Research Article
BibTex RIS Cite

Identification of Seed and Soil-Borne Fungal Disease Agents in Okra Plants (Abelmoschus esculentus L.) and Characterization of Biological Control Possibilities with Antagonist Bacterial Isolates

Year 2025, Volume: 28 Issue: 6, 1427 - 1444
https://doi.org/10.18016/ksutarimdoga.vi.1720941

Abstract

The main objectives of this study were to (i) identify the seed- and soil-borne fungal pathogens of okra (Abelmoschus esculentus L.) grown in the Hatay province of Türkiye, (ii) determine the in vitro biocontrol potential of bacterial isolates (BCAs) from healthy okra and closely related plants against common fungal pathogens, and (iii) characterize the antagonistic and plant growth-promoting (PGP) mechanisms involved in pathogen suppression and plant growth. Rhizoctonia solani, Macrophomina phaseolina, Sclerotinia sclerotiorum, and Fusarium oxysporum were determined as the most common soil and seed-borne disease agents on diseased seeds and plants. A total of 36 different endophytic and epiphytic bacterial isolates were selected and identified using MALDI-TOF MS, and their antagonistic potentials to inhibit mycelial growth of R. solani, M. phaseolina, S. sclerotiorum, and F. oxysporum were characterized in dual culture tests. Among BCA bacterial isolates, Bacillus cereus B1ep, B. cereus B2ep, Pseudomonas aeruginosa B3ep, B. cereus B11ep, and B. subtilis B12ep displayed high levels (≥70%) of antagonistic activity against all fungal agents tested. Enterobacter cloacae B10ep was identified as the highest siderophore producer, Microbacterium maritypicum X5 as the highest protease enzyme producer, Pseudomonas aeruginosa B3ep, and different Bacillus spp. as isolates producing hydrogen cyanide (HCN) and ammonia at the highest level. The suppression of mycelial growth was suggested to be associated with one or more antagonistic mechanisms. Enterobacter bugandensis B7ep was identified as the highest Indole-3 Acetic Acid (IAA) producer, and B. cereus P7en was identified as the most efficient phosphate-solubilizing bacterial isolate. In conclusion, BCA isolates belonging to Bacillus and Pseudomonas spp., which demonstrated strong antagonistic and PGP activities, have the potential to be developed as biopreparations against soil and seed-borne disease agents in okra plants.

Ethical Statement

Authors have declared no conflict of interest

Supporting Institution

Scientific Research Projects Commission of Hatay Mustafa Kemal University

Project Number

HMKU BAP 21.YL.046

Thanks

This study was financially supported by the Scientific Research Projects Commission of Hatay Mustafa Kemal University (Project No: 21.YL.046)

References

  • Afzal, S., Tariq, S., Sultana, V., Ara, J., & Ehteshamul-Haque, S. (2013). Managing the root diseases of okra with endo-root plant growth promoting Pseudomonas and Trichoderma viride associated with healthy okra roots. Pakistan Journal of Botany, 45(4), 1455–1460. https://www.researchgate.net/publication/ 259195743_Managing_the_root_diseases_of_okra_with_endo-root_plant_growth_promoting_ Pseudomonas_ and_Trichoderma_viride_associated_with_healthy_okra_roots
  • Aktan, Z. C., & Soylu, S. (2020). Isolation and characterization of endophytic and epiphytic bacteria from almond trees in Diyarbakır and their plant growth-promoting mechanisms. KSU Tarım ve Doğa Dergisi, 23, 641–654. https://doi.org/10.18016/ksutarimdoga.vi.659802
  • Ali, Q., Ali, M., Jing, H., Hussain, A., Manghwar, H., Ali, M., Raza, W., & Mundra, S. (2024). Power of plant microbiome: A sustainable approach for agricultural resilience. Plant Stress, 14, 100681. https://doi.org/ 10.1016/j.stress.2024.100681
  • Al-Kassim, M. Y., & Monawar, M. N. (2000). Seed-borne fungi of some vegetable seeds in Gazan Province and their chemical control. Saudi Journal of Biological Sciences, 7(2), 179–184.
  • Aloui, H., Jguirim, N., & Khwaldia, K. (2017). Effects of biopolymer-based active coatings on postharvest quality of okra pods in Tunisia. International Society for Horticultural Science (ISHS), 72(6), 363–369. https://doi.org/10.17660/th2017/72.6.4
  • Anam, M. K., Fakir, G. A., & Khalequzzaman, K. M. (2002). Effect of seed treatment on the incidence of seed-borne diseases of okra. Pakistan Journal of Plant Pathology, 1(1), 1–3.
  • Anonymous (2020). European Commission. A Farm to Fork Strategy for a fair, healthy and environmentally-friendly food system, Brussels, 23 p.
  • Anonymous. (2021). FAOSTAT, World Production Data. Food and Agriculture Organization of the United Nations. (Retrieved June 5, 2025 from http://www.fao.org/faostat/en/#data/QC/visualize)
  • Anonymous. (2022). Türkiye İstatistik Kurumu (TÜİK), Bitkisel Üretim İstatistikleri. (Retrieved June 5, 2025 from https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr)
  • Araujo, F. F., Henning, A. A., & Hungria, M. (2005). Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World Journal of Microbiology and Biotechnology, 21, 1639–1645. https://doi.org/10.1007/s11274-005-3621-8
  • Ashraf, M. R., Hafeez, O. B. A., Masroor, A., Ahmad, S., & Zaib, I. (2018). Okra seeds priming with two Bacillus spp. and trihar-6 isolates enhanced the physiological attributes and suppressed the Fusarium oxysporum f.sp. vasinfectum. Annals of the Romanian Society for Cell Biology, 22(2), 34–49. http://annalsofrscb.ro/index.php/journal/article/view/10834
  • Asil, H., Soylu, S., Kara, M., Çelik, M., Taşgın, S., Çelik, F., & Üremiş, İ. (2022). The effect of different weed control treatments on pharmacological components of stigma quality of saffron and diversity of the microbial population in soil. Gesunde Pflanzen, 74(4), 905-913. https://doi.org/10.1007/s10343-022-00677-4
  • Atay, M., & Soylu, S. (2022). Biber meyvelerinde hasat sonrası çürümelere sebep olan bazı fungal hastalık etmenlerine karşı Isothiocyanate bileşiklerinin antifungal etkilerinin belirlenmesi. Harran Harran Tarım ve Gıda Bilimleri Dergisi, 26, 290-302. https://doi.org/10.29050/harranziraat.1136632
  • Ayub, Q., Khan, S. M., Hussain, I., Naveed, K., Ali, S., Mehmood, A., Khan, M. J., Haq, N. U., & Shehzad, Q. (2021). Responses of different okra (Abelmoschus esculentus) cultivars to water deficit conditions. Journal of Horticultural Sciences, 16(1), 53–71. https://doi.org/10.24154/JHS.2021.v16i01.006
  • Batista, I. C. A., Boari, A. J., Kauffmann, C. M., & Nechet, K. L. (2020). Colletotrichum plurivorum causes anthracnose on okra in Brazil. Journal of Plant Pathology, 102, 1331. https://doi.org/10.1007/s42161-020-00552-1
  • Baysal, Ö., Soylu, E.M., & Soylu, S. (2003). Induction of defence related enzymes and resistance by the plant activator acibenzolar-s-methyl in tomato seedlings against bacterial canker caused by Clavibacter michiganensis subsp. michiganensis. Plant Pathology, 52, 747-753. https://doi.org/10.1111/j.1365-3059.2003.00936.x
  • Bozkurt, İ.A., Soylu, S., Kara, M., & Soylu, E.M. (2020). Chemical Composition and Antibacterial Activity of Essential Oils Isolated from Medicinal Plants against Gall Forming Plant Pathogenic Bacterial Disease Agents. KSU Tarım ve Doğa Dergisi, 23, 1474-1482. https://doi.org/10.18016/ksutarimdoga.vi.723544
  • Cappuccino, J. C., & Sherman, N. (2013). Microbiology: A laboratory manual (3rd ed.). Benjamin Cummings. Castric, P. A. (1977). Glycine metabolism by Pseudomonas aeruginosa: Hydrogen cyanide biosynthesis. Journal of Bacteriology, 130, 826–831. https://doi.org/10.1128/jb.130.2.826-831.1977
  • Chai, A. L., Zhao, Q., Kang, H. J., & Li, B. J. (2019). First report of Alternaria alternata causing leaf spot on okra in China. Plant Disease, 103(5), 1018. https://doi.org/10.1094/PDIS-10-18-1703-PDN
  • Chai, A. L., Zhao, Q., Li, X. J., Shi, Y. X., Xie, X. W., Li, L., & Li, B. J. (2021). First report of Cercospora leaf spot caused by Cercospora cf. flagellaris on okra in China. Plant Disease, 105(7), 2018. https://doi.org/10.1094/PDIS-01-21-0028-PDN
  • Channa, A. R., Jiskani, M. M., Pathan, M. A., & Wagan, K. H. (2008). Effect of plant extracts on plant height and incidence of root rot of okra caused by Macrophomina phaseolina. Agricultural Engineering and Veterinary Sciences, 24(1), 57–61.
  • Choi, I. Y., Kim, J. H., Uhm, M. J., Cho, S. E., & Shin, H. D. (2018). First report of powdery mildew caused by Podosphaera xanthii on okra in Korea. Plant Disease, 102(8), 1663. https://doi.org/10.1094/PDIS-02-18-0278-PDN
  • Compant, S., Cassan, F., Kostić, T. et al. (2025). Harnessing the plant microbiome for sustainable crop production. Nature Reviews Microbiology 23, 9–23. https://doi.org/10.1038/s41579-024-01079-1
  • Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clement, C., & Ait Barka, E. (2005). Endophytic Colonization of Vitis vinifera L. by Plant Growth-Promoting Bacterium Burkholderia sp. Strain PsJN. Applied and Environmental Microbiology, 71(4):1685–1693. https://doi.org/10.1128/AEM.71.4.1685-1693.2005
  • Cook, J. (1993). Making greater use of introduced microorganisms for biological control of plant pathogens. Annual Review of Phytopathology, 31, 53–80. https://doi.org/10.1146/annurev.py.31.090193.000413
  • Dawar, S., Hayat, S., Anis, M., & Zaki, M. J. (2008). Effect of seed coating material in the efficacy of microbial antagonists for the control of root rot fungi on okra and sunflower. Pakistan Journal of Botany, 40(3), 1269–1279.
  • Dhingra, O. D., & Sinclair, J. B. (1973). Location of Macrophomina phaseolina on soybean plants related to culture characteristics and virulence. Phytopathology, 63, 934–936. https://doi.org/10.1094/Phyto-63-934.
  • Ehteshamul-Haque, S., Abid, M., Sultana, V., Ara, J., & Ghaffar, A. (1996). Use of organic amendments on the efficacy of biocontrol agents in the control of root rot and root knot disease complex of okra. Nematologia Mediterranea, 24, 13–16.
  • Ehteshamul-Haque, S., Ghaffar, A., & Zaki, M. J. (1990). Biological control of root rot disease of okra, sunflower, soybean and mungbean. Pakistan Journal of Botany, 22(2), 121–124.
  • Fan, C., Cui, H., Ding, Z., Gao, P., & Luan, F. (2019). First report of powdery mildew caused by Podosphaera xanthii on okra in China. Plant Disease, 103(5), 1027. https://doi.org/10.1094/PDIS-10-18-1854-PDN
  • Farr, D. F., & Rossman, A. Y. (2024). Fungal Databases, U.S. National Fungus Collections, ARS, USDA. https://nt.ars-grin.gov/fungaldatabases/
  • Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337–359. https://doi.org/10.1146/annurev.phyto.43.032904.092924
  • Glickman, E., & Dessaux, Y. (1995). A critical evaluation of the specificity of Salkowski reagent for indole compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61(2), 793–796. https://doi.org/10.1128/aem.61.2.793-796.1995
  • Godwin-Egein, M. I., & Okereke, V. C. (2016). Soil and seed treatment with Bacillus thuringiensis and avocado (Persea americana) seed powder against Fusarium root rot of okra. Tropical Agricultural Research & Extension, 19(3-4), 290–296. https://doi.org/10.4038/tare.v19i3-4.5344
  • Grace, S., Salman, M., Prabha, D., Chauhan, J. S., & Gupta, H. (2019). To study effect of biocontrol agents on growth of okra Abelmoschus esculentus (L.) Moench. International Journal of Chemical Studies, 6(6), 880–885. https://doi.org/10.13140/RG.2.2.12379.69928
  • Gümüş, Y., & Soylu, E.M. (2024). Endofit ve Epifit Bakteri İzolatlarının Bazı Turunçgil Fungal Hastalık Etmenlerine Karşı in vitro Biyokontrol Etkinlik ve Etki Mekanizmalarının Belirlenmesi. KSÜ Tarım ve Doğa Dergisi, 27 (6), 1376-1391. https://doi.org/10.18016/ksutarimdoga.vi.1459337.
  • Guo, J. H., Qi, H. Y., Guo, Y. H., Ge, H. L., Gong, L. Y., Zhang, L. X., & Sun, P. H. (2004). Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control, 29(1), 66–72. https://doi.org/10.1016/S1049-9644(03)00124-5
  • Hasson, I. K., Radhi, K. H., & Khudhir, K. Z. (2013). Effect of bacteria Bacillus subtilis, Bacillus thuringiensis and Pseudomonas fluorescens in biological control of okra plant from the infection by Rhizoctonia solani fungus. Euphrates Journal of Agriculture Science, 5(4), 148–164.
  • Hossain, A., Munshi, A. R., Hossen, S., Rahman, K. Z., Karim, R., & Kimura, Y. (2021). Morpho-molecular characterization of causative agents of wilting, leaf spot, fruit blight and stem canker of okra (Abelmoschus esculentus L.). Archives of Phytopathology and Plant Protection, 54(17-18), 1501–1518. https://doi.org/ 10.1080/03235408.2020.1836082
  • Huang, C. J., Wang, T. K., Chung, S. C., & Chen, C. Y. (2005). Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. Journal of Biochemistry and Molecular Biology, 38(1), 82–88. https://doi.org/10.5483/BMBRep.2005.38.1.082
  • Huszcza, E., & Burczyk, B. (2006). Surfactin isoforms from Bacillus coagulans. Verlag der Zeitschrift für Naturforschung, 61, 727–733. https://doi.org/10.1515/znc-2006-9-1020
  • Jabeen, S., Hanif, A., & Dawar, S. (2021). Management of root deteriorating fungi by the application of solanaceous plants. Pakistan Journal of Botany, 53(4), 1465–1472. https://doi.org/10.30848/PJB2021-4(9)
  • Ju, H. J., Choi, I. Y., Lee, K. J., & Shin, H. D. (2020). First report of Cercospora malayensis causing leaf spot on okra in Korea. Plant Disease, 104(6), 1858. https://doi.org/10.1094/PDIS-01-20-0154-PDN
  • Kara, M. & Soylu, S. (2022). Isolation of endophytic bacterial isolates from healthy banana trees and determination of their in vitro antagonistic activities against crown rot disease agent Fusarium verticillioides. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 27(1), 36-46. https://doi.org/10.37908/mkutbd.1021349
  • Kara, M., Soylu, S., Gümüş, Y., Soylu, E.M., Uysal, A. & Kurt, Ş. (2023). Determination of in vitro biocontrol potentials of antagonist bacterial isolates against onion basal and root rot disease agent Fusarium proliferatum. International Journal of Innovative Approaches in Agricultural Research, 7, 487-497. https://doi.org/ 10.29329/ijiaar.2023.630.10
  • Kara, M., Soylu, S., Gümüş, Y., Soylu, E.M., Uysal, A., & Kurt, Ş. (2023). Determination of the Antifungal Effect of Boron, Sodium and Potassium Salts against Pomegranate Fruit and Crown Rot Disease Agent Coniella granati. International Journal of Innovative Approaches in Agricultural Research, 7, 2602-4772. https://doi.org/10.29329/ijiaar.2023.630.8
  • Kara, M., Soylu, S., Kurt, Ş., Soylu, E.M. & Uysal, A. (2020). Determination of antagonistic traits of bacterial isolates obtained from apricot against green fruit rot disease agent Sclerotinia sclerotiorum. Acta Horticulturae, 1290, 135-142. https://doi.org/10.17660/ActaHortic.2020.1290.25
  • Kara, M., Soylu, S., Soylu, E.M., Uysal, A., Kurt, Ş., & Türkmen, M. (2024). Determination of the antifungal activity of wood vinegar (pyroligneous acid) against the onion bulb rot disease agent Fusarium proliferatum, chemical composition and its effect on the bacterial community in the soil. Journal of Crop Health, 76, 75-85. https://doi.org/10.1007/s10343-023-00931-3
  • Kaya, K., Sertkaya, E., Üremiş, İ., & Soylu, S. (2018). Determination of chemical composition and fumigant insecticidal activities of essential oils of some medicinal plants against the adults of cowpea weevil, Callosobruchus maculatus. KSU Journal of Agriculture and Nature, 21, 708-714. https://doi.org/10.18016/ ksudobil.386176
  • Kim, P. I., Bai, H., Bai, D., Chae, H., Chung, S., Kim, Y., Park, R., & Chi, Y. T. (2004). Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. Journal of Applied Microbiology, 97(5), 942–949. https://doi.org/10.1111/j.1365-2672.2004.02377.x
  • Kohn, L. M. (1979). Delimitation of the economically important plant pathogenic Sclerotinia species. Phytopathology, 69, 881–886. https://doi.org/10.1094/Phyto-69-881
  • Kone, D., Mohammed, D., Soro, S., Bolou Bi, B. A., Kouadio, Y. J., & Ji, P. (2010). First report of southern blight of okra (Abelmoschus esculentus) caused by Sclerotium rolfsii in Côte d'Ivoire. Plant Disease, 94(11), 1379. https://doi.org/10.1094/PDIS-05-10-0378
  • Kumar, P., Dubey, R. C., & Maheshwari, D. K. (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167(8), 493–499. https://doi.org/10.1016/j.micres.2012.04.002
  • Lelliot, R. A., & Stead, D. E. (1987). Methods for the diagnosis of bacterial diseases of plants. In T. F. Preece (Ed.), Methods in plant pathology (Vol. 2, pp. 176–177). Blackwell Scientific Publications.
  • Leslie, J. F., & Summerell, B. A. (2006). Fusarium laboratory workshops - A recent history. Mycotoxin Research, 22(2), 73–74. https://doi.org/10.1007/BF02956772
  • Li, B. J., Guo, M. Y., & Chai, A. L. (2015). First report of Fusarium solani causing Fusarium root rot on okra (Abelmoschus esculentus) in China. Plant Disease, 100(2), 526. https://doi.org/10.1094/PDIS-08-15-0940-PDN
  • Liu, P. Q., Wei, M. Y., Zhang, J. Z., Wang, R. B., Li, B. J., Chen, Q. H., & Weng, Q. Y. (2019). Leaf blight on okra caused by Choanephora cucurbitarum in China. Canadian Journal of Plant Pathology, 41(3), 366–371. https://doi.org/10.1080/07060661.2019.1609859
  • Makhlouf, K.E., Boungab, K. & Mokrani, S. (2023) Synergistic effect of Pseudomonas azotoformans and Trichoderma gamsii in management of Fusarium crown rot of wheat. Archives of Phytopathology and Plant Protection 56, 108-126. https://doi.org/10.1080/03235408.2018.1447896
  • Mathny, O. N. (2013). First report of damping-off of okra caused by Phytophthora nicotianae in Iraq. Plant Disease, 97(4), 558. https://doi.org/10.1094/PDIS-09-12-0872-PDN
  • Nwangburuka, C. C., Oyekale, K., Ezekiel, C. N., Anokwuru, P. C., & Badaru, O. (2012). Effects of Moringa oleifera leaf extract and sodium hypochlorite seed pretreatment on seed germination, seedling growth rate and fungal abundance in two accessions of Abelmoschus esculentus (L) Moench. Annals of Biological Research, 3(2), 875–881.
  • Okereke, V. C., Rehua, N., & Godwin-Egein, M. I. (2016). Protection of potted okra against Fusarium wilt using different concentrations of Bacillus thuringiensis. Nature and Science, 14(4), 27–32.
  • Okwu, D. E., Awurum, A. N., & Okoronkwo, J. I. (2007). Phytochemical composition and in vitro antifungal activity screening of extracts from citrus plants against Fusarium oxysporum of okra plant (Hibiscus esculentus). African Journal of Biotechnology, 6(7), 862–865. https://doi.org/10.5897/AJB2007.000-2119
  • Oluma, H. O. A., & Nwankiti, A. O. (2000). Macrophomina phaseolina dry root and fruit rot of okra in Nigeria. African Plant Protection, 6(1), 55–56. https://hdl.handle.net/10520/AJA10233121_113
  • Palaniyandi, S.A., Yang, S.H., Zhang, L. et al. (2013). Effects of actinobacteria on plant disease suppression and growth promotion. Applied Microbiology and Biotechnology, 97, 9621–9636. https://doi.org/10.1007/s00253-013-5206-1
  • Parnell, J.J., Berka, R., Young, H.A., Sturino, J.M., Kang, Y., Barnhart, D.M., & DiLeo, M.V. (2016). From the Lab to the Farm: An Industrial Perspective of Plant Beneficial Microorganisms. Frontiers in Plant Science,7, 1110. https://doi.org/10.3389/fpls.2016.01110
  • Patten, C. L., & Glick, B. R. (2002). Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68(8), 3795–3801. https://doi.org/10.1128/ AEM. 68.8.3795-3801.2002
  • Pegg, G. F., & Brady, B. L. (2002). Verticillium wilts. CABI Publishing.
  • Perneel, M., Heyrman, J., Adiobo, A., De Maeyer, K., Raaijmakers, J. M., De Vos, P., & Höfte, M. (2007). Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. Journal of Applied Microbiology, 103(4), 1007–1020. https://doi.org/10.1111/j.1365-2672.2007.03345.x
  • Prova, A., Akanda, A. M., Islam, S., & Hossain, M. M. (2017). First report of Sclerotinia sclerotiorum causing pod rot disease on okra in Bangladesh. Canadian Journal of Plant Pathology, 39(1), 72–76. https://doi.org/ 10.1080/07060661.2017.1304255
  • Qu, Q., Shiwei, L., Liu, N., & Liu Y. (2021). First report of Pythium aphanidermatum causing stalk rot on Abelmoschus manihot (l. ) medic in China. Plant Disease, 106(2), 771. https://doi.org/10.1094/PDIS-06-21-1133-PDN
  • Rai, A. K., Das, H., & Basu, A. K. (2019). Response of Bio-priming in okra for vegetable production. Journal of Applied and Natural Science, 11(3), 687–693. https://doi.org/10.31018/jans.v11i3.2125
  • Rama, A. A., & Naik, L. K. (2017). Effect of Biocontrol Agents and PGPRs on Growth and Yield of Okra under in vitro condition. Mysore Journal of Agricultural Sciences, 51(2), 347–353.
  • Rosenblueth, M., & Martínez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, 19(8), 827–837. https://doi.org/10.1094/MPMI-19-0827
  • Şahin, B., Soylu, S., Kara, M., Türkmen, M., Aydin, R., & Çetin, H. (2021). Superior antibacterial activity against seed-borne plant bacterial disease agents and enhanced physical properties of novel green synthesized nanostructured ZnO using Thymbra spicata plant extract. Ceramics International, 47, 341-350. https://doi.org/10.1016/j.ceramint.2020.08.139
  • Santoyo, G., Moreno-Hagelsieb, G., Orozco-Mosqueda, M. C., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92–99. https://doi.org/10.1016/j.micres.2015.11.008
  • Schippers, B., Bakker, A.W., Bakker, P.A.H.M. et al. (1990). Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. Plant Soil, 129, 75–83. https://doi.org/10.1007/BF00011693
  • Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47–56. https://doi.org/10.1016/0003-2697(87)90612-9
  • Sena, L., Mica, E., Valè, G., Vaccino, P., & Pecchioni, N. (2024). Exploring the potential of endophyte-plant interactions for improving crop sustainable yields in a changing climate. Frontiers in Plant Science, 15, 1349401. https://doi.org/10.3389/fpls.2024.1349401.
  • Sertkaya, E., Kaya, K., & Soylu, S. (2010). Acaricidal activities of the essential oils from several medicinal plants against the carmine spider mite (Tetranychus cinnabarinus Boisd.) (Acarina: Tetranychidae). Industrial Crops and Products, 31, 107–112. https://doi.org/10.1016/j.indcrop.2009.09.009
  • Shi, Y. X., Zhang, X. H., Zhao, Q., & Li, B. J. (2019). First report of Colletotrichum gloeosporioides causing anthracnose on okra in China. Plant Disease, 103(5), 1023. https://doi.org/10.1094/PDIS-11-18-1980-PDN
  • Singh, J., Singh, P., Vaishnav, A., Ray, S., Rajput, R. S., Singh, S. M., & Singh, H. B. (2021). Belowground fungal volatiles perception in okra (Abelmoschus esculentus) facilitates plant growth under biotic stress. Microbiological Research, 246, 126708. https://doi.org/10.1016/j.micres.2021.126708
  • Sitara, U., Abid, M., Hussain, F., Riazi, S., & Anwar, F. (2020). Pattern of post-harvest fungal infestation on vegetables stored in various vegetable markets of Karachi. Pakistan Journal of Botany, 52(5), 1–10. https://doi.org/10.30848/PJB2020-5(36)
  • Sneh, B., Burpee, L., & Ogoshi, A. (1994). Identification of Rhizoctonia species. APS Press.
  • Soylu, E.M., Kurt, Ş., & Soylu, S. (2010). In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. International Journal of Food Microbiology, 143, 183-189. https://doi.org/10.1016/j.ijfoodmicro.2010.08.015
  • Soylu, S., Kara, M., Soylu, E. M., Uysal, A., & Kurt, Ş. (2023). First report of powdery mildew caused by Podosphaera xanthii on okra in Türkiye. Journal of Plant Pathology, 105, 1231. https://doi.org/10.1007/ s42161-023-01365-6
  • Soylu, S., Kara, M., Türkmen, M., & Şahin, B. (2022). Synergistic effect of Foeniculum vulgare essential oil on the antibacterial activities of Ag- and Cu-substituted ZnO nanorods (ZnO-NRs) against food, human and plant pathogenic bacterial disease agents. Inorganic Chemistry Communications, 146, 110103. https://doi.org/ 10.1016/j.inoche.2022.110103
  • Soylu, S., Kara, M., Uysal, A., Kurt, Ş., & Soylu, E. M. (2021). Determination of antagonistic potential of endophytic bacteria isolated from lettuce against lettuce white mould disease caused by Sclerotinia sclerotiorum. Zemdirbyste-Agriculture, 108(3), 303–312. https://doi.org/10.13080/z-a.2021.108.039
  • Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 56(4), 845–857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  • Sturz, A. V., Christie, B. R., & Nowak, J. (2000). Bacterial endophytes: Potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences, 19(1), 1–30. https://doi.org/ 10.1080/07352680091139169
  • Sultana, N., Khanzada, K. A., Akhtar, J., & Azeem, M. T. (2019). Eco-friendly approaches for the control of root rot, wilt and leaf spot diseases of okra. International Journal of Biology and Biotechnology, 16(2), 421–424.
  • Sun, Y., Cheng, Z., & Glick, B. R. (2009). The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiology Letters, 296(1), 131–136. https://doi.org/10.1111/j.1574-6968.2009.01625.x
  • Tok, F. M., Derviş, S., & Yetişir, H. (2020). Vegetative compatibility and virulence diversity of Verticillium dahliae from okra (Abelmoschus esculentus) plantations in Turkey and evaluation of okra landraces for resistance to V. dahliae. Phyton-International Journal of Experimental Botany, 89(2), 303–314. https://doi.org/10.32604/phyton.2020.08998
  • Tsuge, K., Ano, T., Hirai, M., Nakamura, Y., & Shoda, M. (1999). The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrobial Agents and Chemotherapy, 43(9), 2183–2192. https://doi.org/10.1128/AAC.43.9.2183
  • Türkmen, M., Kara, M., Maral, H., & Soylu, S. (2022). Determination of chemical component of essential oil of Origanum dubium plants grown at different altitudes and antifungal activity against Sclerotinia sclerotiorum. Journal of Food Processing and Preservation, 46, e15787. https://doi.org/10.1111/jfpp.15787
  • Urooj, F., Farhat, H., Tariq, A., Moin, S., Sohail, N., Sultana, V., Hameedi, S. F., Shams, Z. I., & Ehteshamul-Haque, S. (2020). Role of endophytic Penicillium species and Pseudomonas monteilii in inducing systemic resistance in okra against root rotting fungi and their effect on physiochemical properties of okra fruit. Journal of Applied Microbiology, 130(2), 604–616. https://doi.org/10.1111/jam.14812
  • Vazquez, P., Holguin, G., Puente, M. E., Lopez-Cortes, A., & Bashan, Y. (2000). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30(5), 460–468. https://doi.org/10.1007/s003740050024
  • Yang, X., Zhang, L., Xiang, Y., Du, L., Huang, X., & Liu, Y. (2020). Comparative transcriptome analysis of Sclerotinia sclerotiorum reveals its response mechanisms to the biological control agent, Bacillus amyloliquefaciens. Scientific Reports, 10(1), 5071. https://doi.org/10.1038/s41598-020-61962-8
  • Zhai, W. B., Zhang, M. Z., Gao, H., Meng, J., Shi, J. Y., Zhang, W. W., & Qi, F. J. (2019). Occurrence of Verticillium wilt caused by Verticillium dahliae on okra (Abelmoschus esculentus) in North China. Plant Disease, 103(6), 1413. https://doi.org/10.1094/PDIS-11-18-2039-PDN

Bamya Bitkisinde (Abelmoschus esculentus L.) Tohum ve Toprak Kaynaklı Fungal Hastalık Etmenlerinin Tanılanması ve Antagonist Bakteri İzolatları ile Biyolojik Mücadele Olanaklarının Karakterizasyonu

Year 2025, Volume: 28 Issue: 6, 1427 - 1444
https://doi.org/10.18016/ksutarimdoga.vi.1720941

Abstract

Bu çalışmanın amaçları, (i) Türkiye'nin Hatay ilinde yetiştirilen hastalıklı bamya (Abelmoschus esculentus L.) bitkilerinin tohum ve toprak kaynaklı fungal patojenlerini tanımlamak, (ii) sağlıklı bamya ve yakın akraba bitkilerden elde edilen epifitik ve endofitik biyokontrol etmeni bakteri izolatlarının (BCA) yaygın fungal patojenlere karşı in vitro biyokontrol potansiyellerini belirlemek ve (iii) patojen baskılanmasında ve bitki gelişiminde rol oynayan antagonistik ve bitki büyümesini teşvik edici (PGP) özellikleri karakterize etmektir. Hasta bitkilerden ve tohumlarından yapılan izolasyonlar sonucunda en yaygın toprak ve tohum kaynaklı fungal hastalık etmenler Rhizoctonia solani, Macrophomina phaseolina, Sclerotinia sclerotiorum ve Fusarium oxysporum, olarak belirlenmiştir. Toplam 36 farklı endofitik ve epifitik bakteri izolatı seçilmiş, MALDI-TOF MS ile tanımlanmış ve R. solani, M. phaseolina, S. sclerotiorum ve F. oxysporum'un misel büyümesini engellemedeki antagonistik potansiyelleri ikili kültür testleri ile karakterize edilmiştir. BCA bakteri izolatları arasında Bacillus cereus B1ep, B. cereus B2ep, Pseudomonas aeruginosa B3ep, B cereus B11ep ve B. subtilis B12ep, test edilen tüm fungal hastalık etmenlerine karşı yüksek düzeyde (≥%70) antagonistik etkinlik göstermiştir. Enterobacter cloacae B10ep en yüksek siderofor üreticisi, Microbacterium maritypicum X5 en yüksek proteaz enzimi üreticisi, P. aeruginosa B3ep ve farklı Bacillus spp. ise en yüksek düzeyde hidrojen siyanür (HCN) ve amonyak üreten izolatlar olarak tanımlanmıştır. Misel büyümesinin baskılanmasında bir veya daha fazla antagonistik mekanizma ile ilişkili olduğu tespit edilmiştir. Enterobacter bugandensis B7ep en yüksek Indol-3 Asetik Asit (IAA) üreticisi, B. cereus P7en ise en etkili fosfor çözen bakteri izolatı olarak tanımlanmıştır. Sonuç olarak, güçlü antagonistik ve PGP aktiviteleri gösteren Bacillus ve Pseudomonas spp. türlerine ait BCA bakteri izolatları, bamya bitkilerinde toprak ve tohum kaynaklı hastalık etkenlerine karşı biyolojik preparat olarak geliştirilme potansiyeline sahiptir.

Ethical Statement

Authors have declared no conflict of interest

Supporting Institution

Scientific Research Projects Commission of Hatay Mustafa Kemal University

Project Number

HMKU BAP 21.YL.046

Thanks

This study was financially supported by the Scientific Research Projects Commission of Hatay Mustafa Kemal University (Project No: 21.YL.046)

References

  • Afzal, S., Tariq, S., Sultana, V., Ara, J., & Ehteshamul-Haque, S. (2013). Managing the root diseases of okra with endo-root plant growth promoting Pseudomonas and Trichoderma viride associated with healthy okra roots. Pakistan Journal of Botany, 45(4), 1455–1460. https://www.researchgate.net/publication/ 259195743_Managing_the_root_diseases_of_okra_with_endo-root_plant_growth_promoting_ Pseudomonas_ and_Trichoderma_viride_associated_with_healthy_okra_roots
  • Aktan, Z. C., & Soylu, S. (2020). Isolation and characterization of endophytic and epiphytic bacteria from almond trees in Diyarbakır and their plant growth-promoting mechanisms. KSU Tarım ve Doğa Dergisi, 23, 641–654. https://doi.org/10.18016/ksutarimdoga.vi.659802
  • Ali, Q., Ali, M., Jing, H., Hussain, A., Manghwar, H., Ali, M., Raza, W., & Mundra, S. (2024). Power of plant microbiome: A sustainable approach for agricultural resilience. Plant Stress, 14, 100681. https://doi.org/ 10.1016/j.stress.2024.100681
  • Al-Kassim, M. Y., & Monawar, M. N. (2000). Seed-borne fungi of some vegetable seeds in Gazan Province and their chemical control. Saudi Journal of Biological Sciences, 7(2), 179–184.
  • Aloui, H., Jguirim, N., & Khwaldia, K. (2017). Effects of biopolymer-based active coatings on postharvest quality of okra pods in Tunisia. International Society for Horticultural Science (ISHS), 72(6), 363–369. https://doi.org/10.17660/th2017/72.6.4
  • Anam, M. K., Fakir, G. A., & Khalequzzaman, K. M. (2002). Effect of seed treatment on the incidence of seed-borne diseases of okra. Pakistan Journal of Plant Pathology, 1(1), 1–3.
  • Anonymous (2020). European Commission. A Farm to Fork Strategy for a fair, healthy and environmentally-friendly food system, Brussels, 23 p.
  • Anonymous. (2021). FAOSTAT, World Production Data. Food and Agriculture Organization of the United Nations. (Retrieved June 5, 2025 from http://www.fao.org/faostat/en/#data/QC/visualize)
  • Anonymous. (2022). Türkiye İstatistik Kurumu (TÜİK), Bitkisel Üretim İstatistikleri. (Retrieved June 5, 2025 from https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr)
  • Araujo, F. F., Henning, A. A., & Hungria, M. (2005). Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World Journal of Microbiology and Biotechnology, 21, 1639–1645. https://doi.org/10.1007/s11274-005-3621-8
  • Ashraf, M. R., Hafeez, O. B. A., Masroor, A., Ahmad, S., & Zaib, I. (2018). Okra seeds priming with two Bacillus spp. and trihar-6 isolates enhanced the physiological attributes and suppressed the Fusarium oxysporum f.sp. vasinfectum. Annals of the Romanian Society for Cell Biology, 22(2), 34–49. http://annalsofrscb.ro/index.php/journal/article/view/10834
  • Asil, H., Soylu, S., Kara, M., Çelik, M., Taşgın, S., Çelik, F., & Üremiş, İ. (2022). The effect of different weed control treatments on pharmacological components of stigma quality of saffron and diversity of the microbial population in soil. Gesunde Pflanzen, 74(4), 905-913. https://doi.org/10.1007/s10343-022-00677-4
  • Atay, M., & Soylu, S. (2022). Biber meyvelerinde hasat sonrası çürümelere sebep olan bazı fungal hastalık etmenlerine karşı Isothiocyanate bileşiklerinin antifungal etkilerinin belirlenmesi. Harran Harran Tarım ve Gıda Bilimleri Dergisi, 26, 290-302. https://doi.org/10.29050/harranziraat.1136632
  • Ayub, Q., Khan, S. M., Hussain, I., Naveed, K., Ali, S., Mehmood, A., Khan, M. J., Haq, N. U., & Shehzad, Q. (2021). Responses of different okra (Abelmoschus esculentus) cultivars to water deficit conditions. Journal of Horticultural Sciences, 16(1), 53–71. https://doi.org/10.24154/JHS.2021.v16i01.006
  • Batista, I. C. A., Boari, A. J., Kauffmann, C. M., & Nechet, K. L. (2020). Colletotrichum plurivorum causes anthracnose on okra in Brazil. Journal of Plant Pathology, 102, 1331. https://doi.org/10.1007/s42161-020-00552-1
  • Baysal, Ö., Soylu, E.M., & Soylu, S. (2003). Induction of defence related enzymes and resistance by the plant activator acibenzolar-s-methyl in tomato seedlings against bacterial canker caused by Clavibacter michiganensis subsp. michiganensis. Plant Pathology, 52, 747-753. https://doi.org/10.1111/j.1365-3059.2003.00936.x
  • Bozkurt, İ.A., Soylu, S., Kara, M., & Soylu, E.M. (2020). Chemical Composition and Antibacterial Activity of Essential Oils Isolated from Medicinal Plants against Gall Forming Plant Pathogenic Bacterial Disease Agents. KSU Tarım ve Doğa Dergisi, 23, 1474-1482. https://doi.org/10.18016/ksutarimdoga.vi.723544
  • Cappuccino, J. C., & Sherman, N. (2013). Microbiology: A laboratory manual (3rd ed.). Benjamin Cummings. Castric, P. A. (1977). Glycine metabolism by Pseudomonas aeruginosa: Hydrogen cyanide biosynthesis. Journal of Bacteriology, 130, 826–831. https://doi.org/10.1128/jb.130.2.826-831.1977
  • Chai, A. L., Zhao, Q., Kang, H. J., & Li, B. J. (2019). First report of Alternaria alternata causing leaf spot on okra in China. Plant Disease, 103(5), 1018. https://doi.org/10.1094/PDIS-10-18-1703-PDN
  • Chai, A. L., Zhao, Q., Li, X. J., Shi, Y. X., Xie, X. W., Li, L., & Li, B. J. (2021). First report of Cercospora leaf spot caused by Cercospora cf. flagellaris on okra in China. Plant Disease, 105(7), 2018. https://doi.org/10.1094/PDIS-01-21-0028-PDN
  • Channa, A. R., Jiskani, M. M., Pathan, M. A., & Wagan, K. H. (2008). Effect of plant extracts on plant height and incidence of root rot of okra caused by Macrophomina phaseolina. Agricultural Engineering and Veterinary Sciences, 24(1), 57–61.
  • Choi, I. Y., Kim, J. H., Uhm, M. J., Cho, S. E., & Shin, H. D. (2018). First report of powdery mildew caused by Podosphaera xanthii on okra in Korea. Plant Disease, 102(8), 1663. https://doi.org/10.1094/PDIS-02-18-0278-PDN
  • Compant, S., Cassan, F., Kostić, T. et al. (2025). Harnessing the plant microbiome for sustainable crop production. Nature Reviews Microbiology 23, 9–23. https://doi.org/10.1038/s41579-024-01079-1
  • Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clement, C., & Ait Barka, E. (2005). Endophytic Colonization of Vitis vinifera L. by Plant Growth-Promoting Bacterium Burkholderia sp. Strain PsJN. Applied and Environmental Microbiology, 71(4):1685–1693. https://doi.org/10.1128/AEM.71.4.1685-1693.2005
  • Cook, J. (1993). Making greater use of introduced microorganisms for biological control of plant pathogens. Annual Review of Phytopathology, 31, 53–80. https://doi.org/10.1146/annurev.py.31.090193.000413
  • Dawar, S., Hayat, S., Anis, M., & Zaki, M. J. (2008). Effect of seed coating material in the efficacy of microbial antagonists for the control of root rot fungi on okra and sunflower. Pakistan Journal of Botany, 40(3), 1269–1279.
  • Dhingra, O. D., & Sinclair, J. B. (1973). Location of Macrophomina phaseolina on soybean plants related to culture characteristics and virulence. Phytopathology, 63, 934–936. https://doi.org/10.1094/Phyto-63-934.
  • Ehteshamul-Haque, S., Abid, M., Sultana, V., Ara, J., & Ghaffar, A. (1996). Use of organic amendments on the efficacy of biocontrol agents in the control of root rot and root knot disease complex of okra. Nematologia Mediterranea, 24, 13–16.
  • Ehteshamul-Haque, S., Ghaffar, A., & Zaki, M. J. (1990). Biological control of root rot disease of okra, sunflower, soybean and mungbean. Pakistan Journal of Botany, 22(2), 121–124.
  • Fan, C., Cui, H., Ding, Z., Gao, P., & Luan, F. (2019). First report of powdery mildew caused by Podosphaera xanthii on okra in China. Plant Disease, 103(5), 1027. https://doi.org/10.1094/PDIS-10-18-1854-PDN
  • Farr, D. F., & Rossman, A. Y. (2024). Fungal Databases, U.S. National Fungus Collections, ARS, USDA. https://nt.ars-grin.gov/fungaldatabases/
  • Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337–359. https://doi.org/10.1146/annurev.phyto.43.032904.092924
  • Glickman, E., & Dessaux, Y. (1995). A critical evaluation of the specificity of Salkowski reagent for indole compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61(2), 793–796. https://doi.org/10.1128/aem.61.2.793-796.1995
  • Godwin-Egein, M. I., & Okereke, V. C. (2016). Soil and seed treatment with Bacillus thuringiensis and avocado (Persea americana) seed powder against Fusarium root rot of okra. Tropical Agricultural Research & Extension, 19(3-4), 290–296. https://doi.org/10.4038/tare.v19i3-4.5344
  • Grace, S., Salman, M., Prabha, D., Chauhan, J. S., & Gupta, H. (2019). To study effect of biocontrol agents on growth of okra Abelmoschus esculentus (L.) Moench. International Journal of Chemical Studies, 6(6), 880–885. https://doi.org/10.13140/RG.2.2.12379.69928
  • Gümüş, Y., & Soylu, E.M. (2024). Endofit ve Epifit Bakteri İzolatlarının Bazı Turunçgil Fungal Hastalık Etmenlerine Karşı in vitro Biyokontrol Etkinlik ve Etki Mekanizmalarının Belirlenmesi. KSÜ Tarım ve Doğa Dergisi, 27 (6), 1376-1391. https://doi.org/10.18016/ksutarimdoga.vi.1459337.
  • Guo, J. H., Qi, H. Y., Guo, Y. H., Ge, H. L., Gong, L. Y., Zhang, L. X., & Sun, P. H. (2004). Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control, 29(1), 66–72. https://doi.org/10.1016/S1049-9644(03)00124-5
  • Hasson, I. K., Radhi, K. H., & Khudhir, K. Z. (2013). Effect of bacteria Bacillus subtilis, Bacillus thuringiensis and Pseudomonas fluorescens in biological control of okra plant from the infection by Rhizoctonia solani fungus. Euphrates Journal of Agriculture Science, 5(4), 148–164.
  • Hossain, A., Munshi, A. R., Hossen, S., Rahman, K. Z., Karim, R., & Kimura, Y. (2021). Morpho-molecular characterization of causative agents of wilting, leaf spot, fruit blight and stem canker of okra (Abelmoschus esculentus L.). Archives of Phytopathology and Plant Protection, 54(17-18), 1501–1518. https://doi.org/ 10.1080/03235408.2020.1836082
  • Huang, C. J., Wang, T. K., Chung, S. C., & Chen, C. Y. (2005). Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. Journal of Biochemistry and Molecular Biology, 38(1), 82–88. https://doi.org/10.5483/BMBRep.2005.38.1.082
  • Huszcza, E., & Burczyk, B. (2006). Surfactin isoforms from Bacillus coagulans. Verlag der Zeitschrift für Naturforschung, 61, 727–733. https://doi.org/10.1515/znc-2006-9-1020
  • Jabeen, S., Hanif, A., & Dawar, S. (2021). Management of root deteriorating fungi by the application of solanaceous plants. Pakistan Journal of Botany, 53(4), 1465–1472. https://doi.org/10.30848/PJB2021-4(9)
  • Ju, H. J., Choi, I. Y., Lee, K. J., & Shin, H. D. (2020). First report of Cercospora malayensis causing leaf spot on okra in Korea. Plant Disease, 104(6), 1858. https://doi.org/10.1094/PDIS-01-20-0154-PDN
  • Kara, M. & Soylu, S. (2022). Isolation of endophytic bacterial isolates from healthy banana trees and determination of their in vitro antagonistic activities against crown rot disease agent Fusarium verticillioides. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 27(1), 36-46. https://doi.org/10.37908/mkutbd.1021349
  • Kara, M., Soylu, S., Gümüş, Y., Soylu, E.M., Uysal, A. & Kurt, Ş. (2023). Determination of in vitro biocontrol potentials of antagonist bacterial isolates against onion basal and root rot disease agent Fusarium proliferatum. International Journal of Innovative Approaches in Agricultural Research, 7, 487-497. https://doi.org/ 10.29329/ijiaar.2023.630.10
  • Kara, M., Soylu, S., Gümüş, Y., Soylu, E.M., Uysal, A., & Kurt, Ş. (2023). Determination of the Antifungal Effect of Boron, Sodium and Potassium Salts against Pomegranate Fruit and Crown Rot Disease Agent Coniella granati. International Journal of Innovative Approaches in Agricultural Research, 7, 2602-4772. https://doi.org/10.29329/ijiaar.2023.630.8
  • Kara, M., Soylu, S., Kurt, Ş., Soylu, E.M. & Uysal, A. (2020). Determination of antagonistic traits of bacterial isolates obtained from apricot against green fruit rot disease agent Sclerotinia sclerotiorum. Acta Horticulturae, 1290, 135-142. https://doi.org/10.17660/ActaHortic.2020.1290.25
  • Kara, M., Soylu, S., Soylu, E.M., Uysal, A., Kurt, Ş., & Türkmen, M. (2024). Determination of the antifungal activity of wood vinegar (pyroligneous acid) against the onion bulb rot disease agent Fusarium proliferatum, chemical composition and its effect on the bacterial community in the soil. Journal of Crop Health, 76, 75-85. https://doi.org/10.1007/s10343-023-00931-3
  • Kaya, K., Sertkaya, E., Üremiş, İ., & Soylu, S. (2018). Determination of chemical composition and fumigant insecticidal activities of essential oils of some medicinal plants against the adults of cowpea weevil, Callosobruchus maculatus. KSU Journal of Agriculture and Nature, 21, 708-714. https://doi.org/10.18016/ ksudobil.386176
  • Kim, P. I., Bai, H., Bai, D., Chae, H., Chung, S., Kim, Y., Park, R., & Chi, Y. T. (2004). Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. Journal of Applied Microbiology, 97(5), 942–949. https://doi.org/10.1111/j.1365-2672.2004.02377.x
  • Kohn, L. M. (1979). Delimitation of the economically important plant pathogenic Sclerotinia species. Phytopathology, 69, 881–886. https://doi.org/10.1094/Phyto-69-881
  • Kone, D., Mohammed, D., Soro, S., Bolou Bi, B. A., Kouadio, Y. J., & Ji, P. (2010). First report of southern blight of okra (Abelmoschus esculentus) caused by Sclerotium rolfsii in Côte d'Ivoire. Plant Disease, 94(11), 1379. https://doi.org/10.1094/PDIS-05-10-0378
  • Kumar, P., Dubey, R. C., & Maheshwari, D. K. (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167(8), 493–499. https://doi.org/10.1016/j.micres.2012.04.002
  • Lelliot, R. A., & Stead, D. E. (1987). Methods for the diagnosis of bacterial diseases of plants. In T. F. Preece (Ed.), Methods in plant pathology (Vol. 2, pp. 176–177). Blackwell Scientific Publications.
  • Leslie, J. F., & Summerell, B. A. (2006). Fusarium laboratory workshops - A recent history. Mycotoxin Research, 22(2), 73–74. https://doi.org/10.1007/BF02956772
  • Li, B. J., Guo, M. Y., & Chai, A. L. (2015). First report of Fusarium solani causing Fusarium root rot on okra (Abelmoschus esculentus) in China. Plant Disease, 100(2), 526. https://doi.org/10.1094/PDIS-08-15-0940-PDN
  • Liu, P. Q., Wei, M. Y., Zhang, J. Z., Wang, R. B., Li, B. J., Chen, Q. H., & Weng, Q. Y. (2019). Leaf blight on okra caused by Choanephora cucurbitarum in China. Canadian Journal of Plant Pathology, 41(3), 366–371. https://doi.org/10.1080/07060661.2019.1609859
  • Makhlouf, K.E., Boungab, K. & Mokrani, S. (2023) Synergistic effect of Pseudomonas azotoformans and Trichoderma gamsii in management of Fusarium crown rot of wheat. Archives of Phytopathology and Plant Protection 56, 108-126. https://doi.org/10.1080/03235408.2018.1447896
  • Mathny, O. N. (2013). First report of damping-off of okra caused by Phytophthora nicotianae in Iraq. Plant Disease, 97(4), 558. https://doi.org/10.1094/PDIS-09-12-0872-PDN
  • Nwangburuka, C. C., Oyekale, K., Ezekiel, C. N., Anokwuru, P. C., & Badaru, O. (2012). Effects of Moringa oleifera leaf extract and sodium hypochlorite seed pretreatment on seed germination, seedling growth rate and fungal abundance in two accessions of Abelmoschus esculentus (L) Moench. Annals of Biological Research, 3(2), 875–881.
  • Okereke, V. C., Rehua, N., & Godwin-Egein, M. I. (2016). Protection of potted okra against Fusarium wilt using different concentrations of Bacillus thuringiensis. Nature and Science, 14(4), 27–32.
  • Okwu, D. E., Awurum, A. N., & Okoronkwo, J. I. (2007). Phytochemical composition and in vitro antifungal activity screening of extracts from citrus plants against Fusarium oxysporum of okra plant (Hibiscus esculentus). African Journal of Biotechnology, 6(7), 862–865. https://doi.org/10.5897/AJB2007.000-2119
  • Oluma, H. O. A., & Nwankiti, A. O. (2000). Macrophomina phaseolina dry root and fruit rot of okra in Nigeria. African Plant Protection, 6(1), 55–56. https://hdl.handle.net/10520/AJA10233121_113
  • Palaniyandi, S.A., Yang, S.H., Zhang, L. et al. (2013). Effects of actinobacteria on plant disease suppression and growth promotion. Applied Microbiology and Biotechnology, 97, 9621–9636. https://doi.org/10.1007/s00253-013-5206-1
  • Parnell, J.J., Berka, R., Young, H.A., Sturino, J.M., Kang, Y., Barnhart, D.M., & DiLeo, M.V. (2016). From the Lab to the Farm: An Industrial Perspective of Plant Beneficial Microorganisms. Frontiers in Plant Science,7, 1110. https://doi.org/10.3389/fpls.2016.01110
  • Patten, C. L., & Glick, B. R. (2002). Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68(8), 3795–3801. https://doi.org/10.1128/ AEM. 68.8.3795-3801.2002
  • Pegg, G. F., & Brady, B. L. (2002). Verticillium wilts. CABI Publishing.
  • Perneel, M., Heyrman, J., Adiobo, A., De Maeyer, K., Raaijmakers, J. M., De Vos, P., & Höfte, M. (2007). Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. Journal of Applied Microbiology, 103(4), 1007–1020. https://doi.org/10.1111/j.1365-2672.2007.03345.x
  • Prova, A., Akanda, A. M., Islam, S., & Hossain, M. M. (2017). First report of Sclerotinia sclerotiorum causing pod rot disease on okra in Bangladesh. Canadian Journal of Plant Pathology, 39(1), 72–76. https://doi.org/ 10.1080/07060661.2017.1304255
  • Qu, Q., Shiwei, L., Liu, N., & Liu Y. (2021). First report of Pythium aphanidermatum causing stalk rot on Abelmoschus manihot (l. ) medic in China. Plant Disease, 106(2), 771. https://doi.org/10.1094/PDIS-06-21-1133-PDN
  • Rai, A. K., Das, H., & Basu, A. K. (2019). Response of Bio-priming in okra for vegetable production. Journal of Applied and Natural Science, 11(3), 687–693. https://doi.org/10.31018/jans.v11i3.2125
  • Rama, A. A., & Naik, L. K. (2017). Effect of Biocontrol Agents and PGPRs on Growth and Yield of Okra under in vitro condition. Mysore Journal of Agricultural Sciences, 51(2), 347–353.
  • Rosenblueth, M., & Martínez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, 19(8), 827–837. https://doi.org/10.1094/MPMI-19-0827
  • Şahin, B., Soylu, S., Kara, M., Türkmen, M., Aydin, R., & Çetin, H. (2021). Superior antibacterial activity against seed-borne plant bacterial disease agents and enhanced physical properties of novel green synthesized nanostructured ZnO using Thymbra spicata plant extract. Ceramics International, 47, 341-350. https://doi.org/10.1016/j.ceramint.2020.08.139
  • Santoyo, G., Moreno-Hagelsieb, G., Orozco-Mosqueda, M. C., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92–99. https://doi.org/10.1016/j.micres.2015.11.008
  • Schippers, B., Bakker, A.W., Bakker, P.A.H.M. et al. (1990). Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. Plant Soil, 129, 75–83. https://doi.org/10.1007/BF00011693
  • Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47–56. https://doi.org/10.1016/0003-2697(87)90612-9
  • Sena, L., Mica, E., Valè, G., Vaccino, P., & Pecchioni, N. (2024). Exploring the potential of endophyte-plant interactions for improving crop sustainable yields in a changing climate. Frontiers in Plant Science, 15, 1349401. https://doi.org/10.3389/fpls.2024.1349401.
  • Sertkaya, E., Kaya, K., & Soylu, S. (2010). Acaricidal activities of the essential oils from several medicinal plants against the carmine spider mite (Tetranychus cinnabarinus Boisd.) (Acarina: Tetranychidae). Industrial Crops and Products, 31, 107–112. https://doi.org/10.1016/j.indcrop.2009.09.009
  • Shi, Y. X., Zhang, X. H., Zhao, Q., & Li, B. J. (2019). First report of Colletotrichum gloeosporioides causing anthracnose on okra in China. Plant Disease, 103(5), 1023. https://doi.org/10.1094/PDIS-11-18-1980-PDN
  • Singh, J., Singh, P., Vaishnav, A., Ray, S., Rajput, R. S., Singh, S. M., & Singh, H. B. (2021). Belowground fungal volatiles perception in okra (Abelmoschus esculentus) facilitates plant growth under biotic stress. Microbiological Research, 246, 126708. https://doi.org/10.1016/j.micres.2021.126708
  • Sitara, U., Abid, M., Hussain, F., Riazi, S., & Anwar, F. (2020). Pattern of post-harvest fungal infestation on vegetables stored in various vegetable markets of Karachi. Pakistan Journal of Botany, 52(5), 1–10. https://doi.org/10.30848/PJB2020-5(36)
  • Sneh, B., Burpee, L., & Ogoshi, A. (1994). Identification of Rhizoctonia species. APS Press.
  • Soylu, E.M., Kurt, Ş., & Soylu, S. (2010). In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. International Journal of Food Microbiology, 143, 183-189. https://doi.org/10.1016/j.ijfoodmicro.2010.08.015
  • Soylu, S., Kara, M., Soylu, E. M., Uysal, A., & Kurt, Ş. (2023). First report of powdery mildew caused by Podosphaera xanthii on okra in Türkiye. Journal of Plant Pathology, 105, 1231. https://doi.org/10.1007/ s42161-023-01365-6
  • Soylu, S., Kara, M., Türkmen, M., & Şahin, B. (2022). Synergistic effect of Foeniculum vulgare essential oil on the antibacterial activities of Ag- and Cu-substituted ZnO nanorods (ZnO-NRs) against food, human and plant pathogenic bacterial disease agents. Inorganic Chemistry Communications, 146, 110103. https://doi.org/ 10.1016/j.inoche.2022.110103
  • Soylu, S., Kara, M., Uysal, A., Kurt, Ş., & Soylu, E. M. (2021). Determination of antagonistic potential of endophytic bacteria isolated from lettuce against lettuce white mould disease caused by Sclerotinia sclerotiorum. Zemdirbyste-Agriculture, 108(3), 303–312. https://doi.org/10.13080/z-a.2021.108.039
  • Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 56(4), 845–857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  • Sturz, A. V., Christie, B. R., & Nowak, J. (2000). Bacterial endophytes: Potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences, 19(1), 1–30. https://doi.org/ 10.1080/07352680091139169
  • Sultana, N., Khanzada, K. A., Akhtar, J., & Azeem, M. T. (2019). Eco-friendly approaches for the control of root rot, wilt and leaf spot diseases of okra. International Journal of Biology and Biotechnology, 16(2), 421–424.
  • Sun, Y., Cheng, Z., & Glick, B. R. (2009). The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiology Letters, 296(1), 131–136. https://doi.org/10.1111/j.1574-6968.2009.01625.x
  • Tok, F. M., Derviş, S., & Yetişir, H. (2020). Vegetative compatibility and virulence diversity of Verticillium dahliae from okra (Abelmoschus esculentus) plantations in Turkey and evaluation of okra landraces for resistance to V. dahliae. Phyton-International Journal of Experimental Botany, 89(2), 303–314. https://doi.org/10.32604/phyton.2020.08998
  • Tsuge, K., Ano, T., Hirai, M., Nakamura, Y., & Shoda, M. (1999). The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrobial Agents and Chemotherapy, 43(9), 2183–2192. https://doi.org/10.1128/AAC.43.9.2183
  • Türkmen, M., Kara, M., Maral, H., & Soylu, S. (2022). Determination of chemical component of essential oil of Origanum dubium plants grown at different altitudes and antifungal activity against Sclerotinia sclerotiorum. Journal of Food Processing and Preservation, 46, e15787. https://doi.org/10.1111/jfpp.15787
  • Urooj, F., Farhat, H., Tariq, A., Moin, S., Sohail, N., Sultana, V., Hameedi, S. F., Shams, Z. I., & Ehteshamul-Haque, S. (2020). Role of endophytic Penicillium species and Pseudomonas monteilii in inducing systemic resistance in okra against root rotting fungi and their effect on physiochemical properties of okra fruit. Journal of Applied Microbiology, 130(2), 604–616. https://doi.org/10.1111/jam.14812
  • Vazquez, P., Holguin, G., Puente, M. E., Lopez-Cortes, A., & Bashan, Y. (2000). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30(5), 460–468. https://doi.org/10.1007/s003740050024
  • Yang, X., Zhang, L., Xiang, Y., Du, L., Huang, X., & Liu, Y. (2020). Comparative transcriptome analysis of Sclerotinia sclerotiorum reveals its response mechanisms to the biological control agent, Bacillus amyloliquefaciens. Scientific Reports, 10(1), 5071. https://doi.org/10.1038/s41598-020-61962-8
  • Zhai, W. B., Zhang, M. Z., Gao, H., Meng, J., Shi, J. Y., Zhang, W. W., & Qi, F. J. (2019). Occurrence of Verticillium wilt caused by Verticillium dahliae on okra (Abelmoschus esculentus) in North China. Plant Disease, 103(6), 1413. https://doi.org/10.1094/PDIS-11-18-2039-PDN
There are 98 citations in total.

Details

Primary Language English
Subjects Phytopathology
Journal Section RESEARCH ARTICLE
Authors

Gizem Tangül 0000-0002-3214-5242

Soner Soylu 0000-0003-1002-8958

Project Number HMKU BAP 21.YL.046
Early Pub Date August 14, 2025
Publication Date October 18, 2025
Submission Date June 16, 2025
Acceptance Date July 31, 2025
Published in Issue Year 2025 Volume: 28 Issue: 6

Cite

APA Tangül, G., & Soylu, S. (2025). Identification of Seed and Soil-Borne Fungal Disease Agents in Okra Plants (Abelmoschus esculentus L.) and Characterization of Biological Control Possibilities with Antagonist Bacterial Isolates. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(6), 1427-1444. https://doi.org/10.18016/ksutarimdoga.vi.1720941


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149