. (2016). Biosynthesis of indole-3-acetic acid by Bacillus cereus immobilized cells. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 37(3), 212-222. https://doi.org/10.17776/csj.34085
  • Penrose, D. M. & Glick, B.R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia plantarum, 118(1), 10-15. https://doi.org/10.1034/j.1399-3054.2003.00086.x
  • Pikovskaya, R. I. (1948). Mobilization of Phosphorus in Soil Connection with the Vital Activity of Some Microbial Species. Microbiology spectrum, 17, 362-370.
  • Qingwei, Z., Lushi, T., Yu, Z., Yu, S., Wanting, W., Jiangchuan, W., Xiaolei, D., Xuejiao, H. & Bilal, M. (2023). Isolation and characterization of phosphate-solubilizing bacteria from rhizosphere of poplar on road verge and their antagonistic potential against various phytopathogens. BMC microbiology, 23(1), 221.
  • Rodrı guez, H. & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology advances, 17(4-5), 319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
  • Salman, Ö. & Boyraz, N. (2023). Determination of Disease Severity of Rhizoctonia solani Kühn (Telemorph: Thanatephorus cucumeris ((Frank) Donk) Isolates from Bean, Sugar Beet and Potato Planting Areas in Konya. Selcuk Journal of Agriculture and Food Sciences, 37(1), 119-132. DOI: 10.15316/SJAFS.2023.013
  • Salman, Ö. (2023). Bazı Bitkilerde Rhizoctonia spp.’lerinin Biyolojik Mücadele İmkanlarının Araştırılması (797011). [Selçuk Üniversitesi, Fen Bilimleri Enstitüsü Bitki Koruma Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Schmid, M., Iversen, C., Gontia, I., Stephan, R., Hofmann, A., Hartmann, A., Jha, B., Eberl, L., Riedel, K. & Lehner, A. (2009). Evidence for a plant associated natural habitat for Cronobacter spp. Research in Microbiology, 160, 8, 608-614. https://doi.org/10.1016/j.resmic.2009.08.013
  • Schmiedeknecht, G., Bochow, H. & Junge, H. (1998). Use of Bacillus subtilis as biocontrol agent. II. Biological control of potato diseases/Anwendung von Bacillus subtilis als Mittel für den biologischen Pflanzenschutz. II. Biologische Bekämpfung von Kartoffelkrankheiten, Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection, 376-386. https://www.jstor.org/stable/43215255
  • Scholten, O. E., Panella, L. W., De Bock, T. S. & Lange, W. (2001). A greenhouse test for screening sugar beet (Beta vulgaris) for resistance to Rhizoctonia solani, European Journal of Plant Pathology, 107(2), 161-166. https://doi.org/10.1023/A:1011208903344
  • Schwyn, B. & Neilands, J. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical biochemistry, 160(1), 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  • Sehrawat, A., Sindhu, S. S. & Glick, B. R. (2022). Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere, 32(1), 15-38. https://doi.org/10.1016/S1002-0160(21)60058-9
  • Selva Kumar, S., Ram Krishna Rao, M., Deepak Kumar, R., Panwar, S. & Prasad, C. (2013). Biocontrol by plant growth promoting rhizobacteria against black scurf and stem canker disease of potato caused by Rhizoctonia solani. Archives of phytopathology and plant protection, 46(4), 487-502. https://doi.org/10.1080/03235408.2012.745054
  • Sendi, Y., Pfeiffer, T., Koch, E., Mhadhbi, H. & Mrabet, M. (2020). Potential of common bean (Phaseolus vulgaris L.) root microbiome in the biocontrol of root rot disease and traits of performance. Journal of Plant Diseases and Protection, 127(4), 453-462. https://doi.org/10.1007/s41348-020-00338-6
  • Soylu, E. M., Soylu, S., Kara, M., & Kurt, Ş. (2020). Determinations of in vitro antagonistic effects of microbiomes isolated from vermicompost against major plant fungal disease agents of vegetables. KSU Tarım ve Doğa Dergisi 23(1), 7-18. https://doi.org/10.18016/ksutarimdoga.vi.601936
  • Soylu, S., Kara, M., Uysal, A., Kurt, Ş., & Soylu, E. M. (2021). Determination of antagonistic potential of endophytic bacteria isolated from lettuce against lettuce white mould disease caused by Sclerotinia sclerotiorum. Zemdirbyste-Agriculture, 108(3), 303–312. https://doi.org/10.13080/z-a.2021.108.039
  • Strausbaugh, C. A., Eujayl, I. A., Panella, L. W. & Hanson, L. E. (2011). Virulence, distribution and diversity of Rhizoctonia solani from sugar beet in Idaho and Oregon. Canadian Journal of Plant Pathology, 33(2), 210-226. https://doi.org/10.1080/07060661.2011.558523
  • Sundara, B., Natarajan, V. & Hari, K. (2002). Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Research, 77(1), 43-49. https://doi.org/10.1016/S0378-4290(02)00048-5
  • Şahin, K. (2022). Kayseri ilinde şeker pancarı kota uygulamalarının şeker pancarı üretimine etkileri. Journal of the Institute of Science and Technology,12(3), 1801-1807. https://doi.org/10.21597/jist.1030385
  • Şahiner, A. (2020). Kırşehir Ekolojik koşullarında bazı şeker pancarı (Beta vulgaris L.) çeşitlerinin verim ve kalite özelliklerinin belirlenmesi (615138). [Yüksek Lisans Tezi, Kırşehir Ahi Evran Üniversitesi Fen Bilimleri Enstitüsü, Tarla Bitkileri Anabilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Tamura K. & Nei M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10:512-526. https://doi.org/10.1093/oxfordjournals.molbev.a040023
  • Tamura K., Stecher G. & Kumar S. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msab120
  • Tariq, M., Yasmin, S. & Hafeez, F. Y. (2010). Biological control of potato black scurf by rhizosphere associated bacteria. Brazilian Journal of Microbiology, 41, 439-451. https://doi.org/10.1590/S1517-83822010000200026
  • Towsend, G. R. H., J W. (1943). Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Reporter, 27, 340-343.
  • Tsror, L. (2010). Biology, epidemiology and management of Rhizoctonia solani on potato. Journal of Phytopathology, 158(10), 649-658. https://doi.org/10.1111/j.1439-0434.2010.01671.x
  • Turan, M., Ekinci, M., Yildirim, E., Güneş, A., Karagöz, K., Kotan, R. & Dursun, A. (2014). Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turkish Journal of Agriculture and Forestry, 38(3), 327-333. https://doi.org/10.3906/tar-1308-62
  • Vacheron, J., Desbrosses, G., Bouffaud, M.L., Touraine, B., Moenne-Loccoz, Muller, D., Legendre, L., Wisniewski-Dye, F., Prigent-Combaret, C. (2013). Plant growth-promoting rhizobacteria and root system functioning. Frontiers in plant science, 4, 356
  • Wagi, S. & Ahmed, A. (2019). Bacillus spp.: potent microfactories of bacterial IAA. PeerJ, 7, e7258.
  • Wang, Y., Pei, Y., Wang, X., Dai, X., & Zhu, M. (2024). Antimicrobial metabolites produced by the plant growth-promoting rhizobacteria (PGPR): Bacillus and Pseudomonas. Advanced Agrochem. https://doi.org/10.1016/j.aac.2024.07.007
  • Webb, K.M., Harveson, R.M. & West, M.S. (2015). Evaluation of Rhizoctonia zeae as a potential biological control option for fungal root diseases of sugar beet. Annals of Applied Biology, 167(1), 75-89. https://doi.org/10.1111/aab.12210
  • Weisburg, W.G., Barns, S.M., Pelletier, D. A. & Lane, D.J. (1991). 16 S ribosomal DNA amplification for phylogenetic study. J. Bacteriol 173(2):697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  • Widawati, S. (2020). Isolation of Indole Acetic Acid (IAA) producing Bacillus siamensis from peat and optimization of the culture conditions for maximum IAA production. IOP Conference Series: Earth and Environmental Science, 012025. DOI 10.1088/1755-1315/572/1/012025
  • Zahir, Z. A., Ghani, U., Naveed, M., Nadeem, S. M. & Asghar, H. N. (2009). Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Archives of microbiology, 191(5), 415-424. https://doi.org/10.1007/s00203-009-0466-y
  • Zhao, C., Li, Y., Wu, S., P., Han, C. & Wu, X. (2019). Anastomosis group and pathogenicity of Rhizoctonia spp. associated with seedling damping-off of sugar beet in China. European journal of plant pathology, 153, 869-878. https://doi.org/10.1007/s10658-018-1603-8
Toplam 97 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Patolojisi, Fitopatoloji
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Özden Salman 0000-0002-7871-4105

Nuh Boyraz

Proje Numarası 2019-ÖYP-011
Erken Görünüm Tarihi 25 Temmuz 2025
Yayımlanma Tarihi
Gönderilme Tarihi 2 Ocak 2025
Kabul Tarihi 24 Haziran 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 5

Kaynak Göster

APA Salman, Ö., & Boyraz, N. (2025). Isolation, Identification and Determination of Biocontrol Activities of Rhizobacteria against Cown Rot Disease Agent Rhizoctonia solani AG 2-2 in Sugar Beet (Beta vulgaris L.). Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(5), 1241-1258. https://doi.org/10.18016/ksutarimdoga.vi.1611970

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149