Research Article
BibTex RIS Cite

Klor Uygulamalarının Biber Bitkisinin Gelişimi, Meyve Verimi ve Bazı Kalite Parametreleri Üzerine Etkisi

Year 2021, Volume: 24 Issue: 6, 1139 - 1144, 31.12.2021
https://doi.org/10.18016/ksutarimdoga.vi.846945

Abstract

Yüksek konsantrasyonlarda klor (Cl-) içeren sulama suları biberde (Capsicum spp.) bazı toksik etkilere neden olabilmektedir Bu çalışmada, salçalık biber (C. annuum L. cv. Postal Capija) bitkilerine farklı Cl- içeren besin solüsyonları uygulanmış ve biberin büyüme parametreleri, meyve verim ve kalite özellikleri, yaprak su potansiyeli ve klor içerikleri araştırılmıştır. Sera şartlarında yapılan araştırma tesadüf parselleri deneme desenine uygun ve dört tekerrürlü olarak planlanmış, bitkilere yedi farklı Cl- [kontrol (0.27), 1.5, 3.0, 4.5, 6.0, 7.5 and 15.0 mM] uygulaması yapılmıştır. Sonuçlar, Cl- konsantrasyonunun 3.0 mM’e kadar yükselmesinden; büyüme parametreleri (bitki boyu, bitki yaş ve kuru ağırlığı) meyve verimi ve meyve karakteristiklerinin (meyve ağırlığı, meyve çap ve boyu) etkilenmediğini, ancak bu seviyenin üzerinde artan Cl- konsantrasyonlarının söz konusu değerleri olumsuz etkilediğini göstermiştir. En yüksek meyve kuru madde ve suda çözünür kuru madde içerikleri 3.0 and 4.5 mM Cl- uygulamalarında tespit edilmiştir. Buna karşın, Cl- konsantrasyonlarındaki artış meyve asit içeriklerini de arttırmış ve en yüksek asit miktarı yüksek Cl- uygulamasında bulunmuştur. Yetiştirme ortamında artan Cl-, yapraklarda daha fazla Cl- birikmesine neden olmuş, (>3.0 mM) yaprak su potansiyelini ise düşürmüştür. Bu araştırmadan elde edilen sonuçlar, besin solüsyonu Cl- kapsamındaki artışların bitki büyümesinde, verim ve meyve özelliklerinde önemli azalmalara neden olabileceğini, biberlerin sulanmasında kullanılan solüsyonun Cl- kapsamlarının da dikkate alınmasının ne kadar gerekli olduğunu göstermiştir.

References

  • Adhikary PP, Dash CJ, Kumar G and Chandrasekharan H 2014. Characterization of groundwater quality for irrigation and drinking purposes using a modified groundwater quality index. Indian J. Soil Cons.42:260-267.
  • Al Obaidy AH, Kadhem AJ, Hamiza NH and Al Mashhady AA 2014. Assessment of ground water quality for drinking and agricultural uses in Mouqdadiya District, Diyala, Iraq Eng. Tech. J. 32:2921-2936.
  • Anonymous 1968. National canners association laboratory manual, Food Canners and Processors, AVI Publishing Co., Westport, CT.
  • As BG, Horneck DA, Stevens RG, Ellsworth JW and Sullivan DM 2007. Managing irrigation water quality for crop production in the Pacific Northwest. A Pacific Northwest Extension Publication, Oregon State University, Corvallis, OR.
  • Ayers RS and Westcot DW 1985. Water quality for agriculture. Food and Agriculture Organization of the United Nations, Rome.
  • Chapman HD and Pratt PF 1961. Methods of analysis for soils, plants and water. University of California, Berkeley, CA.
  • Chen W, Zenli LH, Xiao E, Yang ES, Mishra S, Stoffella PJ 2010. Chlorine nutrition of higher plants: progress and perspectives. J. Plt. Nutr. 33:943–952. doi: 10.1080/ 01904160903242417.
  • Hadian MS, Azy FN, Krismadiyanti I, Arfani DL, Sofyan ET and Prayogi TE 2015. Groundwater quality assessment for suitable drinking and agricultural irrigation using physico-chemical water analysis in the Rancaekek-Jatinangor District, West Java, Indonesia. 6th International Conference on Environmental Science and Technology, 84:56-62. doi: 10.7763/IPCBEE.
  • Hekimoglu B and Altındeger M 2019. Samsun province kapija pepper sector report. Strategy Development Unit Samsun Governorship Provincial Directorate of Agriculture and Forestry, Samsun, Turkey.
  • Helaly AA, Goda Y, Abd El Rehim AS, Mohamed AA and El Zeiny OAH 2017. Effect of irrigation with different levels of saline water type on husk tomato productivity. Adv. Plants Agric. Res. 6(4):114-120. doi: 10.15406/apar.2017.06.00223.
  • Hoagland DR and Arnon DI 1950. The water-culture method for growing plants without soil. Circular 347. California Agricultural Experiment Station, College of Agriculture, University of California, Berkeley, CA.
  • Goyal SS, Sharma SK and Rains DW 2003. Crop production in saline environments: Global and integrative perspectives, Haworth Press, New York.
  • Karaivazoglou NA, Papakosta DK and Divanidis S 2005. Effect of chloride in irrigation water and form of nitrogen fertilizer on Virginia (flue-cured) tobacco. Field Crops Res. 92:61-74. doi: 10.1016/j.fcr.2004.09.006.
  • Karanth KR 1987. Ground water assessment: Development and management. Tata McGraw-Hill Education, New Delhi, India.
  • Kırnak H, Kaya C and Degirmenci V 2002. Growth and yield parameters of bell peppers with surface and subsurface drip irrigation systems under different irrigation levels. Atatürk Uni. J. Agri. Fac. 33(4):383-389.
  • Komosa A and Gorniak T 2015. The effect of chloride on yield and nutrient ınteraction in greenhouse tomato (Lycopersicon esculentum Mill.) grown in rockwool. J. Plt. Nutrit. 38:355-370. doi: 10.1080/01904167.2014.934466.
  • Kowalczyk W, Dysko J and Kaniszewski S 2008. Effect of nutrient solution pH regulated with hydrochloric acid on the concentration of Cl- ions in the root zone in soilless culture of tomato. J. Elementol. 13(2):245-254.
  • Leonard, C, Martorana M, Giuffirda F, Fogliano V and Pernice R 2004. Tomato fruit quality in relation to the content of sodium chloride in the nutrient solution. Acta Horticult. 659:769-774. doi: 10.17660/ActaHortic.2004.659.99.
  • Narkis N and Kott Y 1991. A composition between chlorine dioxide and chlorine for the disinfection of effluents. Israel Water Commission, Tel Aviv, Israel.
  • Narkis N, Armon R, Offer R, Orshansky F and Friedland E 1995. Effect of suspended solids of wastewater disinfection efficiency by chlorine dioxide. Water Res. 29:227-236. doi: 10.1016/0043-1354%2894%29E0117-O.
  • Navarro JM, Martinez V and Carvajal M 2000. Ammonium bicarbonate and calcium effects on tomato plants grown under saline conditions. Plant Sci. 157:89-96. doi: https:// doi.org/10.1016/s0168-9452(00)00272-7.
  • Peet MM, Harlow CD and Larrea ES 2004. Fruit quality and yield in five small-fruited greenhouse tomato cultivars under high fertilization regime. Acta Horticult. 659:811-818. doi: 10.17660/ActaHortic.2004.659.105.
  • Rav Acha C, Kummel M, Salamon I and Adin A 1995. The effect of chemical oxidants on effluent constituents for drip irrigation. Water Res. 29:119-129. doi: 10.1016/0043-1354(94)E0113-K.
  • Sairam RK, Rao KV and Srivastava GC 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 163(5):1037-1046. doi: 10.1016/S0168-9452(02)00278-9.
  • Scholberg JMS, McNeal BL, Jones JW, Boote KJ, Stanley CD and Obreza TA 2000. Nitrogen stress effects on growth and nitrogen accumulation by field-grown tomato. Agron. J. 92:159-167. doi: 10.21273/HORTSCI.50.11.1636. Salk A, Arın L, Deveci M, Polat S 2008. Special vegetable growing. Departmant of Horticulture, Faculty of Agriculture Press, Namık Kemal University, Tekirdag, Turkey.
  • Shawer SS 2014. Interaction effect between nitrate and chloride on yield, uptake and translocation of nutrients in cucumber plant under nutrient film technique (NFT). Middle East J. Agricult. Rsch. 3(1):42-48. Smith E, Porter W, Hawkins G and Harris JG 2016. Blueberry irrigation water quality. Cooperative Extension Bulletin Circular, 1105, University of Georgia, Athens, GA.
  • Tantawy AESA 2007. Effect of some mineral and organic compounds on salinity tolerance in tomato., Faculty of Agriculture Al-Azhar Univ., Cairo, Egypt. PhD dissertation. Turhan A, Kuscu H, Ozmen N and Demir AO 2014. The relationships between salinity levels of water used for irrigation with yield and quality parameters in red pepper (Capsicum annum cv. Kapija). Anadolu J. Agr. Sci. 29(3):186-193. doi:10.7161/ANAJAS.2014. 29.3.186-193.
  • Turhan A and Kuscu H 2019. Effects of salinity stress on water use efficiency, yield components, leaf chlorophyll and carotenoid content of eggplant (Solanum melongena L.). YYU. J. Agr. Sci. 29(1):61-68. doi: 10.29133/yyutbd.462094.
  • Welch RM 1995. Micronutrient nutrition of plants. Crit. Rev. Plant Sci. 14:49-82. doi: 10.1080/ 713608066.
  • Zahedifar M, Ronaghi A, Moosavi AA and Shirazi SS 2012. Influence of nitrogen and salinity levels on the fruit yield and chemical composition of tomato in a hydroponic culture. J. Plant Nutrition, 35(14):2211-2221. doi: 10.1080/01904167.2012.724497.
  • Zhu JK 2003. Regulation of ion homeostasis under salt stress. Curr. Opin. Plt. Biol. 6:441-445. doi: 10.1016/s1369-5266(03)00085-2.

Influence of Chloride on Growth, Fruit Yield and Quality Parameters of Processing Pepper

Year 2021, Volume: 24 Issue: 6, 1139 - 1144, 31.12.2021
https://doi.org/10.18016/ksutarimdoga.vi.846945

Abstract

Irrigation water containing high concentrations of chloride can cause some toxic effects in peppers (Capsicum spp.). This study was carried out to investigate the effects of irrigation water containing different Cl-1 on plant growth parameters, fruit yield and quality characteristics of pepper (C. annuum L. cv. Postal Capija). Nutrient solutions containing Cl- concentrations were applied to processing pepper plants and effects of Cl- on growth parameters, fruit yield and quality traits, leaf water potential and chloride contents were determined. Greenhouse experiments were conducted with the Cl- concentrations [control (0.27), 1.5, 3.0, 4.5, 6.0, 7.5 and 15.0 mM] were applied to pepper plants. Plant height, fresh and dry weight, fruit yield and fruit weight, length and diameter were not affected by increasing Cl- concentrations up to 3.0 mM, but further increases in Cl- concentration negatively influenced this results. The greatest dry matter and soluble solids content were obtained from 3.0 and 4.5 mM Cl- treatments. Increasing Cl- concentration increased fruit acid content; the greatest acid content was from the greatest Cl- concentration. Increasing growing media Cl- concentration increased leaf Cl- accumulation and Cl- concentration >3.0 mM reduced leaf water potential. Research results showed that Cl- concentrations in irrigation water are important for efficient and economical pepper cultivation, and using water containing more than 3.0 mM chlorine will jeopardize yield and quality.

References

  • Adhikary PP, Dash CJ, Kumar G and Chandrasekharan H 2014. Characterization of groundwater quality for irrigation and drinking purposes using a modified groundwater quality index. Indian J. Soil Cons.42:260-267.
  • Al Obaidy AH, Kadhem AJ, Hamiza NH and Al Mashhady AA 2014. Assessment of ground water quality for drinking and agricultural uses in Mouqdadiya District, Diyala, Iraq Eng. Tech. J. 32:2921-2936.
  • Anonymous 1968. National canners association laboratory manual, Food Canners and Processors, AVI Publishing Co., Westport, CT.
  • As BG, Horneck DA, Stevens RG, Ellsworth JW and Sullivan DM 2007. Managing irrigation water quality for crop production in the Pacific Northwest. A Pacific Northwest Extension Publication, Oregon State University, Corvallis, OR.
  • Ayers RS and Westcot DW 1985. Water quality for agriculture. Food and Agriculture Organization of the United Nations, Rome.
  • Chapman HD and Pratt PF 1961. Methods of analysis for soils, plants and water. University of California, Berkeley, CA.
  • Chen W, Zenli LH, Xiao E, Yang ES, Mishra S, Stoffella PJ 2010. Chlorine nutrition of higher plants: progress and perspectives. J. Plt. Nutr. 33:943–952. doi: 10.1080/ 01904160903242417.
  • Hadian MS, Azy FN, Krismadiyanti I, Arfani DL, Sofyan ET and Prayogi TE 2015. Groundwater quality assessment for suitable drinking and agricultural irrigation using physico-chemical water analysis in the Rancaekek-Jatinangor District, West Java, Indonesia. 6th International Conference on Environmental Science and Technology, 84:56-62. doi: 10.7763/IPCBEE.
  • Hekimoglu B and Altındeger M 2019. Samsun province kapija pepper sector report. Strategy Development Unit Samsun Governorship Provincial Directorate of Agriculture and Forestry, Samsun, Turkey.
  • Helaly AA, Goda Y, Abd El Rehim AS, Mohamed AA and El Zeiny OAH 2017. Effect of irrigation with different levels of saline water type on husk tomato productivity. Adv. Plants Agric. Res. 6(4):114-120. doi: 10.15406/apar.2017.06.00223.
  • Hoagland DR and Arnon DI 1950. The water-culture method for growing plants without soil. Circular 347. California Agricultural Experiment Station, College of Agriculture, University of California, Berkeley, CA.
  • Goyal SS, Sharma SK and Rains DW 2003. Crop production in saline environments: Global and integrative perspectives, Haworth Press, New York.
  • Karaivazoglou NA, Papakosta DK and Divanidis S 2005. Effect of chloride in irrigation water and form of nitrogen fertilizer on Virginia (flue-cured) tobacco. Field Crops Res. 92:61-74. doi: 10.1016/j.fcr.2004.09.006.
  • Karanth KR 1987. Ground water assessment: Development and management. Tata McGraw-Hill Education, New Delhi, India.
  • Kırnak H, Kaya C and Degirmenci V 2002. Growth and yield parameters of bell peppers with surface and subsurface drip irrigation systems under different irrigation levels. Atatürk Uni. J. Agri. Fac. 33(4):383-389.
  • Komosa A and Gorniak T 2015. The effect of chloride on yield and nutrient ınteraction in greenhouse tomato (Lycopersicon esculentum Mill.) grown in rockwool. J. Plt. Nutrit. 38:355-370. doi: 10.1080/01904167.2014.934466.
  • Kowalczyk W, Dysko J and Kaniszewski S 2008. Effect of nutrient solution pH regulated with hydrochloric acid on the concentration of Cl- ions in the root zone in soilless culture of tomato. J. Elementol. 13(2):245-254.
  • Leonard, C, Martorana M, Giuffirda F, Fogliano V and Pernice R 2004. Tomato fruit quality in relation to the content of sodium chloride in the nutrient solution. Acta Horticult. 659:769-774. doi: 10.17660/ActaHortic.2004.659.99.
  • Narkis N and Kott Y 1991. A composition between chlorine dioxide and chlorine for the disinfection of effluents. Israel Water Commission, Tel Aviv, Israel.
  • Narkis N, Armon R, Offer R, Orshansky F and Friedland E 1995. Effect of suspended solids of wastewater disinfection efficiency by chlorine dioxide. Water Res. 29:227-236. doi: 10.1016/0043-1354%2894%29E0117-O.
  • Navarro JM, Martinez V and Carvajal M 2000. Ammonium bicarbonate and calcium effects on tomato plants grown under saline conditions. Plant Sci. 157:89-96. doi: https:// doi.org/10.1016/s0168-9452(00)00272-7.
  • Peet MM, Harlow CD and Larrea ES 2004. Fruit quality and yield in five small-fruited greenhouse tomato cultivars under high fertilization regime. Acta Horticult. 659:811-818. doi: 10.17660/ActaHortic.2004.659.105.
  • Rav Acha C, Kummel M, Salamon I and Adin A 1995. The effect of chemical oxidants on effluent constituents for drip irrigation. Water Res. 29:119-129. doi: 10.1016/0043-1354(94)E0113-K.
  • Sairam RK, Rao KV and Srivastava GC 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 163(5):1037-1046. doi: 10.1016/S0168-9452(02)00278-9.
  • Scholberg JMS, McNeal BL, Jones JW, Boote KJ, Stanley CD and Obreza TA 2000. Nitrogen stress effects on growth and nitrogen accumulation by field-grown tomato. Agron. J. 92:159-167. doi: 10.21273/HORTSCI.50.11.1636. Salk A, Arın L, Deveci M, Polat S 2008. Special vegetable growing. Departmant of Horticulture, Faculty of Agriculture Press, Namık Kemal University, Tekirdag, Turkey.
  • Shawer SS 2014. Interaction effect between nitrate and chloride on yield, uptake and translocation of nutrients in cucumber plant under nutrient film technique (NFT). Middle East J. Agricult. Rsch. 3(1):42-48. Smith E, Porter W, Hawkins G and Harris JG 2016. Blueberry irrigation water quality. Cooperative Extension Bulletin Circular, 1105, University of Georgia, Athens, GA.
  • Tantawy AESA 2007. Effect of some mineral and organic compounds on salinity tolerance in tomato., Faculty of Agriculture Al-Azhar Univ., Cairo, Egypt. PhD dissertation. Turhan A, Kuscu H, Ozmen N and Demir AO 2014. The relationships between salinity levels of water used for irrigation with yield and quality parameters in red pepper (Capsicum annum cv. Kapija). Anadolu J. Agr. Sci. 29(3):186-193. doi:10.7161/ANAJAS.2014. 29.3.186-193.
  • Turhan A and Kuscu H 2019. Effects of salinity stress on water use efficiency, yield components, leaf chlorophyll and carotenoid content of eggplant (Solanum melongena L.). YYU. J. Agr. Sci. 29(1):61-68. doi: 10.29133/yyutbd.462094.
  • Welch RM 1995. Micronutrient nutrition of plants. Crit. Rev. Plant Sci. 14:49-82. doi: 10.1080/ 713608066.
  • Zahedifar M, Ronaghi A, Moosavi AA and Shirazi SS 2012. Influence of nitrogen and salinity levels on the fruit yield and chemical composition of tomato in a hydroponic culture. J. Plant Nutrition, 35(14):2211-2221. doi: 10.1080/01904167.2012.724497.
  • Zhu JK 2003. Regulation of ion homeostasis under salt stress. Curr. Opin. Plt. Biol. 6:441-445. doi: 10.1016/s1369-5266(03)00085-2.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section RESEARCH ARTICLE
Authors

Ahmet Turhan 0000-0002-1976-8082

Neşe Özmen 0000-0001-5244-6256

Publication Date December 31, 2021
Submission Date December 25, 2020
Acceptance Date March 11, 2021
Published in Issue Year 2021Volume: 24 Issue: 6

Cite

APA Turhan, A., & Özmen, N. (2021). Klor Uygulamalarının Biber Bitkisinin Gelişimi, Meyve Verimi ve Bazı Kalite Parametreleri Üzerine Etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 24(6), 1139-1144. https://doi.org/10.18016/ksutarimdoga.vi.846945


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149