Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of the Effects of Combined use of Paenibacillus sp. S1S22 Strain and Ulva lactuca Extract on Seed Germination and Growth of Tomato Plant

Yıl 2023, , 511 - 519, 30.06.2023
https://doi.org/10.18016/ksutarimdoga.vi.1096451

Öz

In recent years, plant growth promoting bacteria (PGPB) have been used as biofertilizers that increase agricultural productivity and plant resistance to changing environmental conditions such as drought, salinity and heat stress. One of the proposed new approaches to increase plant productivity, especially under stress conditions, is using algae extracts, which usually consist of naturally occurring bioactive compounds. Paenibacillus sp. S1S22 isolated from sediment was tested for its performance in indole acetic acid production (IAA), nitrogen (N) fixation, phosphate solubilization, proteolytic activity, and cellulose activity. Its antimicrobial activity was also determined against different pathogens of Paenibacillus sp. S1S22. Tomato seeds were incubated with the S1S22 strain, and the S1S22 strain supplemented with U. lactuca. The seeds incubated with deionized water were used as control. As a result, we demonstrated that the addition of U. lactuca extract to tomato seedlings incubated with Paenibacillus sp. S1S22 strain increased the root and stem length compared to the control. The results indicate that macroalgae in combination with PGPR may be a much more effective way of promoting plant growth.

Destekleyen Kurum

Bilecik Şeyh edebali University

Proje Numarası

2016-01.BŞEÜ.13-01

Teşekkür

This study was supported by Bilecik Şeyh Edebali University BAP with the project code 2016-01.BŞEÜ.13-01.

Kaynakça

  • Abd El-Baky, H.H., El Baz, F.K. & El-Baroty, G.S. (2008). Evaluation of Marine Alga Ulva lactuca L. as a Source of Natural Preservative Ingredient. American-Eurasian Journal of Agricultural & Environmental Sciences, 3(3), 434-44.
  • Bashan, Y. & Holguin, G. (1998). Proposal for the Division of Rhizobacteria Into Two Classifications: Biocontrol–PGPB (Plant Growth Promoting Bacteria) and PGPB. Soil Science and Biochemistry, 30(1), 225-8.
  • Berg, G. (2009). Plant–Microbe Interactions Promoting Plant Growth and Health: Perspectives for Controlled Use of Microorganisms in Agriculture. Applied Microbiology and Biotechnology, 84(1), 11-18.
  • Chandini, R.K. , Kumar, R. & Om, P. (2019). The Impact of Chemical Fertilizers on our Environment and Ecosystem. In: Research Trends in Environmental Sciences, 2nd Edition, 71-86.
  • Chbani, A., Majed, S., Mawlawi, H. & Kammoun, M. (2015). The Use of Seaweed as a Bio-Fertilizer: Does It Influence Proline and Chlorophyll Concentration in Plants Treated? Arabian Journal of Medicinal and Aromatic Plants, 1(1), 67-77.
  • Chojnacka, K., Saeid, A., Witkowska, Z. & Tuhy, L. (2012). Biologically Active Compounds in Seaweed Extracts-The Prospects for The Application. The Open Conference Proceedings Journal, 3, 20-28
  • de Silva, A., Patterson, K., Rothrock, C. & Moore, J.(2000). Growth Promotion of Highbush Blueberry by Fungal and Bacterial Inoculants. HortScience, 35(7), 1228-1230.
  • Dominguez, H. & Loret, E.P. (2019). Ulva lactuca, A Source of Troubles and Potential Riches. Marine Drugs, 17(6), 357.
  • Fitzsimons, M.S. & Miller, R.M. (2010). The Importance of Soil Microorganisms for Maintaining Diverse Plant Communities in Tallgrass prairie. American Journal of Botany, 97(12), 1937-1943.
  • Garcia, I.B., Ledezma, A.K.D., Montano, E.M., Leyva, J.A.S., Carrera, E. & Ruiz, I.O. (2020). Identification and Quantification of Plant Growth Regulators and Antioxidant Compounds in Aqueous Extracts of Padina durvillaei and Ulva lactuca. Agronomy, 10, 866-879.
  • Ghoul, M., Minet, J., Bernard, T., Dupray, E., Cormier, M. (1995). Marine Macroalgae as A Source for Osmoprotection for Escherichia coli. Microbial Ecology, 30(2), 171-181.
  • Glick, B.R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 2012, 1-15.
  • Gordon, S.A. & Weber, R.P. (1951). Colorimetric Estimation of Indoleacetic Acid. Plant Physiology, 26(1), 192.
  • Hardoim, C.C.P., Costa, R., Araujo, F.V., Hajdu, E., Peixoto, R., Lins, U., ... & Van Elsas, J.D. (2009). Diversity of Bacteria in The Marine Sponge Aplysina fulva in Brazilian Coastal Waters. Applied and Environmental Microbiology, 75(10), 3331-3343.
  • Hernandez-Herrera, R.M., Santacruz-Ruvalcaba, F., Zanudo-Hernandez, J. & Hernandez-Carmona, G. (2016). Activity of seaweed extracts and polysaccharide-enriched extracts from Ulva lactuca and Padina gymnospora as growth promoters of tomato and mung bean plants. Journal of Applied Phycology, 28, 2549-2560
  • Hashem, H.A., Mansour, H.A., El-Khawas, S.A. & Hassanein, R.A. (2019). The Potentiality of Marine Macro-algae as Bio-fertilizers to Improve The Productivity and Salt Stress Tolerance of Canola (Brassica napus L.) plants. Agronomy, 9(3), 146.
  • Jithesh, M.N., Wally, O.S., Manfield, I., Critchley, A.T., Hiltz, D. & Prithiviraj, B. (2012). Analysis of Seaweed Extract-Induced Transcriptome Leads to Identification of A Negative Regulator of Salt Tolerance in Arabidopsis. HortScience, 47(6), 704-709.
  • Jukes, T.H. & Cantor, C.R. (1969). Evolution of Protein Molecules. Mammalian Protein Metabolism, 3, 21-132.
  • Julia, I., Oscar, M., Analía, L., Zocolo Guilherme, J. & Virginia, L. (2020). Biofertilization with Macrocystis pyrifera Algae Extracts Combined with PGPR-Enhanced Growth in Lactuca sativa Seedlings. Journal of Applied Phycology, 32(6), 4361-4371.
  • Khan, W., Zhai, R., Souleimanov, A., Critchley, A.T., Smith, D.L. & Prithiviraj, B. (2012). Commercial Extract of Ascophyllum nodosum Improves Root Colonization of Alfalfa by Its Bacterial Symbiont Sinorhizobium meliloti. Communications in Soil Science and Plant Analysis, 43(18), 2425-2436.
  • Kurepin, L.V., Park, J.M., Lazarovits, G. & Bernards, M.A. (2015). Burkholderia phytofirmans-Induced Shoot and Root Growth Promotion is Associated with Endogenous Changes in Plant Growth Hormone Levels. Plant Growth Regulation, 75(1), 199-207.
  • Lugtenberg, B.J., Dekkers, L. & Bloemberg, G.V. (2001). Molecular Determinants of Rhizosphere Colonization by Pseudomonas. Annual Review of Phytopathology, 39(1), 461-490.
  • Lugtenberg, B., Kamilova, F. (2009). Plant-Growth-Promoting Rhizobacteria. Annual Review of Microbiology, 63, 541-556.
  • Michalak, I., Chojnacka, K., Dmytryk, A., Wilk, R., Gramza, M. & Rój,, E. (2016). Evaluation of Supercritical Extracts of Algae as Biostimulants of Plant Growth in Field Trials. Frontiers in Plant Science, 7, 1-11.
  • Mzibra, A., Aasfar, A., Benhima, R., Khouloud, M., Boulif, R., Douira, A., Bamouh, A. & Kadmiri, I.M. (2021). Biostimulants Derived from Moroccan Seaweeds: Seed Germination Metabolomics and Growth Promotion of Tomato Plant. Journal of Plant Growth Regulation, 40, 353-370.
  • Nabti, E., Jha, B. & Hartmann, A. (2017). Impact of Seaweeds on Agricultural Crop Production As Biofertilizer. International Journal of Environmental Science and Technology, 14(5), 1119-1134.
  • Olanrewaju, O.S., Glick, B.R. & Babalola, O.O. (2017). Mechanisms of Action of Plant Growth Promoting Bacteria. World Journal of Microbiology and Biotechnology, 33(11), 1-16.
  • Ozdemir-Kocak, F. (2019). Identification of Streptomyces Strains Isolated from Humulus lupulus Rhizosphere and Determination of Plant Growth Promotion Potential of Selected Strains. Turkish Journal of Biology, 43(6), 391.
  • Ozdemir-Kocak, F., Unal, D., Ertekin, S.G., Kumas, A. & Degirmenci, L. (2020). Effect of Streptomyces sp. GBTUV5 on The Growth of Solanum lycopersicum (tomato). Fresenius Environmental Bulletin, 29(11), 9889-9898.
  • Patel, H.D., Brahmbhatt, N., Patel, J., Patel, R., Thaker, P. & Brahmbhatt, N. (2019). Effect of Seaweed Extract on Different Vegetables as A Bio-Fertilizer In Farming. International Journal for Research, 7(3), 2062-2067.
  • Pathma, J., Kennedy, R.K., Bhushan, L.S., Shankar, B.K. & Thakur, K. (2021). Microbial Biofertilizers and Biopesticides: Nature’s Assets Fostering Sustainable Agriculture. In Recent developments in microbial technologies (pp. 39-69). Springer, Singapore.
  • Roso, G.R., Queiroz, M.I., Streit, N., Menezes, C.R., Zepka, L.Q. & Jacob-Lopes, E. (2015). The Bioeconomy of Microalgal Carotenoid-Rich Oleoresins Produced in Agroindustrial Biorefineries. Journal of Chemical Engineering and Process Technology, 6(01), 1-7.
  • Saitou, N. & Nei, M. (1987). The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Molecular Biology and Evolution, 4(4), 406-425 Sturz, A.V., Christie, B.R. & Nowak, J. (2000). Bacterial Endophytes: Potential Role in Developing Sustainable Systems of Crop Production. Critical Reviews in Plant Sciences, 19(1), 1-30.
  • Trujillo, M.E., Alonso-Vega, P., Rodríguez, R., Carro, L., Cerda, E., Alonso, P. & Martínez-Molina, E. (2010). The Genus Micromonospora is Widespread in Legume Root Nodules: The Example of Lupinus angustifolius. The ISME Journal, 4(10), 1265-1281.
  • Ullah, N., Ditta, A., Khalid, A., Mehmood, S., Rizwan, M.S., Ashraf,, M. …& Iqbal, M.M. (2020). Integrated Effect of Algal Biochar and Plant Growth Promoting Rhizobacteria on Physiology and Growth ff Maize Under Deficit Irrigations. Journal of Soil Science and Plant Nutrition, 20(2), 346-356.
  • Unal, D., Sevim, G., Varis, G., Tuney-Kizilkaya, I., Unal, B.T., Ozturk, M. & Hussain, S. (2022). Ameliorative effect of Halopteris filicina extracts on growth parameters and genomic DNA template stability of tomato (Solanum lycopersicum) under lead chloride stress. Crop and Pasture Science, 73, 917–926.
  • Van Loon, L.C. & Bakker, P.A.H.M. (2005). Induced Systemic Resistance as A Mechanism of Disease Suppression by Rhizobacteria. In PGPR: Biocontrol and Biofertilization (pp. 39-66). Springer, Dordrecht.
  • Welbaum, G.E., Sturz, A.V., Dong, Z. & Nowak, J. (2004). Managing Soil Microorganisms to Improve Productivity of Agro-ecosystems. Critical Reviews in Plant Sciences, 23(2), 175-193.
  • Weselowski, B., Nathoo Eastman, A.W., MacDonald, J. & Yuan, Z.C. (2016). Isolation, Identification and Characterization of Paenibacillus polymyxa CR1 with Potentials for Biopesticide, Biofertilization, Biomass Degradation and Biofuel Production. BMC Microbiology, 16(1), 1-10.
  • Wise, T.A. (2013). Can we feed the world in 2050. A scoping paper to assess the evidence. Global Development and Environment Institute Working Paper, (13-04).

Paenibacillus sp. S1S22 suşu ile Ulva lactuca Ekstresinin Kombine Kullanımının Domates Bitkisinin Tohum Çimlenmesi ve Büyüme Üzerine Etkilerinin Belirlenmesi

Yıl 2023, , 511 - 519, 30.06.2023
https://doi.org/10.18016/ksutarimdoga.vi.1096451

Öz

Son yıllarda, bitki büyümesini teşvik eden bakteriler (PGPB), tarımsal üretkenliği ve kuraklık, tuzluluk ve sıcaklık stresi gibi değişen çevresel koşullara karşı bitki direncini artıran biyogübreler olarak kullanılmaktadır. Özellikle stres koşulları altında bitki verimliliğini artırmak için önerilen yeni yaklaşımlardan biri, doğal olarak oluşan biyoaktif bileşikler içeren alg ekstraktlarının kullanılmasıdır. Sedimentten izole edilen Paenibacillus sp. S1S22 suşunun bitki büyümesini teşvik etme performansı indol asetik asit üretimi (IAA), azot (N) fiksasyonu, fosfat çözünürlüğü, proteolitik aktivite ve selüloz aktivitesi açısından test edilmiştir. Ayrıca bu suşun farklı patojenlere karşı antimikrobiyal aktiviteleri de belirlenmiştir. Domates tohumları, S1S22 suşu ve U. lactuca ekstraktı eklenmiş S1S22 suşu ile inkübe edilmiştir. Deiyonize su ile inkübe edilen tohumlar kontrol grubu olarak kullanılmıştır. Elde edilen sonuçlar, Paenibacillus sp. S1S22 suşu ile inkübe edilen domates fidelerine U. lactuca ekstraktı eklenmesinin kontrole göre kök ve gövde uzunluğunu arttırdığını göstermiştir. Sonuçlar, makroalglerin PGPR ile kombinasyon halinde, bitki büyümesini teşvik etmede tek başına kullanılmalarından çok daha etkili bir araç olabileceğini göstermektedir.

Proje Numarası

2016-01.BŞEÜ.13-01

Kaynakça

  • Abd El-Baky, H.H., El Baz, F.K. & El-Baroty, G.S. (2008). Evaluation of Marine Alga Ulva lactuca L. as a Source of Natural Preservative Ingredient. American-Eurasian Journal of Agricultural & Environmental Sciences, 3(3), 434-44.
  • Bashan, Y. & Holguin, G. (1998). Proposal for the Division of Rhizobacteria Into Two Classifications: Biocontrol–PGPB (Plant Growth Promoting Bacteria) and PGPB. Soil Science and Biochemistry, 30(1), 225-8.
  • Berg, G. (2009). Plant–Microbe Interactions Promoting Plant Growth and Health: Perspectives for Controlled Use of Microorganisms in Agriculture. Applied Microbiology and Biotechnology, 84(1), 11-18.
  • Chandini, R.K. , Kumar, R. & Om, P. (2019). The Impact of Chemical Fertilizers on our Environment and Ecosystem. In: Research Trends in Environmental Sciences, 2nd Edition, 71-86.
  • Chbani, A., Majed, S., Mawlawi, H. & Kammoun, M. (2015). The Use of Seaweed as a Bio-Fertilizer: Does It Influence Proline and Chlorophyll Concentration in Plants Treated? Arabian Journal of Medicinal and Aromatic Plants, 1(1), 67-77.
  • Chojnacka, K., Saeid, A., Witkowska, Z. & Tuhy, L. (2012). Biologically Active Compounds in Seaweed Extracts-The Prospects for The Application. The Open Conference Proceedings Journal, 3, 20-28
  • de Silva, A., Patterson, K., Rothrock, C. & Moore, J.(2000). Growth Promotion of Highbush Blueberry by Fungal and Bacterial Inoculants. HortScience, 35(7), 1228-1230.
  • Dominguez, H. & Loret, E.P. (2019). Ulva lactuca, A Source of Troubles and Potential Riches. Marine Drugs, 17(6), 357.
  • Fitzsimons, M.S. & Miller, R.M. (2010). The Importance of Soil Microorganisms for Maintaining Diverse Plant Communities in Tallgrass prairie. American Journal of Botany, 97(12), 1937-1943.
  • Garcia, I.B., Ledezma, A.K.D., Montano, E.M., Leyva, J.A.S., Carrera, E. & Ruiz, I.O. (2020). Identification and Quantification of Plant Growth Regulators and Antioxidant Compounds in Aqueous Extracts of Padina durvillaei and Ulva lactuca. Agronomy, 10, 866-879.
  • Ghoul, M., Minet, J., Bernard, T., Dupray, E., Cormier, M. (1995). Marine Macroalgae as A Source for Osmoprotection for Escherichia coli. Microbial Ecology, 30(2), 171-181.
  • Glick, B.R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 2012, 1-15.
  • Gordon, S.A. & Weber, R.P. (1951). Colorimetric Estimation of Indoleacetic Acid. Plant Physiology, 26(1), 192.
  • Hardoim, C.C.P., Costa, R., Araujo, F.V., Hajdu, E., Peixoto, R., Lins, U., ... & Van Elsas, J.D. (2009). Diversity of Bacteria in The Marine Sponge Aplysina fulva in Brazilian Coastal Waters. Applied and Environmental Microbiology, 75(10), 3331-3343.
  • Hernandez-Herrera, R.M., Santacruz-Ruvalcaba, F., Zanudo-Hernandez, J. & Hernandez-Carmona, G. (2016). Activity of seaweed extracts and polysaccharide-enriched extracts from Ulva lactuca and Padina gymnospora as growth promoters of tomato and mung bean plants. Journal of Applied Phycology, 28, 2549-2560
  • Hashem, H.A., Mansour, H.A., El-Khawas, S.A. & Hassanein, R.A. (2019). The Potentiality of Marine Macro-algae as Bio-fertilizers to Improve The Productivity and Salt Stress Tolerance of Canola (Brassica napus L.) plants. Agronomy, 9(3), 146.
  • Jithesh, M.N., Wally, O.S., Manfield, I., Critchley, A.T., Hiltz, D. & Prithiviraj, B. (2012). Analysis of Seaweed Extract-Induced Transcriptome Leads to Identification of A Negative Regulator of Salt Tolerance in Arabidopsis. HortScience, 47(6), 704-709.
  • Jukes, T.H. & Cantor, C.R. (1969). Evolution of Protein Molecules. Mammalian Protein Metabolism, 3, 21-132.
  • Julia, I., Oscar, M., Analía, L., Zocolo Guilherme, J. & Virginia, L. (2020). Biofertilization with Macrocystis pyrifera Algae Extracts Combined with PGPR-Enhanced Growth in Lactuca sativa Seedlings. Journal of Applied Phycology, 32(6), 4361-4371.
  • Khan, W., Zhai, R., Souleimanov, A., Critchley, A.T., Smith, D.L. & Prithiviraj, B. (2012). Commercial Extract of Ascophyllum nodosum Improves Root Colonization of Alfalfa by Its Bacterial Symbiont Sinorhizobium meliloti. Communications in Soil Science and Plant Analysis, 43(18), 2425-2436.
  • Kurepin, L.V., Park, J.M., Lazarovits, G. & Bernards, M.A. (2015). Burkholderia phytofirmans-Induced Shoot and Root Growth Promotion is Associated with Endogenous Changes in Plant Growth Hormone Levels. Plant Growth Regulation, 75(1), 199-207.
  • Lugtenberg, B.J., Dekkers, L. & Bloemberg, G.V. (2001). Molecular Determinants of Rhizosphere Colonization by Pseudomonas. Annual Review of Phytopathology, 39(1), 461-490.
  • Lugtenberg, B., Kamilova, F. (2009). Plant-Growth-Promoting Rhizobacteria. Annual Review of Microbiology, 63, 541-556.
  • Michalak, I., Chojnacka, K., Dmytryk, A., Wilk, R., Gramza, M. & Rój,, E. (2016). Evaluation of Supercritical Extracts of Algae as Biostimulants of Plant Growth in Field Trials. Frontiers in Plant Science, 7, 1-11.
  • Mzibra, A., Aasfar, A., Benhima, R., Khouloud, M., Boulif, R., Douira, A., Bamouh, A. & Kadmiri, I.M. (2021). Biostimulants Derived from Moroccan Seaweeds: Seed Germination Metabolomics and Growth Promotion of Tomato Plant. Journal of Plant Growth Regulation, 40, 353-370.
  • Nabti, E., Jha, B. & Hartmann, A. (2017). Impact of Seaweeds on Agricultural Crop Production As Biofertilizer. International Journal of Environmental Science and Technology, 14(5), 1119-1134.
  • Olanrewaju, O.S., Glick, B.R. & Babalola, O.O. (2017). Mechanisms of Action of Plant Growth Promoting Bacteria. World Journal of Microbiology and Biotechnology, 33(11), 1-16.
  • Ozdemir-Kocak, F. (2019). Identification of Streptomyces Strains Isolated from Humulus lupulus Rhizosphere and Determination of Plant Growth Promotion Potential of Selected Strains. Turkish Journal of Biology, 43(6), 391.
  • Ozdemir-Kocak, F., Unal, D., Ertekin, S.G., Kumas, A. & Degirmenci, L. (2020). Effect of Streptomyces sp. GBTUV5 on The Growth of Solanum lycopersicum (tomato). Fresenius Environmental Bulletin, 29(11), 9889-9898.
  • Patel, H.D., Brahmbhatt, N., Patel, J., Patel, R., Thaker, P. & Brahmbhatt, N. (2019). Effect of Seaweed Extract on Different Vegetables as A Bio-Fertilizer In Farming. International Journal for Research, 7(3), 2062-2067.
  • Pathma, J., Kennedy, R.K., Bhushan, L.S., Shankar, B.K. & Thakur, K. (2021). Microbial Biofertilizers and Biopesticides: Nature’s Assets Fostering Sustainable Agriculture. In Recent developments in microbial technologies (pp. 39-69). Springer, Singapore.
  • Roso, G.R., Queiroz, M.I., Streit, N., Menezes, C.R., Zepka, L.Q. & Jacob-Lopes, E. (2015). The Bioeconomy of Microalgal Carotenoid-Rich Oleoresins Produced in Agroindustrial Biorefineries. Journal of Chemical Engineering and Process Technology, 6(01), 1-7.
  • Saitou, N. & Nei, M. (1987). The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Molecular Biology and Evolution, 4(4), 406-425 Sturz, A.V., Christie, B.R. & Nowak, J. (2000). Bacterial Endophytes: Potential Role in Developing Sustainable Systems of Crop Production. Critical Reviews in Plant Sciences, 19(1), 1-30.
  • Trujillo, M.E., Alonso-Vega, P., Rodríguez, R., Carro, L., Cerda, E., Alonso, P. & Martínez-Molina, E. (2010). The Genus Micromonospora is Widespread in Legume Root Nodules: The Example of Lupinus angustifolius. The ISME Journal, 4(10), 1265-1281.
  • Ullah, N., Ditta, A., Khalid, A., Mehmood, S., Rizwan, M.S., Ashraf,, M. …& Iqbal, M.M. (2020). Integrated Effect of Algal Biochar and Plant Growth Promoting Rhizobacteria on Physiology and Growth ff Maize Under Deficit Irrigations. Journal of Soil Science and Plant Nutrition, 20(2), 346-356.
  • Unal, D., Sevim, G., Varis, G., Tuney-Kizilkaya, I., Unal, B.T., Ozturk, M. & Hussain, S. (2022). Ameliorative effect of Halopteris filicina extracts on growth parameters and genomic DNA template stability of tomato (Solanum lycopersicum) under lead chloride stress. Crop and Pasture Science, 73, 917–926.
  • Van Loon, L.C. & Bakker, P.A.H.M. (2005). Induced Systemic Resistance as A Mechanism of Disease Suppression by Rhizobacteria. In PGPR: Biocontrol and Biofertilization (pp. 39-66). Springer, Dordrecht.
  • Welbaum, G.E., Sturz, A.V., Dong, Z. & Nowak, J. (2004). Managing Soil Microorganisms to Improve Productivity of Agro-ecosystems. Critical Reviews in Plant Sciences, 23(2), 175-193.
  • Weselowski, B., Nathoo Eastman, A.W., MacDonald, J. & Yuan, Z.C. (2016). Isolation, Identification and Characterization of Paenibacillus polymyxa CR1 with Potentials for Biopesticide, Biofertilization, Biomass Degradation and Biofuel Production. BMC Microbiology, 16(1), 1-10.
  • Wise, T.A. (2013). Can we feed the world in 2050. A scoping paper to assess the evidence. Global Development and Environment Institute Working Paper, (13-04).
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Fadime Özdemir Koçak 0000-0002-8557-5166

Gülçin Sevim 0000-0002-2026-2812

Uğur Çiğdem 0000-0003-4790-494X

Dilek Ünal 0000-0002-6915-9699

Proje Numarası 2016-01.BŞEÜ.13-01
Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 31 Mart 2022
Kabul Tarihi 18 Ekim 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Özdemir Koçak, F., Sevim, G., Çiğdem, U., Ünal, D. (2023). Determination of the Effects of Combined use of Paenibacillus sp. S1S22 Strain and Ulva lactuca Extract on Seed Germination and Growth of Tomato Plant. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 26(3), 511-519. https://doi.org/10.18016/ksutarimdoga.vi.1096451

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149