Research Article
BibTex RIS Cite

The Therapeutic Potential of Berberine and Resveratrol in Type 2 Diabetes Treatment: Pharmacokinetic and Bioactivity Properties, and Molecular Docking Analysis

Year 2024, Volume: 27 Issue: Ek Sayı 2 (Suppl 2), 333 - 350, 31.12.2024
https://doi.org/10.18016/ksutarimdoga.vi.1518465

Abstract

Type 2 diabetes (T2D), typically characterized by insulin resistance, is a metabolic disorder that occurs when the body cannot use insulin effectively or does not produce enough insulin. In the treatment of T2D, insulin, metformin, and sulfonylureas are commonly used. Given the limitations of current treatment options, there is a strong need for intensive efforts in the discovery of new drugs. Berberine exhibits antidiabetic effects and possesses anti-inflammatory and antioxidant properties. Resveratrol is another natural compound that has been extensively researched due to its antioxidant and anti-inflammatory characteristics. This study aimed to investigate the interactions between berberine and resveratrol with proteins related to or causing T2D, including ADIPOR1 (PDB-ID: 6ks1), ADIPOR2 (PDB-ID: 5lxg), TNF-α (PDB-ID: 7kpb), PTP1B (PDB-ID: 4i8n), GLUT1 (PDB-ID: 4pyp), IGF-IR (PDB-ID: 8eyr), IGF1 (PDB-ID: 6pyh), ADAMTS9 (PDB-ID: 3ppv), and SPHK2 (PDB ID: 4v24). SwissADME was used to assess the pharmacokinetic properties of berberine and resveratrol. Molecular docking was performed to analyze the interactions between these ligands and the specified proteins. Additionally, the potential bioactivity features of compounds were determined. Protein-protein interactions were obtained from the STRING database. The study data indicated that both compounds have high blood-brain barrier (BBB) penetration and gastrointestinal absorption ability (HIA). Besides, berberine exhibited the highest binding affinity with GLUT4 (-10.1 Kcal/mol), GLUT1 (-9.3 Kcal/mol), and SPHK2 (-9.3 Kcal/mol), while resveratrol showed strong binding with SPHK2 (-9.0 Kcal/mol) and TNF-α (-8.7 Kcal/mol) and. All proteins displayed binding energies of more than -7 Kcal/mol, suggesting that both berberine and resveratrol hold promise as potential drug candidates for T2D.

References

  • American Diabetes Association. (2020). Diagnosis and classification of diabetes mellitus. Diabetes Care, 33(Supplement 1), S62-S69.
  • Andrade, S., Ramalho, M. J., Pereira, M. D. C., & Loureiro, J. A. (2018). Resveratrol Brain Delivery for Neurological Disorders Prevention and Treatment. Frontiers in Pharmacology, 9, 1261. https://doi.org/10.3389/fphar.2018.01261
  • Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S., & Hopkins, A. L. (2012). Quantifying the chemical beauty of drugs. Nature Chemistry, 4(2), 90–98. https://doi.org/10.1038/nchem.1243
  • Daina, A., Michielin, O. & Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports 7, 42717 (2017). https://doi.org/10.1038/srep42717
  • Davies, M. J., D'Alessio, D. A., Fradkin, J., Kernan, W. N., Mathieu, C., Mingrone, G., Rossing, P., Tsapas, A., Wexler, D. J., & Buse, J. B. (2018). Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care, 41(12), 2669–2701. https://doi.org/10.2337/dci18-0033
  • Deng, H., Ai, M., Cao, Y., et al. (2023). Potential Protective Function of Adiponectin in Diabetic Retinopathy. Ophthalmology Therapy, 12, 1519–1534. https://doi.org/10.1007/s40123-023-00702-3.
  • Gebrie, D., Manyazewal, T., A Ejigu, D., & Makonnen, E. (2021). Metformin-Insulin versus Metformin-Sulfonylurea Combination Therapies in Type 2 Diabetes: A Comparative Study of Glycemic Control and Risk of Cardiovascular Diseases in Addis Ababa, Ethiopia. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 3345–3359. https://doi.org/10.2147/DMSO.S312997
  • Ghosh, S., Mahalanobish, S., & Sil, P. C. (2022). Diabetes: Discovery of Insulin, Genetic, Epigenetic, and Viral Infection Mediated Regulation. Nucleus, 65, 283–297. https://doi.org/10.1007/s13237-021-00376-x
  • Khoramipour, K., Chamari, K., Hekmatikar, A. A., Ziyaiyan, A., Taherkhani, S., Elguindy, N. M., & Bragazzi, N. L. (2021). Adiponectin: Structure, Physiological Functions, Role in Diseases, and Effects of Nutrition. Nutrients, 13(4), 1180. https://doi.org/10.3390/nu13041180
  • Kralj, S., Jukič, M., & Bren, U. (2023). Molecular Filters in Medicinal Chemistry. Encyclopedia, 3(2), 501–511. MDPI AG. http://dx.doi.org/10.3390/encyclopedia3020035
  • Li, D., Zhong, J., Zhang, Q., & Zhang, J. (2023). Effects of Anti-Inflammatory Therapies on Glycemic Control in Type 2 Diabetes Mellitus. Frontiers in Immunology, 14, 1125116. https://doi.org/10.3389/fimmu.2023.1125116
  • Li, M., Chi, X., Wang, Y., et al. (2022). Trends in Insulin Resistance: Insights Into Mechanisms and Therapeutic Strategy. Signal Transduction and Targeted Therapy, 7, 216. https://doi.org/10.1038/s41392-022-01073-0
  • Magliano DJ, Boyko EJ; IDF Diabetes Atlas 10th edition scientific committee. IDF DIABETES ATLAS [Internet]. 10th edition. Brussels: International Diabetes Federation; 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK581934/
  • Mangaraj, M., Nanda, R., & Panda, S. (2016). Apolipoprotein A-I: A Molecule of Diverse Function. Indian Journal of Clinical Biochemistry (IJCB), 31(3), 253–259. https://doi.org/10.1007/s12291-015-0513-1
  • Martín-Timón, I., Sevillano-Collantes, C., Segura-Galindo, A., & Del Cañizo-Gómez, F. J. (2014). Type 2 Diabetes and Cardiovascular Disease: Have All Risk Factors the Same Strength? World Journal of Diabetes, 5(4), 444–470. https://doi.org/10.4239/wjd.v5.i4.444
  • Meng, T., Xiao, D., Muhammed, A., Deng, J., Chen, L., & He, J. (2021). Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules (Basel, Switzerland), 26(1), 229. https://doi.org/10.3390/molecules26010229
  • Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Petersen, M. C., & Shulman, G. I. (2018). Mechanisms of Insulin Action and Insulin Resistance. Physiological Reviews, 98(4), 2133–2223. https://doi.org/10.1152/physrev.00063.2017
  • Pragallapati, S., & Manyam, R. (2019). Glucose Transporter 1 in Health and Disease. Journal of Oral and Maxillofacial Pathology (JOMFP), 23(3), 443–449. https://doi.org/10.4103/jomfp.JOMFP_22_18
  • Prasad, R. B., & Groop, L. (2015). Genetics of type 2 diabetes-pitfalls and possibilities. Genes, 6(1), 87–123. https://doi.org/10.3390/genes6010087
  • Qi, Y., Wang, W., Song, Z., Aji, G., Liu, X. T., & Xia, P. (2021). Role of Sphingosine Kinase in Type 2 Diabetes Mellitus. Frontiers in Endocrinology, 11, 627076. https://doi.org/10.3389/fendo.2020.627076
  • Rehman, K., & Akash, M. S. H. (2016). Mechanisms of Inflammatory Responses and Development of Insulin Resistance: How Are They Interlinked? Journal of Biomedical Science, 23, 87. https://doi.org/10.1186/s12929-016-0303-y
  • Rubino, F., Nathan, D. M., Eckel, R. H., Schauer, P. R., Alberti, K. G., Zimmet, P. Z., Del Prato, S., Ji, L., Sadikot, S. M., Herman, W. H., Amiel, S. A., Kaplan, L. M., Taroncher-Oldenburg, G., Cummings, D. E., & Delegates of the 2nd Diabetes Surgery Summit (2016). Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations. Diabetes care, 39(6), 861–877. https://doi.org/10.2337/dc16-0236
  • Rudrapal, M., Khairnar, S. J., Khan, J., Dukhyil, A. B., Ansari, M. A., Alomary, M. N., Alshabrmi, F. M., Palai, S., Deb, P. K., & Devi, R. (2022). Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Frontiers in Pharmacology, 13, 806470. https://doi.org/10.3389/fphar.2022.806470
  • Rui, R., Yang, H., Liu, Y., Zhou, Y., Xu, X., Li, C., & Liu, S. (2021). Effects of Berberine on Atherosclerosis. Frontiers in Pharmacology, 12, 764175. https://doi.org/10.3389/fphar.2021.764175
  • Sanches, J. M., Zhao, L. N., Salehi, A., Wollheim, C. B., & Kaldis, P. (2023). Pathophysiology of Type 2 Diabetes and the Impact of Altered Metabolic Interorgan Crosstalk. The FEBS Journal, 290(3), 620–648. https://doi.org/10.1111/febs.16306
  • Thundyil, J., Pavlovski, D., Sobey, C. G., & Arumugam, T. V. (2012). Adiponectin Receptor Signaling in the Brain. British Journal of Pharmacology, 165(2), 313–327. https://doi.org/10.1111/j.1476-5381.2011.01560.x
  • Utami, A. R., Maksum, I. P., & Deawati, Y. (2023). Berberine and Its Study as an Antidiabetic Compound. Biology, 12(7), 973. https://doi.org/10.3390/biology12070973
  • Wen, X., Zhang, B., Wu, B., et al. (2022). Signaling Pathways in Obesity: Mechanisms and Therapeutic Interventions. Signal Transduction and Targeted Therapy, 7, 298. https://doi.org/10.1038/s41392-022-01149-x
  • Wondmkun, Y. T. (2020). Obesity, Insulin Resistance, and Type 2 Diabetes: Associations and Therapeutic Implications. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 13, 3611–3616. https://doi.org/10.2147/DMSO.S275898
  • Xu, M., Xiao, Y., Yin, J., Hou, W., Yu, X., Shen, L., Liu, F., Wei, L., & Jia, W. (2014). Berberine Promotes Glucose Consumption Independently of AMP-Activated Protein Kinase Activation. PLoS ONE, 9(7), e103702. https://doi.org/10.1371/journal.pone.0103702
  • Zhu, X., Wu, C., Qiu, S., Yuan, X., & Li, L. (2017). Effects of Resveratrol on Glucose Control and Insulin Sensitivity in Subjects with Type 2 Diabetes: Systematic Review and Meta-Analysis. Nutrition & Metabolism, 14, 60. https://doi.org/10.1186/s12986-017-0217-z
  • Zvintzou, E., Xepapadaki, E., Skroubis, G., Mparnia, V., Giannatou, K., Benabdellah, K., & Kypreos, K. E. (2023). High-Density Lipoprotein in Metabolic Disorders and Beyond: An Exciting New World Full of Challenges and Opportunities. Pharmaceuticals (Basel, Switzerland), 16(6), 855. https://doi.org/10.3390/ph16060855

Berberin ve Resveratrolün Tip 2 Diyabet Tedavisindeki Terapötik Potansiyeli: Farmakokinetik ve Biyoyararlılık Özellikleri ile Moleküler Docking Analizi

Year 2024, Volume: 27 Issue: Ek Sayı 2 (Suppl 2), 333 - 350, 31.12.2024
https://doi.org/10.18016/ksutarimdoga.vi.1518465

Abstract

Tip 2 diyabet (T2D), tipik olarak insülin direnci ile karakterize edilen ve vücudun insülini etkili bir şekilde kullanamadığı veya yeterli insülin üretemediği bir metabolik bozukluktur. T2D tedavisinde insülin, metformin ve sülfonilüreler yaygın olarak kullanılmaktadır. Mevcut tedavi seçeneklerinin sınırlamaları göz önüne alındığında, yeni ilaçların keşfinde yoğun çabalara ihtiyaç vardır. Berberin, antidiyabetik, anti-inflamatuvar ve antioksidan özelliklere sahiptir. Resveratrol, antioksidan ve anti-enflamatuvar özellikleri nedeniyle kapsamlı bir şekilde araştırılan bir başka doğal bileşiktir. Bu çalışmanın amacı, berberin ve resveratrolün ADIPOR1 (PDB-ID: 6ks1), ADIPOR2 (PDB-ID: 5lxg), TNF-α (PDB-ID: 7kpb), PTP1B (PDB-ID: 4i8n), GLUT1 (PDB-ID: 4pyp), IGF-IR (PDB-ID: 8eyr), IGF1 (PDB-ID: 6pyh), ADAMTS9 (PDB-ID: 3ppv) ve SPHK2 (PDB ID: 4v24) dahil olmak üzere T2D ile ilişkili veya T2D'ye neden olan proteinlerle olan etkileşimlerini araştırmaktır. Berberin ve resveratrolün farmakokinetik özelliklerini değerlendirmek için SwissADME kullanılmıştır. Bu ligandlar ile belirtilen proteinler arasındaki etkileşimleri analiz etmek için moleküler yerleştirme yapılmıştır. Ayrıca, bileşiklerin potansiyel biyoyararlılık özellikleri belirlenmiştir. Protein-protein etkileşimleri STRING veri tabanından elde edilmiştir. Çalışma verileri, her iki bileşiğin de yüksek kan-beyin bariyeri (BBB) penetrasyonu ve gastrointestinal emilim yeteneğine (HIA) sahip olduğunu göstermiştir. Bunun yanında, berberin GLUT4 (-10.1 Kcal/mol), GLUT1 (-9.3 Kcal/mol) ve SPHK2 (-9.3 Kcal/mol) ile en yüksek bağlanma afinitesini gösterirken, resveratrol SPHK2 (-9.0 Kcal/mol) ve TNFR1 (-8.7 Kcal/mol) ile güçlü bağlanma göstermiştir. Tüm proteinler, -7 Kcal/mol'den daha yüksek bağlanma enerjileri sergilemiş, bu da berberin ve resveratrolün T2D için potansiyel ilaç adayları olarak umut verici olduğunu göstermektedir.

References

  • American Diabetes Association. (2020). Diagnosis and classification of diabetes mellitus. Diabetes Care, 33(Supplement 1), S62-S69.
  • Andrade, S., Ramalho, M. J., Pereira, M. D. C., & Loureiro, J. A. (2018). Resveratrol Brain Delivery for Neurological Disorders Prevention and Treatment. Frontiers in Pharmacology, 9, 1261. https://doi.org/10.3389/fphar.2018.01261
  • Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S., & Hopkins, A. L. (2012). Quantifying the chemical beauty of drugs. Nature Chemistry, 4(2), 90–98. https://doi.org/10.1038/nchem.1243
  • Daina, A., Michielin, O. & Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports 7, 42717 (2017). https://doi.org/10.1038/srep42717
  • Davies, M. J., D'Alessio, D. A., Fradkin, J., Kernan, W. N., Mathieu, C., Mingrone, G., Rossing, P., Tsapas, A., Wexler, D. J., & Buse, J. B. (2018). Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care, 41(12), 2669–2701. https://doi.org/10.2337/dci18-0033
  • Deng, H., Ai, M., Cao, Y., et al. (2023). Potential Protective Function of Adiponectin in Diabetic Retinopathy. Ophthalmology Therapy, 12, 1519–1534. https://doi.org/10.1007/s40123-023-00702-3.
  • Gebrie, D., Manyazewal, T., A Ejigu, D., & Makonnen, E. (2021). Metformin-Insulin versus Metformin-Sulfonylurea Combination Therapies in Type 2 Diabetes: A Comparative Study of Glycemic Control and Risk of Cardiovascular Diseases in Addis Ababa, Ethiopia. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 3345–3359. https://doi.org/10.2147/DMSO.S312997
  • Ghosh, S., Mahalanobish, S., & Sil, P. C. (2022). Diabetes: Discovery of Insulin, Genetic, Epigenetic, and Viral Infection Mediated Regulation. Nucleus, 65, 283–297. https://doi.org/10.1007/s13237-021-00376-x
  • Khoramipour, K., Chamari, K., Hekmatikar, A. A., Ziyaiyan, A., Taherkhani, S., Elguindy, N. M., & Bragazzi, N. L. (2021). Adiponectin: Structure, Physiological Functions, Role in Diseases, and Effects of Nutrition. Nutrients, 13(4), 1180. https://doi.org/10.3390/nu13041180
  • Kralj, S., Jukič, M., & Bren, U. (2023). Molecular Filters in Medicinal Chemistry. Encyclopedia, 3(2), 501–511. MDPI AG. http://dx.doi.org/10.3390/encyclopedia3020035
  • Li, D., Zhong, J., Zhang, Q., & Zhang, J. (2023). Effects of Anti-Inflammatory Therapies on Glycemic Control in Type 2 Diabetes Mellitus. Frontiers in Immunology, 14, 1125116. https://doi.org/10.3389/fimmu.2023.1125116
  • Li, M., Chi, X., Wang, Y., et al. (2022). Trends in Insulin Resistance: Insights Into Mechanisms and Therapeutic Strategy. Signal Transduction and Targeted Therapy, 7, 216. https://doi.org/10.1038/s41392-022-01073-0
  • Magliano DJ, Boyko EJ; IDF Diabetes Atlas 10th edition scientific committee. IDF DIABETES ATLAS [Internet]. 10th edition. Brussels: International Diabetes Federation; 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK581934/
  • Mangaraj, M., Nanda, R., & Panda, S. (2016). Apolipoprotein A-I: A Molecule of Diverse Function. Indian Journal of Clinical Biochemistry (IJCB), 31(3), 253–259. https://doi.org/10.1007/s12291-015-0513-1
  • Martín-Timón, I., Sevillano-Collantes, C., Segura-Galindo, A., & Del Cañizo-Gómez, F. J. (2014). Type 2 Diabetes and Cardiovascular Disease: Have All Risk Factors the Same Strength? World Journal of Diabetes, 5(4), 444–470. https://doi.org/10.4239/wjd.v5.i4.444
  • Meng, T., Xiao, D., Muhammed, A., Deng, J., Chen, L., & He, J. (2021). Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules (Basel, Switzerland), 26(1), 229. https://doi.org/10.3390/molecules26010229
  • Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Petersen, M. C., & Shulman, G. I. (2018). Mechanisms of Insulin Action and Insulin Resistance. Physiological Reviews, 98(4), 2133–2223. https://doi.org/10.1152/physrev.00063.2017
  • Pragallapati, S., & Manyam, R. (2019). Glucose Transporter 1 in Health and Disease. Journal of Oral and Maxillofacial Pathology (JOMFP), 23(3), 443–449. https://doi.org/10.4103/jomfp.JOMFP_22_18
  • Prasad, R. B., & Groop, L. (2015). Genetics of type 2 diabetes-pitfalls and possibilities. Genes, 6(1), 87–123. https://doi.org/10.3390/genes6010087
  • Qi, Y., Wang, W., Song, Z., Aji, G., Liu, X. T., & Xia, P. (2021). Role of Sphingosine Kinase in Type 2 Diabetes Mellitus. Frontiers in Endocrinology, 11, 627076. https://doi.org/10.3389/fendo.2020.627076
  • Rehman, K., & Akash, M. S. H. (2016). Mechanisms of Inflammatory Responses and Development of Insulin Resistance: How Are They Interlinked? Journal of Biomedical Science, 23, 87. https://doi.org/10.1186/s12929-016-0303-y
  • Rubino, F., Nathan, D. M., Eckel, R. H., Schauer, P. R., Alberti, K. G., Zimmet, P. Z., Del Prato, S., Ji, L., Sadikot, S. M., Herman, W. H., Amiel, S. A., Kaplan, L. M., Taroncher-Oldenburg, G., Cummings, D. E., & Delegates of the 2nd Diabetes Surgery Summit (2016). Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations. Diabetes care, 39(6), 861–877. https://doi.org/10.2337/dc16-0236
  • Rudrapal, M., Khairnar, S. J., Khan, J., Dukhyil, A. B., Ansari, M. A., Alomary, M. N., Alshabrmi, F. M., Palai, S., Deb, P. K., & Devi, R. (2022). Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Frontiers in Pharmacology, 13, 806470. https://doi.org/10.3389/fphar.2022.806470
  • Rui, R., Yang, H., Liu, Y., Zhou, Y., Xu, X., Li, C., & Liu, S. (2021). Effects of Berberine on Atherosclerosis. Frontiers in Pharmacology, 12, 764175. https://doi.org/10.3389/fphar.2021.764175
  • Sanches, J. M., Zhao, L. N., Salehi, A., Wollheim, C. B., & Kaldis, P. (2023). Pathophysiology of Type 2 Diabetes and the Impact of Altered Metabolic Interorgan Crosstalk. The FEBS Journal, 290(3), 620–648. https://doi.org/10.1111/febs.16306
  • Thundyil, J., Pavlovski, D., Sobey, C. G., & Arumugam, T. V. (2012). Adiponectin Receptor Signaling in the Brain. British Journal of Pharmacology, 165(2), 313–327. https://doi.org/10.1111/j.1476-5381.2011.01560.x
  • Utami, A. R., Maksum, I. P., & Deawati, Y. (2023). Berberine and Its Study as an Antidiabetic Compound. Biology, 12(7), 973. https://doi.org/10.3390/biology12070973
  • Wen, X., Zhang, B., Wu, B., et al. (2022). Signaling Pathways in Obesity: Mechanisms and Therapeutic Interventions. Signal Transduction and Targeted Therapy, 7, 298. https://doi.org/10.1038/s41392-022-01149-x
  • Wondmkun, Y. T. (2020). Obesity, Insulin Resistance, and Type 2 Diabetes: Associations and Therapeutic Implications. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 13, 3611–3616. https://doi.org/10.2147/DMSO.S275898
  • Xu, M., Xiao, Y., Yin, J., Hou, W., Yu, X., Shen, L., Liu, F., Wei, L., & Jia, W. (2014). Berberine Promotes Glucose Consumption Independently of AMP-Activated Protein Kinase Activation. PLoS ONE, 9(7), e103702. https://doi.org/10.1371/journal.pone.0103702
  • Zhu, X., Wu, C., Qiu, S., Yuan, X., & Li, L. (2017). Effects of Resveratrol on Glucose Control and Insulin Sensitivity in Subjects with Type 2 Diabetes: Systematic Review and Meta-Analysis. Nutrition & Metabolism, 14, 60. https://doi.org/10.1186/s12986-017-0217-z
  • Zvintzou, E., Xepapadaki, E., Skroubis, G., Mparnia, V., Giannatou, K., Benabdellah, K., & Kypreos, K. E. (2023). High-Density Lipoprotein in Metabolic Disorders and Beyond: An Exciting New World Full of Challenges and Opportunities. Pharmaceuticals (Basel, Switzerland), 16(6), 855. https://doi.org/10.3390/ph16060855
There are 33 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section RESEARCH ARTICLE
Authors

Sümeyra Gültekin 0000-0002-5811-8832

Early Pub Date December 19, 2024
Publication Date December 31, 2024
Submission Date July 19, 2024
Acceptance Date October 12, 2024
Published in Issue Year 2024Volume: 27 Issue: Ek Sayı 2 (Suppl 2)

Cite

APA Gültekin, S. (2024). The Therapeutic Potential of Berberine and Resveratrol in Type 2 Diabetes Treatment: Pharmacokinetic and Bioactivity Properties, and Molecular Docking Analysis. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 27(Ek Sayı 2 (Suppl 2), 333-350. https://doi.org/10.18016/ksutarimdoga.vi.1518465


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149