Research Article
BibTex RIS Cite

Tuz Stresine Maruz Bırakılan Aspir (Carthamus tinctorius L.) Bitkisinin Morfolojik, Fizyolojik ve Biyokimyasal Tepkileri

Year 2023, Volume: 26 Issue: 6, 1246 - 1252, 31.12.2023
https://doi.org/10.18016/ksutarimdoga.vi.1008284

Abstract

Aspir tohumlarının farklı konsantrasyonlarda (0, 50, 75, 150, 300 mM) NaCI stresine karşı morfolojik, fizyolojik (biyokütle, su içeriği-WC) ve biyokimyasal (proline, membran hasarı-malondialdehit-MDA, H2O2 içeriği) tepkileri in vitro koşullarda ilk defa incelenmiştir. Üç haftalık kültür sürenin sonunda NaCl tuz stresinin çimlenme yüzdelerini olumsuz etkilediği belirlenmiştir. Çimlenme yüzdesi kontrol grubunda % 100 iken 150 mM NaCl'de % 30'a, 300 mM'de % 5'e düşmüştür. Genel olarak, fidelerin morfolojik gelişimi önemli ölçüde yavaşlamış ve 300 mM konsantrasyonda ise fide büyümesi gözlenmemiştir. Tüm NaCl konsantrasyonlarında su içeriği (WC), taze ağırlık, sürgün ve kök uzunluğunun azaldığı ancak kuru ağırlıklarda önemli bir azalma olmadığı belirlenmiştir. Aspir fidelerinde tuz uygulamalarının yoğunluğuna paralel olarak MDA, proline ve H2O2 içerikleri de artmıştır. En yüksek MDA ve proline içeriği 150 mM NaCl uygulamasında ve en yüksek H2O2 içeriği 75 mM NaCl uygulamasında bulunmuştur. Bu veriler ışığında, Balcı aspir çeşidinin uygulanan tuz konsantrasyonlarında negatif etki göstererek hassas olduğu kanıtlanmıştır.

Supporting Institution

Batman Üniversitesi

Project Number

BTÜBAP-2017-Yüksek Lisans-9

References

  • Alasvandyari, F., & Mahdavi, B. (2017). Effect of glycinebetaine on growth and antioxidant enzymes of safflower under salinity stress condition. Agriculture & Forestry, 63(3), 85-95.
  • Ashraf, M., & Orooj, A. (2006). Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain (Trachyspermum ammi [L.] Sprague). Journal of Arid Environments, 64, 209-220.
  • Bates, L. S., Waldern, R.P., & Teave, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207.
  • Bina, F., & Bostani, A. (2017). Effect of Salinity (NaCl) stress on germination and early seedling growth of three medicinal plant species. Adv. Life Sci., 4(3), 77-83.
  • Birecikli Hamidi, A., & Akbaş, F. (2018). “Balcı” Aspir (Carthamus tinctorius L.) Çeşidinin in vitro Sürgün Uçlarının Mikroçoğaltımı ve Köklendirilmesi Üzerine Oksin ve Sitokininlerin Etkisi. Yyü Tar. Bil. Derg. (Yyu J Agr Sci), 28(4), 438-443.
  • Chaparzadeh, N., D‟amico, M. L., Khavari-Nejad, R. A., Izzo, R., & Navari-Izzo, F. (2004). Antioxidative responses of Calendula officinalis under salinity conditions. Plant Physiology and Biochemistry, 42, 695-701.
  • Çulha, Ş. (2011). Tuz Stresinin Aspir (Carthamus tinctorius L.) Çeşitlerindeki Bazı Fizyolojik ve Biyokimyasal Parametreler Üzerine Etkisinin İncelenmesi (Tez No. 299523) [Yüksek Lisans Tezi, Hacettepe Üniversitesi], Ankara.
  • Çulha, Ş., & Çakırlar, H. (2011). Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları. AKÜ Fen ve Mühendislik Bilimleri Dergisi, 11(2), 11-34.
  • Dajue, L., & Mündel, H. H. (1996). Safflower Carthamus tinctorius L., Promoting the conservation and use of underutilized and neglected crops. 7, Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome, Italy.
  • Echi, R. M., Aslı, D. E., Vajedi, S. J., & Kashani, Z. F. (2013). The effect of seed pretreatment by salicylhydroxamic acid on germination indices of safflower under salinity stress. International Journal of Biosciences (IJB), 3(6), 181-189.
  • Erdal, Ş. Ç., & Çakırlar, H. (2014). Impact of salt stress on photosystem II efficiency and antioxidant enzyme activities of safflower (Carthamus tinctorius L.) cultivars. Turk J. Biol., 38, 549-560.
  • Eyidogan, F., & Öz, M. T. (2007). Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiol. Plant., 29, 485-493.
  • Ghoulam, C., Foursy, A., & Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ. Exp. Bot., 47, 39-50.
  • Hosseini, T., Shekari, F., & Ghorbanli, M. (2010). Effect of salt stress on ion content, proline and antioxidative enzymes of two safflower cultivars (Carthamus tinctorius L.). Journal of Food, Agriculture & Environment, 8(2), 1080-1086.
  • İşler, N. (2014). Aspir Tarımı [PowerPoint slides]. Hatay@MKÜ. http://www.mku.edu.tr/files/898-7f299b9f-6e6e-4418-aa25-7dd9fbd65874.pdf
  • Kaya, Ş. (2017). Aspir (Carthamus tinctorius L.) Bitkisi Balcı Çeşidinin Doku Kültürüyle In Vıtro Çoğaltımı (Tez No. 478572) [Yüksek Lisan Tezi, Yıldız Teknik Üniversitesi], İstanbul.
  • Kazemeini, S. B., Zamani, A., Motazedian, A., & Shakeri, E. (2017). Evaluation of salinity tolerance in two safflower cultivars using ions relations and biochemical traits. Iranian Journal of Field Crop Science, 48 (4), 1211-1225.
  • Leblebici, S., & Işık, G. (2018). Farklı konsantrasyonlarda kalsiyum karbonat (CaCO3) uygulamasının Carthamus tinctorius l.’a (asteraceae) ait farklı varyetelerin tohum çimlenmesi üzerine etkileri. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi C- Yaşam Bilimleri ve Biyoteknoloji, 7 (1), 63-67.
  • Levitt, J. (1980). Responses of Plants to Environmental Stresses II. Water, Radiation, Salt and Other Stresses (2nd ed.). Academic Press, New York.
  • Mandhania, S., Madan, S., & Sawhney, V. (2006). Antioxidant defense mechanism under salt stress in wheat seedlings. Biologia Plantarum, 50 (2), 227-231.
  • Murashige, T., & Skoog, F. 1962. A revised medium for rapid growth and bioassays with tabacco tissue cultures. Physiol. Plantarum, 15, 473-497.
  • Nakas, D. B. , Avcı, S. & Kaya, M. D. (2023). Response of Different Safflower Genotypes to Anther Culture . Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi , 26 (2) , 293-298 . DOI: 10.18016/ksutarimdoga.vi.1084134
  • Ohkawa, H., Ohishi, N., & Yagi, Y. (1979). Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351-358.
  • Orcan, P., Işıkalan, Ç., & Akbaş, F. (2019). Evaluation of salinity tolerance in rice (Oryza sativa L.) using water potential, biomass, membran damage and osmoprotective compound. Fresenius Bulletin, 28 (4A), 3313-3323
  • Özen, H. Ç., & Onay, A. (2013). Bitki Fizyolojisi. Nobel Akedemik Yayıncılık, Ankara.
  • Pessarakli, M., & Szabolcs, I. (1999). Soil salinity and sodicity as particular plant/crop stress factors (M. Pessarakli, Ed.). Handbook of Plant Crop Stress. Marcel Deker Press Inc., New York.
  • Radic´, S., Radic´-Stojkovic´, M., & Pevalek-Kozlina, B. (2006). Influence of NaCl and mannitol on peroxidase activity and lipid peroxidation in Centaurea ragusina L. roots and shoots. Journal of Plant Physiology, 163, 1284-1292.
  • Sairam, R. K.,, Rao, K. V., & Srivastava, G. C. 2002. Differantial Response of Wheat Genotypes to Long Termalinity Stres in Relation to Oxsidative Stres, Antioxidant Activity and Osmolyte Concentration. Plant Science, 163,1037–1046.
  • Sairam, R. K., & Srivastava, G. C. (2002). Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science, 162, 897-904.
  • Siddiqi, E. H., & Ashraf , M. (2008). Can leaf water relation parameters be used as selection criteria for salt tolerance in safflower (Carthamus tinctorius L.). Pak. J. Bot., 40 (1), 221-228.
  • Toprak, T., & Tunçtürk, R. (2018). Farklı Aspir (Carthamus tinctorius L.) Çeşitlerinin Gelişim Performansları Üzerine Tuz Stresinin Etkisi. Doğu Fen Bilimleri Dergisi, 1 (1), 44-50.
  • Velikova, V., Yordanov, I., & Edrava, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151, 59- 66.
  • Zhang, W., Yang, X., Liu, F., Pei, Y., Yuan, J., & Nie, J. (2015). Effects of saline alkali stress on seed germination of Carthamus tinctorius L. Medicinal Plant, 6 (11-12), 1-6.
  • Zhang, J., Duan, X., Ding, F., Ma, H., Zhang, T., & Yang, Y. (2013). Salinity induced the changes of root growth and antioxidative responses in two wheat cultivars. Protoplasma, 10, 709-715.

Morphological, Physiological and Biochemical Responses of Safflower (Carthamus tinctorius L.) Exposed to Salinity Stress

Year 2023, Volume: 26 Issue: 6, 1246 - 1252, 31.12.2023
https://doi.org/10.18016/ksutarimdoga.vi.1008284

Abstract

The morphological, physiological (biomass, water content-WC) and biochemical (proline, membrane damage-malondialdehyde-MDA, H2O2 content) responses of safflower to NaCI salt stress in different concentrations (0, 50, 75, 150, and 300 mM) were investigated for the first time in in vitro conditions in this study. At the end of the 3-week period, it was determined that NaCl had a negative effect on germination percentages. The percentage of germination was 100% in the control group, while it decreased to 30% in 150 mM NaCl and 5% in 300 mM. In general, morphological development of seedlings was significantly slowed down and seedling growth was not observed at 300 mM concentration. It was determined that the WC, fresh weights, shoot and root length decreased in all NaCl concentrations but there was no significant decrease in dry weights. MDA, proline and H2O2 contents increased in safflower seedlings in parallel with the intensity of salt treatments. While the highest MDA and proline content was found in 150 mM NaCl treatment, the highest H2O2 content was found in 75 mM NaCl treatment. In the light of these data, it has been proven that the Balcı safflower variety is sensitive by showing a negative effect on the applied salt concentrations.

Project Number

BTÜBAP-2017-Yüksek Lisans-9

References

  • Alasvandyari, F., & Mahdavi, B. (2017). Effect of glycinebetaine on growth and antioxidant enzymes of safflower under salinity stress condition. Agriculture & Forestry, 63(3), 85-95.
  • Ashraf, M., & Orooj, A. (2006). Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain (Trachyspermum ammi [L.] Sprague). Journal of Arid Environments, 64, 209-220.
  • Bates, L. S., Waldern, R.P., & Teave, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207.
  • Bina, F., & Bostani, A. (2017). Effect of Salinity (NaCl) stress on germination and early seedling growth of three medicinal plant species. Adv. Life Sci., 4(3), 77-83.
  • Birecikli Hamidi, A., & Akbaş, F. (2018). “Balcı” Aspir (Carthamus tinctorius L.) Çeşidinin in vitro Sürgün Uçlarının Mikroçoğaltımı ve Köklendirilmesi Üzerine Oksin ve Sitokininlerin Etkisi. Yyü Tar. Bil. Derg. (Yyu J Agr Sci), 28(4), 438-443.
  • Chaparzadeh, N., D‟amico, M. L., Khavari-Nejad, R. A., Izzo, R., & Navari-Izzo, F. (2004). Antioxidative responses of Calendula officinalis under salinity conditions. Plant Physiology and Biochemistry, 42, 695-701.
  • Çulha, Ş. (2011). Tuz Stresinin Aspir (Carthamus tinctorius L.) Çeşitlerindeki Bazı Fizyolojik ve Biyokimyasal Parametreler Üzerine Etkisinin İncelenmesi (Tez No. 299523) [Yüksek Lisans Tezi, Hacettepe Üniversitesi], Ankara.
  • Çulha, Ş., & Çakırlar, H. (2011). Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları. AKÜ Fen ve Mühendislik Bilimleri Dergisi, 11(2), 11-34.
  • Dajue, L., & Mündel, H. H. (1996). Safflower Carthamus tinctorius L., Promoting the conservation and use of underutilized and neglected crops. 7, Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome, Italy.
  • Echi, R. M., Aslı, D. E., Vajedi, S. J., & Kashani, Z. F. (2013). The effect of seed pretreatment by salicylhydroxamic acid on germination indices of safflower under salinity stress. International Journal of Biosciences (IJB), 3(6), 181-189.
  • Erdal, Ş. Ç., & Çakırlar, H. (2014). Impact of salt stress on photosystem II efficiency and antioxidant enzyme activities of safflower (Carthamus tinctorius L.) cultivars. Turk J. Biol., 38, 549-560.
  • Eyidogan, F., & Öz, M. T. (2007). Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiol. Plant., 29, 485-493.
  • Ghoulam, C., Foursy, A., & Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ. Exp. Bot., 47, 39-50.
  • Hosseini, T., Shekari, F., & Ghorbanli, M. (2010). Effect of salt stress on ion content, proline and antioxidative enzymes of two safflower cultivars (Carthamus tinctorius L.). Journal of Food, Agriculture & Environment, 8(2), 1080-1086.
  • İşler, N. (2014). Aspir Tarımı [PowerPoint slides]. Hatay@MKÜ. http://www.mku.edu.tr/files/898-7f299b9f-6e6e-4418-aa25-7dd9fbd65874.pdf
  • Kaya, Ş. (2017). Aspir (Carthamus tinctorius L.) Bitkisi Balcı Çeşidinin Doku Kültürüyle In Vıtro Çoğaltımı (Tez No. 478572) [Yüksek Lisan Tezi, Yıldız Teknik Üniversitesi], İstanbul.
  • Kazemeini, S. B., Zamani, A., Motazedian, A., & Shakeri, E. (2017). Evaluation of salinity tolerance in two safflower cultivars using ions relations and biochemical traits. Iranian Journal of Field Crop Science, 48 (4), 1211-1225.
  • Leblebici, S., & Işık, G. (2018). Farklı konsantrasyonlarda kalsiyum karbonat (CaCO3) uygulamasının Carthamus tinctorius l.’a (asteraceae) ait farklı varyetelerin tohum çimlenmesi üzerine etkileri. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi C- Yaşam Bilimleri ve Biyoteknoloji, 7 (1), 63-67.
  • Levitt, J. (1980). Responses of Plants to Environmental Stresses II. Water, Radiation, Salt and Other Stresses (2nd ed.). Academic Press, New York.
  • Mandhania, S., Madan, S., & Sawhney, V. (2006). Antioxidant defense mechanism under salt stress in wheat seedlings. Biologia Plantarum, 50 (2), 227-231.
  • Murashige, T., & Skoog, F. 1962. A revised medium for rapid growth and bioassays with tabacco tissue cultures. Physiol. Plantarum, 15, 473-497.
  • Nakas, D. B. , Avcı, S. & Kaya, M. D. (2023). Response of Different Safflower Genotypes to Anther Culture . Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi , 26 (2) , 293-298 . DOI: 10.18016/ksutarimdoga.vi.1084134
  • Ohkawa, H., Ohishi, N., & Yagi, Y. (1979). Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351-358.
  • Orcan, P., Işıkalan, Ç., & Akbaş, F. (2019). Evaluation of salinity tolerance in rice (Oryza sativa L.) using water potential, biomass, membran damage and osmoprotective compound. Fresenius Bulletin, 28 (4A), 3313-3323
  • Özen, H. Ç., & Onay, A. (2013). Bitki Fizyolojisi. Nobel Akedemik Yayıncılık, Ankara.
  • Pessarakli, M., & Szabolcs, I. (1999). Soil salinity and sodicity as particular plant/crop stress factors (M. Pessarakli, Ed.). Handbook of Plant Crop Stress. Marcel Deker Press Inc., New York.
  • Radic´, S., Radic´-Stojkovic´, M., & Pevalek-Kozlina, B. (2006). Influence of NaCl and mannitol on peroxidase activity and lipid peroxidation in Centaurea ragusina L. roots and shoots. Journal of Plant Physiology, 163, 1284-1292.
  • Sairam, R. K.,, Rao, K. V., & Srivastava, G. C. 2002. Differantial Response of Wheat Genotypes to Long Termalinity Stres in Relation to Oxsidative Stres, Antioxidant Activity and Osmolyte Concentration. Plant Science, 163,1037–1046.
  • Sairam, R. K., & Srivastava, G. C. (2002). Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science, 162, 897-904.
  • Siddiqi, E. H., & Ashraf , M. (2008). Can leaf water relation parameters be used as selection criteria for salt tolerance in safflower (Carthamus tinctorius L.). Pak. J. Bot., 40 (1), 221-228.
  • Toprak, T., & Tunçtürk, R. (2018). Farklı Aspir (Carthamus tinctorius L.) Çeşitlerinin Gelişim Performansları Üzerine Tuz Stresinin Etkisi. Doğu Fen Bilimleri Dergisi, 1 (1), 44-50.
  • Velikova, V., Yordanov, I., & Edrava, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151, 59- 66.
  • Zhang, W., Yang, X., Liu, F., Pei, Y., Yuan, J., & Nie, J. (2015). Effects of saline alkali stress on seed germination of Carthamus tinctorius L. Medicinal Plant, 6 (11-12), 1-6.
  • Zhang, J., Duan, X., Ding, F., Ma, H., Zhang, T., & Yang, Y. (2013). Salinity induced the changes of root growth and antioxidative responses in two wheat cultivars. Protoplasma, 10, 709-715.
There are 34 citations in total.

Details

Primary Language English
Subjects Plant Physiology, Structural Biology
Journal Section RESEARCH ARTICLE
Authors

Bedri Keleş 0000-0003-0936-2879

Filiz Akbaş 0000-0003-0623-5524

Project Number BTÜBAP-2017-Yüksek Lisans-9
Early Pub Date June 14, 2023
Publication Date December 31, 2023
Submission Date October 11, 2021
Acceptance Date October 6, 2022
Published in Issue Year 2023Volume: 26 Issue: 6

Cite

APA Keleş, B., & Akbaş, F. (2023). Morphological, Physiological and Biochemical Responses of Safflower (Carthamus tinctorius L.) Exposed to Salinity Stress. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 26(6), 1246-1252. https://doi.org/10.18016/ksutarimdoga.vi.1008284


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149