Research Article
BibTex RIS Cite

Osmotik Stres Altındaki İki Ekmeklik Buğday Genotiplerinde Süperoksit Dismutaz ve İzozim Analizi

Year 2025, Volume: 28 Issue: 4, 893 - 902
https://doi.org/10.18016/ksutarimdoga.vi.1651818

Abstract

İnsan faaliyetlerinin yol açtığı iklim değişikliği, küresel ısınmayı hızlandırarak küresel ölçekte su kıtlığı ve kuraklığın artmasına neden olmuştur. Türkiye ve Akdeniz havzası gibi bölgelerde değişen iklim modelleri, buğdayın temel bir ürün olduğu tarım gibi kilit sektörleri tehdit etmektedir. Bu çalışmada, Bezostaya-1 ve Karahan-99 adlı iki ekmeklik buğday genotipinin ozmotik stres toleransı, hidroponik koşullar altında süperoksit dismutaz (SOD) enzimleri ve izoenzimleri analiz edilerek araştırılmıştır. Bitkiler, bir kontrol grubu ile birlikte vejetatif ve generatif büyüme aşamalarında ozmotik strese maruz bırakılmıştır. SOD enzim aktiviteleri ve izozim profilleri analiz edilmiştir. Sonuçlar, her iki genotipin ozmotik stres altında farklı Mn-SOD, Cu/Zn-SOD ve Fe-SOD izoenzim aktiviteleri ürettiğini göstermiştir. Cu/Zn-SOD ve Fe-SOD en yüksek aktiviteyi göstererek oksidatif hasarın azaltılmasındaki hayati rollerini vurgulamışlardır. Toplam SOD aktivitesi, özellikle generatif aşamada önemli ölçüde artarak, ozmotik stres altındaki kritik büyüme aşamalarında antioksidan savunma mekanizmalarının önemini vurgulamıştır. Genel olarak çalışma, özellikle değişen iklim koşulları bağlamında buğday genotiplerinin ozmotik strese biyokimyasal olarak nasıl tepki verdiğini anlamanın önemini vurgulamaktadır. Sonuçlar, dayanıklı buğday genotiplerinin geliştirilmesi için değerli bilgiler sağlamaktadır.

Project Number

20211010

References

  • Aliyeva, D. R., Gurbanova, U. A., Rzayev, F. H., Gasimov, E. K., & Huseyinova, I. M. (2023). Biochemical and Ultrastructural Changes in Wheat Plants during Drought Stress. Biochemistry (Moscow), 88(11), 1944–1955. https://doi.org/10.1134/S0006297923110226
  • Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of experimental botany, 53, 1331-1341. https://doi.org/10.1093/jexbot/53.372.1331
  • Bannister, W., Bannister, J., Barra, D., Bond, J., & Bossa, F. (1991). Evolutionary aspects of superoxide dismutase: the copper/zinc enzyme. Free Radical Research Communications, 12(1), 349-361. https://doi.org/10.3109/10715769109145804
  • Bano, A., Ullah, F., & Nosheen, A. (2012). Role of abscisic acid and drought stress on the activitiesof antioxidant enzymes in wheat. Plant, Soil and Environment, 58(4), 181-185. https://doi.org/10.17221/210/2011-PSE
  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical biochemistry, 44, 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
  • Bhargava, S., & Sawant, K. (2013). Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant breeding, 132(1), 21-32. https://doi.org/10.1111/pbr.12004
  • Blum, A., & Jordan, W.R. (1985). Breeding crop varieties for stress environments. Critical Reviews in Plant Sciences, 2(3), 199-238. https://doi.org/10.1080/07352688509382196
  • Bowler, C., Van Camp, W., Van Montagu, M., Inzé, D., & Asada, K. (1994). Superoxide dismutase in plants. Critical Reviews in Plant Sciences, 13, 199-218. https://doi.org/10.1080/07352689409701914
  • Dumanović, J., Nepovimova, E., Natić, M., Kuča, K., & Jaćević, V. (2021). The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview. Frontiers in Plant Science, 11, 552969. https://doi.org/10.3389/fpls.2020.552969
  • Del Río, L. A., Corpas, F. J., Sandalio, L. M., Palma, J. M., Gomez, M., & Barroso, J. B. (2002). Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of experimental botany, 53, 1255-1272. https://doi.org/10.1093/jexbot/53.372.1255
  • Elshafei, A. M. (2020). When oxygen can be toxic? A mini review. Journal of Applied Life Sciences International, 23(7), 1-9. https://doi.org/10.9734/jalsi/2020/v23i730171
  • Gupta, N., Gupta, S., & Kumar, A. (2001). Effect of water stress on physiological attributes and their relationship with growth and yield of wheat cultivars at different stages. Journal of Agronomy and Crop Science, 186(1), 55-62. https://doi.org/10.1046/j.1439-037x.2001.00457.x
  • Hasanuzzaman, M., Raihan, M. R. H., Masud, A. A. C., Rahman, K., Nowroz, F., Rahman, M., Nahar, M., & Fujita, M. (2021). Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. International Journal of Molecular Sciences, 22(17), 9326. https://doi.org/10.3390/ijms22179326
  • Huseynova, I. M., Aliyeva, D. R., & Aliyev, J. A. (2014). Subcellular localization and responses of superoxide dismutase isoforms in local wheat varieties subjected to continuous soil drought. Plant Physiology and Biochemistry, 81, 54-60. https://doi.org/10.1016/j.plaphy.2014.01.018
  • Huseynova, I. M., Rustamova, S. M., Suleymanov, S. Y., Aliyeva, D. R., Mammadov, A. C., & Aliyev, J. A. (2016). Drought-induced changes in photosynthetic apparatus and antioxidant components of wheat (Triticum durum Desf.) varieties. Photosynthesis Research, 130(1-3), 215-223. https://doi.org/10.1007/s11120-016-0244-z
  • Jahnke, L., Hull, M., & Long, S. (1991). Chilling stress and oxygen metabolizing enzymes in Zea mays and Zea diploperennis. Plant, Cell & Environment 14(1), 97-104. https://doi.org/10.1111/j.1365-3040.1991.tb01375.x
  • Kavuncu, M. (2019). Kuraklık Stresi Koşullarında Uygulanan Nitrik Oksitin Buğday Genotiplerinin Gelişimi Üzerine Etkisi (Tez no: 534044). [Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü Toprak Bilimi ve Bitki Besleme Anabilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Khaleghi, A., Naderi, R., Brunetti, C., Maserti, B. E., Salami, S. A., & Babalar, M. (2019). Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Scientific Reports, 9(1), 19250. https://doi.org/10.1038/s41598-019-55889-y
  • Khayatnezhad, M., & Gholamin, R. (2021). The effect of drought stress on the superoxide dismutase and chlorophyll content in durum wheat genotypes. Advancements in Life Sciences, 8(2), 119-123.
  • Kutlu, İ. (2010). Tahıllarda kuraklık stresi. Türk Bilimsel Derlemeler Dergisi, 35-41.
  • Kuźniak, E., & Skłodowska, M. (2004). The effect of Botrytis cinerea infection on the antioxidant profile of mitochondria from tomato leaves. Journal of Experimental Botany, 55(397), 605-612. https://doi.org/10.1093/jxb/erh076
  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685. https://doi.org/10.1038/227680a0
  • Majer, P. (2008). Testing drought tolerance of wheat by a complex stress diagnostic system installed in greenhouse. Acta Biologica Szegediensis, 52(1), 97-100.
  • Mazid, A., Amegbeto, K. N., Keser, M., Morgounov, A., Peker, K., Bagci, A., Akin, M., Kucukcongar, M., Kan, M., & Karabak, S. (2009). Adoption and impacts of improved winter and spring wheat varieties in Turkey. Icarda.
  • Mendeş, M. (2012). Uygulamalı bilimler için istatistik ve araştırma yöntemleri. Kriter Basım ve Dağıtım, İstanbul. 664 sy.
  • Menezes-Benavente, L., Kernodle, S. P., Margis-Pinheiro, M., & Scandalios, J. G. (2004). Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Redox report, 9(1), 29-36. https://doi.org/10.1179/135100004225003888
  • Miller, A. F. (2012). Superoxide dismutases: ancient enzymes and new insights. FEBS letters, 586(5), 585-595. https://doi.org/10.1016/j.febslet.2011.10.048
  • Miri-Hesar, K., Dadkhodaie, A., Dorostkar, S., & Heidari, B. (2019). Differential Activity of Antioxidant Enzymes and Physiological Changes in Wheat (Triticum aestivum L.) Under Drought Stress. Notulae Scientia Biologicae, 11(2), 266–276. https://doi.org/10.15835/nsb11210390
  • Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of hydrology, 391(1-2), 202-216. https://doi.org/10.1016/j.jhydrol.2010.07.012
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in plant science, 7(9), 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
  • Molassiotis, A., Sotiropoulos, T., Tanou, G., Kofidis, G., Diamantidis, G., & Therios, E. (2006). Antioxidant and anatomical responses in shoot culture of the apple rootstock MM 106 treated with NaCl, KCl, mannitol or sorbitol. Biologia Plantarum, 50, 331-338. https://doi.org/10.1007/s10535-005-0075-9
  • Ogawa, K. I., Kanematsu, S., & Asada, K. (1996). Intra-and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyl. Plant and cell physiology, 37(6), 790-799. https://doi.org/10.1093/oxfordjournals.pcp.a029014
  • Ogawa, K. I., Kanematsu, S., Takabe, K., & Asada, K. (1995). Attachment of CuZn-superoxide dismutase to thylakoid membranes at the site of superoxide generation (PSI) in spinach chloroplasts: detection by immuno-gold labeling after rapid freezing and substitution method. Plant and Cell Physiology, 36(4), 565- 573.
  • Palma, J. M., Lopez-Huertas, E., Corpas, F. J., Sandalio, L. M., Gomez, M., & Del Rio, L. A. (1998). Peroxisomal manganese superoxide dismutase: purification and properties of the isozyme from pea leaves. Physiologia Plantarum, 104(4), 720-726. https://doi.org/10.1034/j.1399-3054.1998.1040429.x
  • Quitadamo, F., De Simone, V., Beleggia, R., & Trono, D. (2021). Chitosan-Induced Activation of the Antioxidant Defense System Counteracts the Adverse Effects of Salinity in Durum Wheat. Plants, 10(7), 1365. https://doi.org/10.3390/plants10071365
  • Quartacci, M. F., & Navari-Izzo, F. (1992). Water stress and free radical mediated changes in sunflower seedlings. Journal of Plant Physiology, 139(5), 621-625. https://doi.org/10.1016/S0176-1617(11)80381-0
  • Ren, J., Sun, L. N., Zhang, Q. Y., & Song, X. S. (2016). Drought tolerance is correlated with the activity of antioxidant enzymes in Cerasus humilis seedlings. BioMed Research International, 2016(1), 9851095. https://doi.org/10.1155/2016/9851095
  • Sairam, R., & Srivastava, G. (2001). Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science, 186(12), 63-70. https://doi.org/10.1046/j.1439-037x.2001.00461.x
  • Sakin, M. A., Naneli, İ., Göy, A. G. & Ozdemir, K. (2015). Bazı ekmeklik buğday (Triticum aestivum L.) çeşitlerinin Tokat-Zile koşullarında verim ve verim komponentlerinin belirlenmesi. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 32(3), 119-132. https://doi.org/10.13002/jafag927
  • Schneider, S. H. (2011). Encyclopedia of climate and weather. Oxford University Press, United Kingdom. https://doi.org/10.1093/acref/9780199765324.001.0001
  • Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants, 10(2), 259. https://doi.org/10.3390/plants10020259
  • Sheoran, S., Thakur, V., Narwal, S., Turan, R., Mamrutha, H. M., Singh, V., Tiwari, V., & Sharma, I. (2015). Differential Activity and Expression Profile of Antioxidant Enzymes and Physiological Changes in Wheat (Triticum aestivum L.) Under Drought. Applied Biochemistry and Biotechnology, 177(6), 1282–1298. https://doi.org/10.1007/s12010-015-1813-x
  • Simova-Stoilova, L., Demirevska, K., Petrova, T., Tsenov, N., & Feller, U. (2008). Antioxidative protection in wheat varieties under severe recoverable drought at seedling stage. Plant Soil Environ, 54(12), 529-36. https://doi.org/10.17221/427-PSE
  • Simova-Stoilova, L., Demirevska, K., Petrova, T., Tsenov, N., & Feller, U. (2009). Antioxidative protection and proteolytic activity in tolerant and sensitive wheat (Triticum aestivum L.) varieties subjected to long-term field drought. Plant Growth Regulation, 58, 107-117. https://doi.org/10.1007/s10725-008-9356-6
  • Smirnoff, N. (1993). The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist, 125, 27–58. https://doi:10.1111/j.1469-8137.1993.tb03863.x
  • Şahin. Ü., & Kurnaz, L. (2014 Ekim). İklim değişikliği ve kuraklık. https://ipc.sabanciuniv.edu/Content/Images/CKeditorImages/20200326-02030608.pdf
  • Ullah, N., Shafi, M., Akmal, M., & Hassan, G. (2010). In situ assessment of morpho-physiological response of wheat (Triticum aestivum L.) genotypes to drought. Pakistan Journal of Botany, 42(5), 3183-3195.

Superoxide Dismutase and Isozyme Analysis in Two Bread Wheat Genotypes Under Osmotic Stress

Year 2025, Volume: 28 Issue: 4, 893 - 902
https://doi.org/10.18016/ksutarimdoga.vi.1651818

Abstract

Climate change, driven by human activity, has accelerated global warming, leading to heightened water scarcity and drought globally. In regions like Turkey and the Mediterranean basin, changing climate patterns threaten key sectors such as agriculture, where wheat is a staple crop. This study investigated the osmotic stress tolerance of two bread wheat genotypes, Bezostaya-1 and Karahan-99, by analyzing their superoxide dismutase (SOD) enzymes and isoenzymes under hydroponic conditions. Plants were exposed to osmotic stress at the vegetative and generative growth stages, alongside a control group. SOD enzyme activities and isozyme profiles were analyzed. The results showed that both genotypes produced different activities of Mn-SOD, Cu/Zn-SOD, and Fe-SOD isoenzymes under osmotic stress. Cu/Zn-SOD and Fe-SOD demonstrated peak activity, highlighting their vital role in mitigating oxidative damage. Total SOD activity increased significantly, especially during the generative stage, highlighting the importance of antioxidant defense mechanisms during critical growth phases under osmotic stress. Overall, the study highlights the importance of understanding how wheat genotypes respond biochemically to osmotic stress, particularly in the context of changing climate conditions. The results provide valuable information for the development of resistant wheat genotypes.

Ethical Statement

Superoxide Dismutase and Isozyme Analysis in Some Bread Wheat Genotype Under Osmotic Stress isimli çalışmanın, etik kurul izni gerektirmeyen çalışmalar arasında yer aldığını beyan ederim

Supporting Institution

Selcuk University Scientific Research Projects Coordination Office

Project Number

20211010

References

  • Aliyeva, D. R., Gurbanova, U. A., Rzayev, F. H., Gasimov, E. K., & Huseyinova, I. M. (2023). Biochemical and Ultrastructural Changes in Wheat Plants during Drought Stress. Biochemistry (Moscow), 88(11), 1944–1955. https://doi.org/10.1134/S0006297923110226
  • Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of experimental botany, 53, 1331-1341. https://doi.org/10.1093/jexbot/53.372.1331
  • Bannister, W., Bannister, J., Barra, D., Bond, J., & Bossa, F. (1991). Evolutionary aspects of superoxide dismutase: the copper/zinc enzyme. Free Radical Research Communications, 12(1), 349-361. https://doi.org/10.3109/10715769109145804
  • Bano, A., Ullah, F., & Nosheen, A. (2012). Role of abscisic acid and drought stress on the activitiesof antioxidant enzymes in wheat. Plant, Soil and Environment, 58(4), 181-185. https://doi.org/10.17221/210/2011-PSE
  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical biochemistry, 44, 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
  • Bhargava, S., & Sawant, K. (2013). Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant breeding, 132(1), 21-32. https://doi.org/10.1111/pbr.12004
  • Blum, A., & Jordan, W.R. (1985). Breeding crop varieties for stress environments. Critical Reviews in Plant Sciences, 2(3), 199-238. https://doi.org/10.1080/07352688509382196
  • Bowler, C., Van Camp, W., Van Montagu, M., Inzé, D., & Asada, K. (1994). Superoxide dismutase in plants. Critical Reviews in Plant Sciences, 13, 199-218. https://doi.org/10.1080/07352689409701914
  • Dumanović, J., Nepovimova, E., Natić, M., Kuča, K., & Jaćević, V. (2021). The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview. Frontiers in Plant Science, 11, 552969. https://doi.org/10.3389/fpls.2020.552969
  • Del Río, L. A., Corpas, F. J., Sandalio, L. M., Palma, J. M., Gomez, M., & Barroso, J. B. (2002). Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of experimental botany, 53, 1255-1272. https://doi.org/10.1093/jexbot/53.372.1255
  • Elshafei, A. M. (2020). When oxygen can be toxic? A mini review. Journal of Applied Life Sciences International, 23(7), 1-9. https://doi.org/10.9734/jalsi/2020/v23i730171
  • Gupta, N., Gupta, S., & Kumar, A. (2001). Effect of water stress on physiological attributes and their relationship with growth and yield of wheat cultivars at different stages. Journal of Agronomy and Crop Science, 186(1), 55-62. https://doi.org/10.1046/j.1439-037x.2001.00457.x
  • Hasanuzzaman, M., Raihan, M. R. H., Masud, A. A. C., Rahman, K., Nowroz, F., Rahman, M., Nahar, M., & Fujita, M. (2021). Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. International Journal of Molecular Sciences, 22(17), 9326. https://doi.org/10.3390/ijms22179326
  • Huseynova, I. M., Aliyeva, D. R., & Aliyev, J. A. (2014). Subcellular localization and responses of superoxide dismutase isoforms in local wheat varieties subjected to continuous soil drought. Plant Physiology and Biochemistry, 81, 54-60. https://doi.org/10.1016/j.plaphy.2014.01.018
  • Huseynova, I. M., Rustamova, S. M., Suleymanov, S. Y., Aliyeva, D. R., Mammadov, A. C., & Aliyev, J. A. (2016). Drought-induced changes in photosynthetic apparatus and antioxidant components of wheat (Triticum durum Desf.) varieties. Photosynthesis Research, 130(1-3), 215-223. https://doi.org/10.1007/s11120-016-0244-z
  • Jahnke, L., Hull, M., & Long, S. (1991). Chilling stress and oxygen metabolizing enzymes in Zea mays and Zea diploperennis. Plant, Cell & Environment 14(1), 97-104. https://doi.org/10.1111/j.1365-3040.1991.tb01375.x
  • Kavuncu, M. (2019). Kuraklık Stresi Koşullarında Uygulanan Nitrik Oksitin Buğday Genotiplerinin Gelişimi Üzerine Etkisi (Tez no: 534044). [Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü Toprak Bilimi ve Bitki Besleme Anabilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Khaleghi, A., Naderi, R., Brunetti, C., Maserti, B. E., Salami, S. A., & Babalar, M. (2019). Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Scientific Reports, 9(1), 19250. https://doi.org/10.1038/s41598-019-55889-y
  • Khayatnezhad, M., & Gholamin, R. (2021). The effect of drought stress on the superoxide dismutase and chlorophyll content in durum wheat genotypes. Advancements in Life Sciences, 8(2), 119-123.
  • Kutlu, İ. (2010). Tahıllarda kuraklık stresi. Türk Bilimsel Derlemeler Dergisi, 35-41.
  • Kuźniak, E., & Skłodowska, M. (2004). The effect of Botrytis cinerea infection on the antioxidant profile of mitochondria from tomato leaves. Journal of Experimental Botany, 55(397), 605-612. https://doi.org/10.1093/jxb/erh076
  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685. https://doi.org/10.1038/227680a0
  • Majer, P. (2008). Testing drought tolerance of wheat by a complex stress diagnostic system installed in greenhouse. Acta Biologica Szegediensis, 52(1), 97-100.
  • Mazid, A., Amegbeto, K. N., Keser, M., Morgounov, A., Peker, K., Bagci, A., Akin, M., Kucukcongar, M., Kan, M., & Karabak, S. (2009). Adoption and impacts of improved winter and spring wheat varieties in Turkey. Icarda.
  • Mendeş, M. (2012). Uygulamalı bilimler için istatistik ve araştırma yöntemleri. Kriter Basım ve Dağıtım, İstanbul. 664 sy.
  • Menezes-Benavente, L., Kernodle, S. P., Margis-Pinheiro, M., & Scandalios, J. G. (2004). Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Redox report, 9(1), 29-36. https://doi.org/10.1179/135100004225003888
  • Miller, A. F. (2012). Superoxide dismutases: ancient enzymes and new insights. FEBS letters, 586(5), 585-595. https://doi.org/10.1016/j.febslet.2011.10.048
  • Miri-Hesar, K., Dadkhodaie, A., Dorostkar, S., & Heidari, B. (2019). Differential Activity of Antioxidant Enzymes and Physiological Changes in Wheat (Triticum aestivum L.) Under Drought Stress. Notulae Scientia Biologicae, 11(2), 266–276. https://doi.org/10.15835/nsb11210390
  • Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of hydrology, 391(1-2), 202-216. https://doi.org/10.1016/j.jhydrol.2010.07.012
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in plant science, 7(9), 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
  • Molassiotis, A., Sotiropoulos, T., Tanou, G., Kofidis, G., Diamantidis, G., & Therios, E. (2006). Antioxidant and anatomical responses in shoot culture of the apple rootstock MM 106 treated with NaCl, KCl, mannitol or sorbitol. Biologia Plantarum, 50, 331-338. https://doi.org/10.1007/s10535-005-0075-9
  • Ogawa, K. I., Kanematsu, S., & Asada, K. (1996). Intra-and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyl. Plant and cell physiology, 37(6), 790-799. https://doi.org/10.1093/oxfordjournals.pcp.a029014
  • Ogawa, K. I., Kanematsu, S., Takabe, K., & Asada, K. (1995). Attachment of CuZn-superoxide dismutase to thylakoid membranes at the site of superoxide generation (PSI) in spinach chloroplasts: detection by immuno-gold labeling after rapid freezing and substitution method. Plant and Cell Physiology, 36(4), 565- 573.
  • Palma, J. M., Lopez-Huertas, E., Corpas, F. J., Sandalio, L. M., Gomez, M., & Del Rio, L. A. (1998). Peroxisomal manganese superoxide dismutase: purification and properties of the isozyme from pea leaves. Physiologia Plantarum, 104(4), 720-726. https://doi.org/10.1034/j.1399-3054.1998.1040429.x
  • Quitadamo, F., De Simone, V., Beleggia, R., & Trono, D. (2021). Chitosan-Induced Activation of the Antioxidant Defense System Counteracts the Adverse Effects of Salinity in Durum Wheat. Plants, 10(7), 1365. https://doi.org/10.3390/plants10071365
  • Quartacci, M. F., & Navari-Izzo, F. (1992). Water stress and free radical mediated changes in sunflower seedlings. Journal of Plant Physiology, 139(5), 621-625. https://doi.org/10.1016/S0176-1617(11)80381-0
  • Ren, J., Sun, L. N., Zhang, Q. Y., & Song, X. S. (2016). Drought tolerance is correlated with the activity of antioxidant enzymes in Cerasus humilis seedlings. BioMed Research International, 2016(1), 9851095. https://doi.org/10.1155/2016/9851095
  • Sairam, R., & Srivastava, G. (2001). Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science, 186(12), 63-70. https://doi.org/10.1046/j.1439-037x.2001.00461.x
  • Sakin, M. A., Naneli, İ., Göy, A. G. & Ozdemir, K. (2015). Bazı ekmeklik buğday (Triticum aestivum L.) çeşitlerinin Tokat-Zile koşullarında verim ve verim komponentlerinin belirlenmesi. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 32(3), 119-132. https://doi.org/10.13002/jafag927
  • Schneider, S. H. (2011). Encyclopedia of climate and weather. Oxford University Press, United Kingdom. https://doi.org/10.1093/acref/9780199765324.001.0001
  • Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants, 10(2), 259. https://doi.org/10.3390/plants10020259
  • Sheoran, S., Thakur, V., Narwal, S., Turan, R., Mamrutha, H. M., Singh, V., Tiwari, V., & Sharma, I. (2015). Differential Activity and Expression Profile of Antioxidant Enzymes and Physiological Changes in Wheat (Triticum aestivum L.) Under Drought. Applied Biochemistry and Biotechnology, 177(6), 1282–1298. https://doi.org/10.1007/s12010-015-1813-x
  • Simova-Stoilova, L., Demirevska, K., Petrova, T., Tsenov, N., & Feller, U. (2008). Antioxidative protection in wheat varieties under severe recoverable drought at seedling stage. Plant Soil Environ, 54(12), 529-36. https://doi.org/10.17221/427-PSE
  • Simova-Stoilova, L., Demirevska, K., Petrova, T., Tsenov, N., & Feller, U. (2009). Antioxidative protection and proteolytic activity in tolerant and sensitive wheat (Triticum aestivum L.) varieties subjected to long-term field drought. Plant Growth Regulation, 58, 107-117. https://doi.org/10.1007/s10725-008-9356-6
  • Smirnoff, N. (1993). The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist, 125, 27–58. https://doi:10.1111/j.1469-8137.1993.tb03863.x
  • Şahin. Ü., & Kurnaz, L. (2014 Ekim). İklim değişikliği ve kuraklık. https://ipc.sabanciuniv.edu/Content/Images/CKeditorImages/20200326-02030608.pdf
  • Ullah, N., Shafi, M., Akmal, M., & Hassan, G. (2010). In situ assessment of morpho-physiological response of wheat (Triticum aestivum L.) genotypes to drought. Pakistan Journal of Botany, 42(5), 3183-3195.
There are 47 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry
Journal Section RESEARCH ARTICLE
Authors

Ramazan Keleş 0000-0003-2872-7183

Mustafa Küçüködük 0000-0001-6290-9007

Project Number 20211010
Early Pub Date June 10, 2025
Publication Date
Submission Date March 5, 2025
Acceptance Date May 29, 2025
Published in Issue Year 2025Volume: 28 Issue: 4

Cite

APA Keleş, R., & Küçüködük, M. (2025). Superoxide Dismutase and Isozyme Analysis in Two Bread Wheat Genotypes Under Osmotic Stress. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(4), 893-902. https://doi.org/10.18016/ksutarimdoga.vi.1651818


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149