Research Article
BibTex RIS Cite

Reyhan Bitkisinin (Ocimum basilicum L.) Adventif Kök Kültürlerinde Rosmarinik Asit Üretim Olanaklarının ve Antioksidan Kapasitenin Araştırılması

Year 2022, Volume: 25 Issue: 3, 459 - 466, 30.06.2022
https://doi.org/10.18016/ksutarimdoga.vi.947605

Abstract

Bitki doku ve organ kültürleri rosmarinik asit gibi değerli sekonder metabolitlerin üretimi için önemli biyoteknolojik yöntemlerdir. Bu çalışmada, reyhan bitkisinin (Ocimum basilicum L.) adventif kök süspansiyon ve katı kültürlerinde rosmarinik asit üretim olanakları, toplan fenolik ve flavonoid içerikleri ve antioksidan kapasitenin belirlenmesi amaçlanmıştır. Adventif kök katı kültürlerin oluşturulmasında in vitro koşullarda yetiştirilen 30 günlük bitkilerin hipokotil kısımları eksplant kaynağı olarak kullanılmıştır. Eksplantlar 3.3 g L-1 MS (Murashige ve Skoog), 30 g L-1 sukroz ve 2 g L-1 phytagel ve 2 mg L-1 indol-3-bütirik asit içeren besin ortamında karanlık koşullarda kültüre alınmıştır. Bu ortamda gelişen adventif kökler süspansiyon kültürlerinin oluşturulmasında kullanılmıştır. Süspansiyon kültürünün 10, 20 ve 30. günlerinde adventif kökler hasat edilerek analizler yapılmıştır. Adventif köklerin rosmarinik asit içeriği HPLC cihazıyla analiz edilmiştir. Antioksidan kapasiteleri katyon radikali giderme (ABTS), indirgeme gücü (FRAP) ve serbest radikal giderme (DPPH) metotları ile belirlenmiştir. Rosmarinik asit içeriği en yüksek adventif kök süspansiyon kültürünün 30. gününde 32.38 mg g-1 olarak belirlenmiştir. En yüksek toplam fenolik bileşik içeriği süspansiyon kültürünün 20. gününde 32.94 mg GAE g-1 olarak belirlenmiştir. DPPH, ABTS ve FRAP aktivitesi en yüksek süspansiyon kültürünün 30. gününde belirlenmiştir. Sonuç olarak reyhan bitkisinin süspansiyon kültüründen elde edilen adventif köklerin rosmarinik asit üretimi için uygun materyaller olduğu düşünülmektedir.

Supporting Institution

Bu çalışma Tokat Gaziosmanpaşa Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimince desteklenmiştir.

Project Number

Proje Numarası: 2019/38

Thanks

Bu çalışma Tokat Gaziosmanpaşa Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimince (Proje Numarası: 2019/38) desteklenmiştir.

References

  • Blois MS 1958. Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 26 1199-1200.
  • Cui HY, Baque MA, Lee EJ, Paek KY 2013. Scale-up of Adventitious Root Cultures of Echinacea angustifolia in a Pilot-Scale Bioreactor for the Production of Biomass and Caffeic acid Derivatives. Plant Biotechnol Rep 7:297–308.
  • Duncan BD 1955. Multiple Range and Multiple Ftests. Biometrics. P.1-42.
  • Duran RE, Kilic S, Coskun Y 2019. Melatonin Influence on In Vitro Callus Induction and Phenolic Compound Production in Sweet Basil (Ocimum basilicum L.). In Vitro Cellular & Developmental Biology – Plant 55: 468–475.
  • Ekmekci H, Aasim M 2014. In vıtro Plant Regeneratıon of Turkısh Sweet Basil (Ocimum basılıcum L.) The Journal of Animal & Plant Sciences, 24(6):1758-1765.
  • Genç N 2016. Tokat Ekolojik Koşullarında Yetiştirilen Farklı Orijinli Reyhan (Ocimum basilicum L.) Genotiplerinin Fenolik Bileşik Kompozisyonları ve Antioksidan Kapasitelerinin Belirlenmesi. Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Tokat.
  • Genc N, Elmastaş M, Telci İ, Erenler R 2020. Quantitative Analysis of Phenolic Compounds of Commercial Basil Cultivars (Ocimum basilicum L.) by LC-TOF-MS and Their Antioxidant Effects. International Journal of Chemistry and Technology 4 (2) 179-184.
  • Günay E, Telci İ 2017. Isparta Ekolojik Koşullarında Bazı Reyhan (Ocimum basilicum L.) Genotiplerinin Verim ve Kalite Özelliklerinin Belirlenmesi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi 12 (2):100-109.
  • Jiang J, Bi H, Zhuang Y, Liu S, Liu T, Ma Y 2016. Engineered Synthesis of Rosmarinic Acid In Escherichia coli Resulting Production of a New Intermediate, Caffeoylphenyllactate. Biotechnol Lett 38:81–88.
  • Khojasteh A, Mirjalili MH, Hidalgo D, Corchete P, Palazon J 2014. New Trends in Biotechnological Production of Rosmarinic acid. Biotechnol Lett 36:2393–2406.
  • Kim G-D, Park Y S, Jin Y-H, Park C-S 2015. Production and Applications of Rosmarinic Acid and Structurally Related Compounds. Appl Microbiol Biotechnol 99:2083–2092.
  • Kintzios S, Kollias H, Straitouris E, Makri O 2004. Scale-up Micropropagation of Sweet Basil (Ocimum basilicum L.) in an Airlift Bioreactor and Accumulation of Rosmarinic Acid. Biotechnology Letters 26: 521–523.
  • Kintzios S, Makri O, Panagiotopoulos E, Scapeti M 2003. In Vitro Rosmarinic Acid Accumulation in Sweet Basil (Ocimum basilicum L.). Biotechnology Letters 25: 405–408.
  • Kracˇun-Kolarevic´ M, Dmitrovic´ S, Filipovic´ B, Peric´ M, Misˇic´ D, Simonovic´ A, Todorovic´S 2015. Influence of Sodium Salicylate on Rosmarinic Acid, Carnosol and Carnosic Acid Accumulation by Salvia officinalis L. Shoots Grown In Vitro. Biotechnol Lett. 37:1693–1701.
  • Le KC, Im WT, Paek KY, Park SY 2018. Biotic Elicitation of Ginsenoside Metabolism of Mutant Adventitious Root Culture in Panax ginseng. Applied Microbiology and Biotechnology 102:1687–1697.
  • Marwat SK, Rehman FU, Khan MS, Ghulam S, Anwar N, Mustafa G, Usman K 2011. Phytochemical Constituents and Pharmacological Activities of Sweet Basil-Ocimum basilicum L. (Lamiaceae). Asian Journal of Chemistry 23 (9) : 3773-3782.
  • Murashige T, Skoog F 1962. A revised Medium for Rapid Growth and Bioassays With Tobacco Tissue Cultures. Physiol Plant, 15: 473-497.
  • Nazir M, Tungmunnithum D, Bose S, Drouet S, Garros L, Giglioli-Guivarc’h N, Abbasi BH, Hano C 2019. Differential Production of Phenylpropanoid Metabolites in Callus Cultures of Ocimum basilicum L. with Distinct In Vitro Antioxidant Activities and In Vivo Protective Effects against UV stress. J. Agric. Food Chem. 67: 1847−1859.
  • Oyaizu M 1986. Studies on Product of Browning Reaction Prepared from Glucose Amine. Jpn. J. Nutr., 44 307.
  • Pekal A, Pyrzynska K 2014. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods, 7:1776–1782.
  • Qian J, Guiping L, Xiujun L, Xincai H, Hongmei L 2009. Influence of Growth Regulators and Sucrose Concentrations on Growth and Rosmarinic Acid Production in Calli and Suspension Cultures of Coleus blumei. Natural Product Research 23 (2)127–137.
  • Rahmat E, Kang Y 2019. Adventitious Root Culture for Secondary Metabolite Production in Medicinal Plants: A Review. J Plant Biotechnol 46:143–157.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C 1999. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic Biol Med, 26(9- 10) 1231-1237.
  • Sahraroo A, Mirjalili MH, Corchete P, Babalar M, Moghadam MRF 2016. Establishment and Characterization of a Satureja khuzistanica Jamzad (Lamiaceae) Cell Suspension Culture: a New in Vitro Source of Rosmarinic Acid. Cytotechnology 68:1415–1424.
  • Slinkard K, Singleton VL 1977. Total Phenol Analysis: Automation and Comparison with Manual Methods. Am J Enol Viticult 28:49-55.
  • SPSS 20. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp. Released 2011.
  • Srivastava S, Conlan XA, Adholeya A, Cahill DM 2016. Elite Hairy Roots of Ocimum basilicum as a New Source of Rosmarinic Acid and Antioxidants. Plant Cell Tiss Organ Cult 126:19–32.
  • Steffens B, Rasmussen A 2016. The Physiology of Adventitious Roots, Topical Review on Adventitious Root Physiology. Plant Physiology170:603–617.
  • Verma SK, Sahin G, Das AK, Gurel E 2016. In Vitro Plant Regeneration of Ocimum basilicum L. is Accelerated by Zinc Sulfate. In Vitro Cell. Dev.Biol.—Plant 52:20–27.
  • Zeljkovi´c S´C, Komz´akov´a K, ˇSiˇskov´a J, Karalija E, Sm´ekalov´a K, Tarkowski P 2020. Phytochemical Variability of Selected Basil Genotypes. Industrial Crops & Products 157-112910.
  • Zhang S, Yan Y, Wang B, Liang Z, Liu Y, Liu F, Qi Z 2014. Selective Responses of Enzymes In The Two Parallel Pathways of Rosmarinic Acid Biosynthetic Pathway to Elicitors In Salvia miltiorrhiza Hairy Root Cultures. Journal of Bioscience and Bioengineering 117 (5) 645-651.

Investigation of Rosmarinic Acid Production Possibilities and Antioxidant Capacities in Adventitious Root Cultures of Basil (Ocimum basilicum L.)

Year 2022, Volume: 25 Issue: 3, 459 - 466, 30.06.2022
https://doi.org/10.18016/ksutarimdoga.vi.947605

Abstract

Plant tissue and organ cultures are important biotechnological methods to produce valuable secondary metabolites such as rosmarinic acid. In this study, It was aimed to determine the rosmarinic acid production possibilities, total phenolic and flavonoid contents and antioxidant activities of adventitious root suspension and solid cultures of basil (Ocimum basilicum L.). The hypocotyl parts of 30-day-old plants grown under in vitro conditions were used as the source of explants for the establishment of adventitious root solid culture. The explants were cultured in dark conditions in nutrient medium containing 3.3 g L-1 MS (Murashige and Skoog), 30 g L-1 sucrose, 2 g L-1 phytagel and 2 mg L-1 indole-3-butyric acid (IBA). Adventitious roots obtained under these conditions were used in the establishment of suspension cultures. Adventitious roots were harvested and analyzed at 10, 20 and 30 days of suspension culture.
The rosmarinic acid content of adventitious roots was analyzed by HPLC. Antioxidant capacities were determined by reducing power (FRAP), free radical scavenging (DPPH) and cation radical scavenging (ABTS) methods. The highest rosmarinic acid content was determined as 32.38 mg g-1 on the 30th day of the adventitious root suspension culture. The highest total phenolic compound content was determined as 32.94 mg GAE g-1 on the 20th day of suspension culture. The highest DPPH, ABTS and FRAP activities were determined on the 30th day of the suspension culture. As a result, It is thought that adventitious roots obtained from suspension cultures of basil plant are suitable materials to produce rosmarinic acid.

Project Number

Proje Numarası: 2019/38

References

  • Blois MS 1958. Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 26 1199-1200.
  • Cui HY, Baque MA, Lee EJ, Paek KY 2013. Scale-up of Adventitious Root Cultures of Echinacea angustifolia in a Pilot-Scale Bioreactor for the Production of Biomass and Caffeic acid Derivatives. Plant Biotechnol Rep 7:297–308.
  • Duncan BD 1955. Multiple Range and Multiple Ftests. Biometrics. P.1-42.
  • Duran RE, Kilic S, Coskun Y 2019. Melatonin Influence on In Vitro Callus Induction and Phenolic Compound Production in Sweet Basil (Ocimum basilicum L.). In Vitro Cellular & Developmental Biology – Plant 55: 468–475.
  • Ekmekci H, Aasim M 2014. In vıtro Plant Regeneratıon of Turkısh Sweet Basil (Ocimum basılıcum L.) The Journal of Animal & Plant Sciences, 24(6):1758-1765.
  • Genç N 2016. Tokat Ekolojik Koşullarında Yetiştirilen Farklı Orijinli Reyhan (Ocimum basilicum L.) Genotiplerinin Fenolik Bileşik Kompozisyonları ve Antioksidan Kapasitelerinin Belirlenmesi. Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Tokat.
  • Genc N, Elmastaş M, Telci İ, Erenler R 2020. Quantitative Analysis of Phenolic Compounds of Commercial Basil Cultivars (Ocimum basilicum L.) by LC-TOF-MS and Their Antioxidant Effects. International Journal of Chemistry and Technology 4 (2) 179-184.
  • Günay E, Telci İ 2017. Isparta Ekolojik Koşullarında Bazı Reyhan (Ocimum basilicum L.) Genotiplerinin Verim ve Kalite Özelliklerinin Belirlenmesi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi 12 (2):100-109.
  • Jiang J, Bi H, Zhuang Y, Liu S, Liu T, Ma Y 2016. Engineered Synthesis of Rosmarinic Acid In Escherichia coli Resulting Production of a New Intermediate, Caffeoylphenyllactate. Biotechnol Lett 38:81–88.
  • Khojasteh A, Mirjalili MH, Hidalgo D, Corchete P, Palazon J 2014. New Trends in Biotechnological Production of Rosmarinic acid. Biotechnol Lett 36:2393–2406.
  • Kim G-D, Park Y S, Jin Y-H, Park C-S 2015. Production and Applications of Rosmarinic Acid and Structurally Related Compounds. Appl Microbiol Biotechnol 99:2083–2092.
  • Kintzios S, Kollias H, Straitouris E, Makri O 2004. Scale-up Micropropagation of Sweet Basil (Ocimum basilicum L.) in an Airlift Bioreactor and Accumulation of Rosmarinic Acid. Biotechnology Letters 26: 521–523.
  • Kintzios S, Makri O, Panagiotopoulos E, Scapeti M 2003. In Vitro Rosmarinic Acid Accumulation in Sweet Basil (Ocimum basilicum L.). Biotechnology Letters 25: 405–408.
  • Kracˇun-Kolarevic´ M, Dmitrovic´ S, Filipovic´ B, Peric´ M, Misˇic´ D, Simonovic´ A, Todorovic´S 2015. Influence of Sodium Salicylate on Rosmarinic Acid, Carnosol and Carnosic Acid Accumulation by Salvia officinalis L. Shoots Grown In Vitro. Biotechnol Lett. 37:1693–1701.
  • Le KC, Im WT, Paek KY, Park SY 2018. Biotic Elicitation of Ginsenoside Metabolism of Mutant Adventitious Root Culture in Panax ginseng. Applied Microbiology and Biotechnology 102:1687–1697.
  • Marwat SK, Rehman FU, Khan MS, Ghulam S, Anwar N, Mustafa G, Usman K 2011. Phytochemical Constituents and Pharmacological Activities of Sweet Basil-Ocimum basilicum L. (Lamiaceae). Asian Journal of Chemistry 23 (9) : 3773-3782.
  • Murashige T, Skoog F 1962. A revised Medium for Rapid Growth and Bioassays With Tobacco Tissue Cultures. Physiol Plant, 15: 473-497.
  • Nazir M, Tungmunnithum D, Bose S, Drouet S, Garros L, Giglioli-Guivarc’h N, Abbasi BH, Hano C 2019. Differential Production of Phenylpropanoid Metabolites in Callus Cultures of Ocimum basilicum L. with Distinct In Vitro Antioxidant Activities and In Vivo Protective Effects against UV stress. J. Agric. Food Chem. 67: 1847−1859.
  • Oyaizu M 1986. Studies on Product of Browning Reaction Prepared from Glucose Amine. Jpn. J. Nutr., 44 307.
  • Pekal A, Pyrzynska K 2014. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods, 7:1776–1782.
  • Qian J, Guiping L, Xiujun L, Xincai H, Hongmei L 2009. Influence of Growth Regulators and Sucrose Concentrations on Growth and Rosmarinic Acid Production in Calli and Suspension Cultures of Coleus blumei. Natural Product Research 23 (2)127–137.
  • Rahmat E, Kang Y 2019. Adventitious Root Culture for Secondary Metabolite Production in Medicinal Plants: A Review. J Plant Biotechnol 46:143–157.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C 1999. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic Biol Med, 26(9- 10) 1231-1237.
  • Sahraroo A, Mirjalili MH, Corchete P, Babalar M, Moghadam MRF 2016. Establishment and Characterization of a Satureja khuzistanica Jamzad (Lamiaceae) Cell Suspension Culture: a New in Vitro Source of Rosmarinic Acid. Cytotechnology 68:1415–1424.
  • Slinkard K, Singleton VL 1977. Total Phenol Analysis: Automation and Comparison with Manual Methods. Am J Enol Viticult 28:49-55.
  • SPSS 20. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp. Released 2011.
  • Srivastava S, Conlan XA, Adholeya A, Cahill DM 2016. Elite Hairy Roots of Ocimum basilicum as a New Source of Rosmarinic Acid and Antioxidants. Plant Cell Tiss Organ Cult 126:19–32.
  • Steffens B, Rasmussen A 2016. The Physiology of Adventitious Roots, Topical Review on Adventitious Root Physiology. Plant Physiology170:603–617.
  • Verma SK, Sahin G, Das AK, Gurel E 2016. In Vitro Plant Regeneration of Ocimum basilicum L. is Accelerated by Zinc Sulfate. In Vitro Cell. Dev.Biol.—Plant 52:20–27.
  • Zeljkovi´c S´C, Komz´akov´a K, ˇSiˇskov´a J, Karalija E, Sm´ekalov´a K, Tarkowski P 2020. Phytochemical Variability of Selected Basil Genotypes. Industrial Crops & Products 157-112910.
  • Zhang S, Yan Y, Wang B, Liang Z, Liu Y, Liu F, Qi Z 2014. Selective Responses of Enzymes In The Two Parallel Pathways of Rosmarinic Acid Biosynthetic Pathway to Elicitors In Salvia miltiorrhiza Hairy Root Cultures. Journal of Bioscience and Bioengineering 117 (5) 645-651.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section RESEARCH ARTICLE
Authors

İlhami Karataş 0000-0002-7965-7878

Project Number Proje Numarası: 2019/38
Publication Date June 30, 2022
Submission Date June 3, 2021
Acceptance Date July 16, 2021
Published in Issue Year 2022Volume: 25 Issue: 3

Cite

APA Karataş, İ. (2022). Reyhan Bitkisinin (Ocimum basilicum L.) Adventif Kök Kültürlerinde Rosmarinik Asit Üretim Olanaklarının ve Antioksidan Kapasitenin Araştırılması. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 25(3), 459-466. https://doi.org/10.18016/ksutarimdoga.vi.947605


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149