Research Article
BibTex RIS Cite

Optimization Extraction of Cladonia foliacea (Huds.) Willd: Antioxidant Activity and Inhibition of the Key Enzymes Linked to Type II Diabetes

Year 2022, Volume: 25 Issue: 4, 828 - 837, 31.08.2022
https://doi.org/10.18016/ksutarimdoga.vi.908382

Abstract

Cladonia foliacea (CF) is a type of lichen belonging to the Cladoniaceae family, used as traditional medicine for various diseases. It is known that CF has strong antioxidant and antidiabetic effects originating from various secondary components. However, the bioactivity of CF is significantly affected by extraction conditions such as temperature, liquid/solid ratio, and solvent type/concentration. Herein, the extraction parameters (temperature, liquid/solid ratio, and methanol concentration) of CF were optimized by response surface methodology (RSM) based on maximum total phenolic content (TPC), antioxidant capacity, and α-glucosidase/α-amylase inhibitor activity. In the methanolic extraction of CF, 48.8 °C, 12.3 mL g-1 liquid/solid ratio, and 86.4% methanol concentration were determined as the optimum point. TPC, antioxidant capacity, α-glucosidase, and α-amylase inhibition activities of CF extracted under optimum conditions were determined as 5.55 mg GAE g-1, 33.10 g sample/g DPPH, 68.78%, and 50.03%, respectively. These results suggest that extraction conditions may be a limiting factor in terms of bioactive properties and optimized extraction parameters may improve the potential antioxidant and inhibitory activity of key enzymes associated with type II diabetes of CF.

References

  • Ahamed TS, Rajan VK, Sabira K, Muraleedharan K 2019. DFT and QTAIM based investigation on the structure and antioxidant behavior of lichen substances Atranorin, Evernic acid and Diffractaic acid. Computational biology and chemistry 80(3): 66-78.
  • Anar M, Orhan F, Alpsoy L, Gulluce M, Aslan A, Agar G 2016. The antioxidant and antigenotoxic potential of methanol extract of Cladonia foliacea (Huds.) Willd. Toxicology and industrial health 32(4): 721-29.
  • Behera BC, Mahadik N, Morey M 2012. Antioxidative and cardiovascular-protective activities of metabolite usnic acid and psoromic acid produced by lichen species Usnea complanata under submerged fermentation. Pharmaceutical Biology 50(8): 968-979.
  • Bhutkar M, Bhise S 2012. In vitro assay of alpha amylase inhibitory activity of some indigenous plants. Int. J. Chem. Sci 10(1): 457-62.
  • Brand-Williams W, Cuvelier M, Berset C 1995. Antioxidative activity of phenolic composition of commercial extracts of sage and rosemary. LWT-Food science and Technology 28(1): 25-30.
  • Cam M, Basyigit B, Alasalvar H, Yilmaztekin M, Ahhmed A, Sagdic O, Konca Y, Telci I 2020. Bioactive properties of powdered peppermint and spearmint extracts: Inhibition of key enzymes linked to hypertension and type 2 diabetes. Food Bioscience 35(3): 100577.
  • Cariou B, Charbonnel B, Staels B 2012. Thiazolidinediones and PPARγ agonists: time for a reassessment. Trends in Endocrinology & Metabolism 23(5): 205-15.
  • Cavalloro V, Marrubini G, Stabile R, Rossi D, Linciano P, Gheza G, Assini S, Martino E, Collina S 2021. Microwave-Assisted Extraction and HPLC-UV-CD Determination of (S)-usnic Acid in Cladonia foliacea. Molecules 26(2): 455.
  • Dai J, Mumper RJ 2010. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10): 7313-52.
  • Dash RP, Babu RJ, Srinivas NR 2018. Reappraisal and perspectives of clinical drug–drug interaction potential of α-glucosidase inhibitors such as acarbose, voglibose and miglitol in the treatment of type 2 diabetes mellitus. Xenobiotica 48(1): 89-108.
  • Dent M, Dragović-Uzelac V, Penić M, Bosiljkov T, Levaj B 2013. The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in Dalmatian wild sage (Salvia officinalis L.) extracts. Food technology and biotechnology 51(1): 84-91.
  • Doğan N, Doğan C, Çam M, Hayoğlu İ 2020. Optimization and comparison of three cooking methods for wheat flour‐oyster mushroom (P. ostreatus) powder composite chips. Journal of Food Processing and Preservation, 44(11): e14873.
  • Emsen B, Aslan A, Togar B, Turkez, H 2016. In vitro antitumor activities of the lichen compounds olivetoric, physodic and psoromic acid in rat neuron and glioblastoma cells. Pharmaceutical Biology, 54 (9): 1748-1762.
  • Fernández-Martínez JL, Mukerji T, García-Gonzalo E, Fernández-Muñiz Z 2011. Uncertainty assessment for inverse problems in high dimensional spaces using particle swarm optimization and model reduction techniques. Mathematical and Computer Modelling 54(11-12): 2889-2899.
  • Fernández-Moriano C, Gómez-Serranillos MP, Crespo A 2016. Antioxidant potential of lichen species and their secondary metabolites. A systematic review. Pharmaceutical Biology 54(1): 1-17.
  • Găman, MA, Epîngeac, ME, Diaconu, CC, Găman, AM 2020. Evaluation of oxidative stress levels in obesity and diabetes by the free oxygen radical test and free oxygen radical defence assays and correlations with anthropometric and laboratory parameters. World journal of diabetes, 11(5): 193.
  • Hengameh P, Rashmi S, Rajkumar HG 2016. In vitro inhibitory activity of some lichen extracts against α-amylase enzyme. European Journal of Biomedical and Pharmaceutical Sciences, 3(5): 315-318.
  • Hoa NT, Van Bay M, Mechler A, Vo QV 2020. Is Usnic Acid a Promising Radical Scavenger? ACS omega 5(28): 17715-20.
  • Hsieh P-C, Huang G-J, Ho Y-L, Lin Y-H, Huang S-S, Chiang Y-C, Tseng M-C, Chang Y-S 2010. Activities of antioxidants, α-Glucosidase inhibitors and aldose reductase inhibitors of the aqueous extracts of four Flemingia species in Taiwan. Bot Stud 51(293): 302.
  • Huneck S 1999. The significance of lichens and their metabolites. Naturwissenschaften 86(12): 559-70.
  • Joshi T, Sharma P, Joshi T, Chandra S 2020. In silico screening of anti-inflammatory compounds from Lichen by targeting cyclooxygenase-2. Journal of Biomolecular Structure and Dynamics, 38(12): 3544-3562.
  • Karthik S, Nandini K, Kekuda P, Vinayaka K, Mukunda S 2011. Total phenol content, insecticidal and amylase inhibitory efficacy of Heterodermia leucomela (L). Annals of Biological Research 2(4): 38-43.
  • Karunaratne V, Thadhani VM, Khan SN, Choudhary MI 2014. Potent α-glucosidase inhibitors from the lichen Cladonia species from Sri Lanka. Journal of the National Science Foundation of Sri Lanka 42(1): 95-98.
  • Khadhri A, Mendili M, Araújo MEM, Seaward MR 2019. Comparative study of secondary metabolites and bioactive properties of the lichen Cladonia foliacea with and without the lichenicolous fungus Heterocephalacria bachmannii. Symbiosis 79(1): 25-31.
  • Kosanić M, Ranković B, Stanojković T, Rančić A, Manojlović N 2014. Cladonia lichens and their major metabolites as possible natural antioxidant, antimicrobial and anticancer agents. LWT-Food Science and Technology 59(1): 518-25.
  • Litterski B, Ahti T 2004. World distribution of selected European Cladonia species. Symbolae Botanicae Upsalienses 34(1): 205-36.
  • Markom M, Hasan M, Daud WRW, Singh H, Jahim JM 2007. Extraction of hydrolysable tannins from Phyllanthus niruri Linn.: Effects of solvents and extraction methods. Separation and purification technology 52(3): 487-96.
  • McDougall GJ, Shpiro F, Dobson P, Smith P, Blake A, Stewart D 2005. Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. Journal of Agricultural and Food Chemistry 53(7): 2760-66.
  • Mendili M, Bannour M, Araújo MEM, Seaward MR, Khadhri A 2021. Lichenochemical Screening and Antioxidant Capacity of Four Tunisian Lichen Species. Chemistry & Biodiversity 18(2): e2000735.
  • Mitrović T, Stamenković S, Cvetković V, Tošić S, Stanković M, Radojević I, Stefanović O, Čomić L, Đačić D, Ćurčić M 2011. Antioxidant, antimicrobial and antiproliferative activities of five lichen species. International Journal of Molecular Sciences 12(8): 5428-5448.
  • Myers RH, Montgomery DC, Anderson-Cook CM 2016. Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons, 856 pages.
  • Myers RH, Montgomery DC, Vining GG, Borror CM, Kowalski SM 2004. Response surface methodology: a retrospective and literature survey. Journal of quality technology 36(1): 53-77.
  • Nayaka S, Haridas B 2020. Bioactive Secondary Metabolites from Lichens. in, Plant Metabolites: Methods, Applications and Prospects (Springer, Singapore) 255-290.
  • Odabasoglu F, Aslan A, Cakir A, Suleyman H, Karagoz Y, Halici M, Bayir Y 2004. Comparison of antioxidant activity and phenolic content of three lichen species. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 18(11): 938-41.
  • Page KA, Reisman T 2013. Interventions to preserve beta-cell function in the management and prevention of type 2 diabetes. Current diabetes reports 13(2): 252-60.
  • Prathapan A, Krishna MS, Nisha V, Sundaresan A, Raghu K 2012. Polyphenol rich fruit pulp of Aegle marmelos (L.) Correa exhibits nutraceutical properties to down regulate diabetic complications—An in vitro study. Food research international 48(2): 690-95.
  • Reddy N, Anarthe SJ, Raghavendra N 2010. In vitro antioxidant and antidiabetic activity of Asystasia gangetica (Chinese Violet) Linn.(Acanthaceae). International Journal of Research in Pharmaceutical and Biomedical Sciences 1(2): 72-75.
  • Shivanna R, Parizadeh H, Garampalli RH 2015. Screening of lichen extracts for in vitro antidiabetic activity using alpha amylase inhibitory assay. International Journal of Biological & Pharmaceutical Research 6(5): 364-67.
  • Shrestha G, Clair LLS 2013. Lichens: a promising source of antibiotic and anticancer drugs. Phytochemistry reviews 12(1): 229-44.
  • Shukla V, Joshi GP, Rawat M 2010. Lichens as a potential natural source of bioactive compounds: a review. Phytochemistry reviews 9(2): 303-14.
  • Singleton VL, Orthofer R, Lamuela-Raventós RM 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in enzymology 299(1): 152-78.
  • Su C-H, Lai M-N, Ng L-T 2013. Inhibitory effects of medicinal mushrooms on α-amylase and α-glucosidase–enzymes related to hyperglycemia. Food & function 4(4): 644-49.
  • Thadhani VM, Karunaratne V 2017. Potential of lichen compounds as antidiabetic agents with antioxidative properties: A review. Oxidative medicine and cellular longevity 2017: 2079697.
  • Valadbeigi T, Shaddel M 2016. Amylase inhibitory activity of some macrolichens in Mazandaran province, Iran. Physiology and Pharmacology 20(4): 215-19.
  • Verma N, Behera BC, Sharma BO 2012. Glucosidase inhibitory and radical scavenging properties of lichen metabolites salazinic acid. sekikaic acid and usnic acid. Hacettepe Journal of Biology & Chemistry. vol. 40(1):7–21.
  • Vincent AM, Russell JW, Low P, Feldman EL 2004. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocrine reviews 25(4): 612-28.
  • Xiao J, Hogger P 2015. Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Current medicinal chemistry 22(1): 23-38.
  • Yılmaz M, Türk AÖ, Tay T, Kıvanç M 2004. The antimicrobial activity of extracts of the lichen Cladonia foliacea and its (–)-usnic acid, atranorin, and fumarprotocetraric acid constituents. Zeitschrift für Naturforschung C 59(3-4): 249-254.
  • Zagoskina N, Nikolaeva T, Lapshin P, Zavarzin A, Zavarzina A 2013. Water-soluble phenolic compounds in lichens. Microbiology 82(4): 445-52.
  • Zambare VP, Christopher LP 2012. Biopharmaceutical potential of lichens. Pharmaceutical Biology 50(1): 778-98.
  • Zhang Y, Shi J, Zhao Y, Cui H, Cao C, Liu S 2012. An investigation of the anti-diabetic effects of an extract from Cladonia humilis. Pakistan journal of pharmaceutical sciences 25(3): 509-512.

Tip II Diyabet ve Oksidasyon ile İlişkili Enzimlerin ve Radikallerin İnhibisyonunun Hedefinde Cladonia foliacea (Huds.) Willd'in Ekstraksiyonun Optimizasyonu

Year 2022, Volume: 25 Issue: 4, 828 - 837, 31.08.2022
https://doi.org/10.18016/ksutarimdoga.vi.908382

Abstract

Cladonia foliacea (CF), çeşitli hastalıklar için geleneksel ilaç olarak kullanılan Cladoniaceae familyasına ait bir liken türüdür. CF’nin çeşitli sekonder bileşiklerden kaynaklanan güçlü antioksidan ve antidiyabetik etkilere sahip olduğu bilinmektedir. Ancak CF’nin biyoaktivitesi sıcaklık, sıvı/katı oranı ve solvent çeşidi/konsantrasyonu gibi ekstraksiyon şartlarından önemli ölçüde etkilenmektedir. Bu nedenle, bu çalışmada CF’nin ekstraksiyon parametreleri (sıcaklık, sıvı/katı oranı ve metanol konsantrasyonu) maksimum toplam fenolik madde miktarı (TFMM), antioksidan kapasitesi ve α-glukozidaz/α-amilaz inhibisyon aktivitesi baz alınarak yanıt yüzey yöntemi (YYY) ile optimize edilmiştir. CF'nin metanolik ekstraksiyonunda 48.8 °C, 12.3 mL g-1 sıvı/katı oranı ve %86.4 metanol konsantrasyonu optimum nokta olarak belirlenmiştir. Optimum koşullar altında ekstrakte edilen CF'nin TPC, antioksidan kapasitesi, α-glukosidaz ve α-amilaz inhibisyon aktiviteleri sırasıyla 5.55 mg GAE g-1, 33.10 g örnek/g DPPH, %68.78 ve %50.03 olarak belirlenmiştir. Bu sonuçlar, ekstraksiyon koşullarının biyoaktif özellikler açısından sınırlayıcı bir faktör olabileceğini ve optimize edilmiş ekstraksiyon parametrelerinin CF'nin potansiyel antioksidan ve tip II diyabetle bağlantılı anahtar enzimlerin inhibisyon aktivite etkisinin iyileştirebileceğini düşündürmektedir.

References

  • Ahamed TS, Rajan VK, Sabira K, Muraleedharan K 2019. DFT and QTAIM based investigation on the structure and antioxidant behavior of lichen substances Atranorin, Evernic acid and Diffractaic acid. Computational biology and chemistry 80(3): 66-78.
  • Anar M, Orhan F, Alpsoy L, Gulluce M, Aslan A, Agar G 2016. The antioxidant and antigenotoxic potential of methanol extract of Cladonia foliacea (Huds.) Willd. Toxicology and industrial health 32(4): 721-29.
  • Behera BC, Mahadik N, Morey M 2012. Antioxidative and cardiovascular-protective activities of metabolite usnic acid and psoromic acid produced by lichen species Usnea complanata under submerged fermentation. Pharmaceutical Biology 50(8): 968-979.
  • Bhutkar M, Bhise S 2012. In vitro assay of alpha amylase inhibitory activity of some indigenous plants. Int. J. Chem. Sci 10(1): 457-62.
  • Brand-Williams W, Cuvelier M, Berset C 1995. Antioxidative activity of phenolic composition of commercial extracts of sage and rosemary. LWT-Food science and Technology 28(1): 25-30.
  • Cam M, Basyigit B, Alasalvar H, Yilmaztekin M, Ahhmed A, Sagdic O, Konca Y, Telci I 2020. Bioactive properties of powdered peppermint and spearmint extracts: Inhibition of key enzymes linked to hypertension and type 2 diabetes. Food Bioscience 35(3): 100577.
  • Cariou B, Charbonnel B, Staels B 2012. Thiazolidinediones and PPARγ agonists: time for a reassessment. Trends in Endocrinology & Metabolism 23(5): 205-15.
  • Cavalloro V, Marrubini G, Stabile R, Rossi D, Linciano P, Gheza G, Assini S, Martino E, Collina S 2021. Microwave-Assisted Extraction and HPLC-UV-CD Determination of (S)-usnic Acid in Cladonia foliacea. Molecules 26(2): 455.
  • Dai J, Mumper RJ 2010. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10): 7313-52.
  • Dash RP, Babu RJ, Srinivas NR 2018. Reappraisal and perspectives of clinical drug–drug interaction potential of α-glucosidase inhibitors such as acarbose, voglibose and miglitol in the treatment of type 2 diabetes mellitus. Xenobiotica 48(1): 89-108.
  • Dent M, Dragović-Uzelac V, Penić M, Bosiljkov T, Levaj B 2013. The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in Dalmatian wild sage (Salvia officinalis L.) extracts. Food technology and biotechnology 51(1): 84-91.
  • Doğan N, Doğan C, Çam M, Hayoğlu İ 2020. Optimization and comparison of three cooking methods for wheat flour‐oyster mushroom (P. ostreatus) powder composite chips. Journal of Food Processing and Preservation, 44(11): e14873.
  • Emsen B, Aslan A, Togar B, Turkez, H 2016. In vitro antitumor activities of the lichen compounds olivetoric, physodic and psoromic acid in rat neuron and glioblastoma cells. Pharmaceutical Biology, 54 (9): 1748-1762.
  • Fernández-Martínez JL, Mukerji T, García-Gonzalo E, Fernández-Muñiz Z 2011. Uncertainty assessment for inverse problems in high dimensional spaces using particle swarm optimization and model reduction techniques. Mathematical and Computer Modelling 54(11-12): 2889-2899.
  • Fernández-Moriano C, Gómez-Serranillos MP, Crespo A 2016. Antioxidant potential of lichen species and their secondary metabolites. A systematic review. Pharmaceutical Biology 54(1): 1-17.
  • Găman, MA, Epîngeac, ME, Diaconu, CC, Găman, AM 2020. Evaluation of oxidative stress levels in obesity and diabetes by the free oxygen radical test and free oxygen radical defence assays and correlations with anthropometric and laboratory parameters. World journal of diabetes, 11(5): 193.
  • Hengameh P, Rashmi S, Rajkumar HG 2016. In vitro inhibitory activity of some lichen extracts against α-amylase enzyme. European Journal of Biomedical and Pharmaceutical Sciences, 3(5): 315-318.
  • Hoa NT, Van Bay M, Mechler A, Vo QV 2020. Is Usnic Acid a Promising Radical Scavenger? ACS omega 5(28): 17715-20.
  • Hsieh P-C, Huang G-J, Ho Y-L, Lin Y-H, Huang S-S, Chiang Y-C, Tseng M-C, Chang Y-S 2010. Activities of antioxidants, α-Glucosidase inhibitors and aldose reductase inhibitors of the aqueous extracts of four Flemingia species in Taiwan. Bot Stud 51(293): 302.
  • Huneck S 1999. The significance of lichens and their metabolites. Naturwissenschaften 86(12): 559-70.
  • Joshi T, Sharma P, Joshi T, Chandra S 2020. In silico screening of anti-inflammatory compounds from Lichen by targeting cyclooxygenase-2. Journal of Biomolecular Structure and Dynamics, 38(12): 3544-3562.
  • Karthik S, Nandini K, Kekuda P, Vinayaka K, Mukunda S 2011. Total phenol content, insecticidal and amylase inhibitory efficacy of Heterodermia leucomela (L). Annals of Biological Research 2(4): 38-43.
  • Karunaratne V, Thadhani VM, Khan SN, Choudhary MI 2014. Potent α-glucosidase inhibitors from the lichen Cladonia species from Sri Lanka. Journal of the National Science Foundation of Sri Lanka 42(1): 95-98.
  • Khadhri A, Mendili M, Araújo MEM, Seaward MR 2019. Comparative study of secondary metabolites and bioactive properties of the lichen Cladonia foliacea with and without the lichenicolous fungus Heterocephalacria bachmannii. Symbiosis 79(1): 25-31.
  • Kosanić M, Ranković B, Stanojković T, Rančić A, Manojlović N 2014. Cladonia lichens and their major metabolites as possible natural antioxidant, antimicrobial and anticancer agents. LWT-Food Science and Technology 59(1): 518-25.
  • Litterski B, Ahti T 2004. World distribution of selected European Cladonia species. Symbolae Botanicae Upsalienses 34(1): 205-36.
  • Markom M, Hasan M, Daud WRW, Singh H, Jahim JM 2007. Extraction of hydrolysable tannins from Phyllanthus niruri Linn.: Effects of solvents and extraction methods. Separation and purification technology 52(3): 487-96.
  • McDougall GJ, Shpiro F, Dobson P, Smith P, Blake A, Stewart D 2005. Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. Journal of Agricultural and Food Chemistry 53(7): 2760-66.
  • Mendili M, Bannour M, Araújo MEM, Seaward MR, Khadhri A 2021. Lichenochemical Screening and Antioxidant Capacity of Four Tunisian Lichen Species. Chemistry & Biodiversity 18(2): e2000735.
  • Mitrović T, Stamenković S, Cvetković V, Tošić S, Stanković M, Radojević I, Stefanović O, Čomić L, Đačić D, Ćurčić M 2011. Antioxidant, antimicrobial and antiproliferative activities of five lichen species. International Journal of Molecular Sciences 12(8): 5428-5448.
  • Myers RH, Montgomery DC, Anderson-Cook CM 2016. Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons, 856 pages.
  • Myers RH, Montgomery DC, Vining GG, Borror CM, Kowalski SM 2004. Response surface methodology: a retrospective and literature survey. Journal of quality technology 36(1): 53-77.
  • Nayaka S, Haridas B 2020. Bioactive Secondary Metabolites from Lichens. in, Plant Metabolites: Methods, Applications and Prospects (Springer, Singapore) 255-290.
  • Odabasoglu F, Aslan A, Cakir A, Suleyman H, Karagoz Y, Halici M, Bayir Y 2004. Comparison of antioxidant activity and phenolic content of three lichen species. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 18(11): 938-41.
  • Page KA, Reisman T 2013. Interventions to preserve beta-cell function in the management and prevention of type 2 diabetes. Current diabetes reports 13(2): 252-60.
  • Prathapan A, Krishna MS, Nisha V, Sundaresan A, Raghu K 2012. Polyphenol rich fruit pulp of Aegle marmelos (L.) Correa exhibits nutraceutical properties to down regulate diabetic complications—An in vitro study. Food research international 48(2): 690-95.
  • Reddy N, Anarthe SJ, Raghavendra N 2010. In vitro antioxidant and antidiabetic activity of Asystasia gangetica (Chinese Violet) Linn.(Acanthaceae). International Journal of Research in Pharmaceutical and Biomedical Sciences 1(2): 72-75.
  • Shivanna R, Parizadeh H, Garampalli RH 2015. Screening of lichen extracts for in vitro antidiabetic activity using alpha amylase inhibitory assay. International Journal of Biological & Pharmaceutical Research 6(5): 364-67.
  • Shrestha G, Clair LLS 2013. Lichens: a promising source of antibiotic and anticancer drugs. Phytochemistry reviews 12(1): 229-44.
  • Shukla V, Joshi GP, Rawat M 2010. Lichens as a potential natural source of bioactive compounds: a review. Phytochemistry reviews 9(2): 303-14.
  • Singleton VL, Orthofer R, Lamuela-Raventós RM 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in enzymology 299(1): 152-78.
  • Su C-H, Lai M-N, Ng L-T 2013. Inhibitory effects of medicinal mushrooms on α-amylase and α-glucosidase–enzymes related to hyperglycemia. Food & function 4(4): 644-49.
  • Thadhani VM, Karunaratne V 2017. Potential of lichen compounds as antidiabetic agents with antioxidative properties: A review. Oxidative medicine and cellular longevity 2017: 2079697.
  • Valadbeigi T, Shaddel M 2016. Amylase inhibitory activity of some macrolichens in Mazandaran province, Iran. Physiology and Pharmacology 20(4): 215-19.
  • Verma N, Behera BC, Sharma BO 2012. Glucosidase inhibitory and radical scavenging properties of lichen metabolites salazinic acid. sekikaic acid and usnic acid. Hacettepe Journal of Biology & Chemistry. vol. 40(1):7–21.
  • Vincent AM, Russell JW, Low P, Feldman EL 2004. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocrine reviews 25(4): 612-28.
  • Xiao J, Hogger P 2015. Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Current medicinal chemistry 22(1): 23-38.
  • Yılmaz M, Türk AÖ, Tay T, Kıvanç M 2004. The antimicrobial activity of extracts of the lichen Cladonia foliacea and its (–)-usnic acid, atranorin, and fumarprotocetraric acid constituents. Zeitschrift für Naturforschung C 59(3-4): 249-254.
  • Zagoskina N, Nikolaeva T, Lapshin P, Zavarzin A, Zavarzina A 2013. Water-soluble phenolic compounds in lichens. Microbiology 82(4): 445-52.
  • Zambare VP, Christopher LP 2012. Biopharmaceutical potential of lichens. Pharmaceutical Biology 50(1): 778-98.
  • Zhang Y, Shi J, Zhao Y, Cui H, Cao C, Liu S 2012. An investigation of the anti-diabetic effects of an extract from Cladonia humilis. Pakistan journal of pharmaceutical sciences 25(3): 509-512.
There are 51 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section RESEARCH ARTICLE
Authors

Nurcan Doğan 0000-0001-5414-1819

Cemhan Doğan 0000-0002-9043-0949

Mustafa Kocakaya 0000-0003-2306-8094

Publication Date August 31, 2022
Submission Date April 2, 2021
Acceptance Date July 29, 2021
Published in Issue Year 2022Volume: 25 Issue: 4

Cite

APA Doğan, N., Doğan, C., & Kocakaya, M. (2022). Optimization Extraction of Cladonia foliacea (Huds.) Willd: Antioxidant Activity and Inhibition of the Key Enzymes Linked to Type II Diabetes. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 25(4), 828-837. https://doi.org/10.18016/ksutarimdoga.vi.908382


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149