Derleme
BibTex RIS Kaynak Göster

Adaptation Mechanisms of Some Field Plants Against to Salt Stress

Yıl 2018, Cilt: 21 Sayı: 5, 800 - 808, 31.10.2018
https://doi.org/10.18016/ksudobil.325374

Öz

Soil
salinity is one of the most important abiotic stress factors which directly
limits plant yield in agricultural production areas around the World. Salt
stress also determines plant diversity in agricultural production areas.
Development and revealing of plant response against to salt stress depends on
physiological changes of plants controlled by complex molecular mechanisms
which subsequently lead to development of tolerance. Sometimes, such changes
and differences appear to be unique to the type of plant, but some other times,
such responses are more common and similar in all plants. In addition, although
such complex mechanisms appear to be developed directly related to salt stress
per se, they may also be the results of other abiotic stress, like drought, or
even biotic stress related responses. Therefore, better understanding of salt
tolerance at both plant and mechanism levels will make significant contribution
to develop better salt tolerant new plant varieties.  The aim of this review was to make
contribution on understanding of plant response against to salt stress based on
current literature.

Kaynakça

  • Abel GH 1969. Inheritance of the capacity for chloride inclusion and exclusion by soybeans. Crop Science, 9: 697-698.
  • Annicchiarico P, Pecetti L, Tava A 2013. Physiological and morphological traits associated with adaptation of lucerne (Medicago sativa) to severely drought-stressed and to irrigated environments. Annals of Applied Biology, 162: 27-40.
  • Anonim 2005. Çölleşme ile mücadele Türkiye ulusal eylem programı. T.C. Çevre ve Orman Bakanlığı yayınları No: 250, Ankara, ISBN 975-7347-51-5.
  • Aslam M, Qureshi RH, Ahmed N 1993. A rapid screening technique for salt tolerance in rice (Oryza sativa L.). Plant Soil, 150: 99-107.
  • Ateş E, Tekeli AS 2007. Salinity tolerance of Persian clover (Trifolium resupinatum var. majus Boiss) lines at germination and seedling stage. World Journal of Agricultural Sciences, 3: 71-79.
  • Bai X, Liu J, Tang LL, Cai H, Chen M, Ji W, Liu Y, Zhu YM 2013. Overexpression of GsCBRLK from Glycine soja enhances tolerance to salt stress in transgenic alfalfa (Medicago sativa). Functional Plant Biology, 40: 1048-1056.
  • Bartels D, Sunkar R 2005. Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24: 23-58.
  • Biligili U, Çarpıcı EB, Aşık BB, Çelik N 2011. Root and shoot response of common vetch (Vicia sativa L.), forage pea (Pisum sativum L.) and canola (Brassica napus L.) to salt stress during early seedling growth stages. Turkish Journal of Field Crops, 16: 33-38.
  • Boukhatem ZF, Domergue O, Bekki A, Merabet C, Sekkour S, Bouazza F, Duponnois R, de Lajudie P, Galiana A 2012. Symbiotic characterization and diversity of rhizobia associated with native and introduced acacias in arid and semi-arid regions in Algeria. FEMS Microbiol Ecology, 80: 534-47.
  • Bu Y, Kou J, Sun, B, Takano T, Liu S 2015. Adverse effect of urease on salt stress during seed germination in Arabidopsis thaliana. FEBS Letter, 589: 1308-13.
  • Can E, Arslan M, Sener O, Daghan H 2013. Response of strawberry clover (Trifolium fragiferum L.) to salinity stress. Research on Crops, 14: 576-584.
  • Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM 2002. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Molecular Biology, 48: 649-665.
  • Chakraborty K, Sairam RK, Bhattacharya RC 2012. Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes. Plant Physiology Biochemistry, 51: 90-101.
  • Chazen O, Hartung W, Neumann PM 1995. The different effects of PEG 6000 and NaCI on leaf development are associated with differential inhibition of root water transport. Plant Cell and Environment, 18: 727-735.
  • Chen H, Zhang B, Hicks LM, Xiong L 2011. A nucleotide metabolite controls stress-responsive gene expression and plant development. PLoS One, 6: e26661.
  • Cho YH, Hong JW, Kim EC, Yoo SD 2012. Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development. Plant Physiology, 158: 1955-64.
  • Cramer GR, Alberico GJ, Schmidt C 1994. Leaf Expansion Limits Dry Matter Accumulation of Salt-stressed Maize. Australian Journal of Plant Physiology, 21: 663-674.
  • Croser JS, Clarke HJ, Siddique KHM, Khan TN 2003. Low-temperature stress: Implications for chickpea (Cicer arietinum L.) improvement. Critical Review in Plant Science, 22: 185-219.
  • Çelik Ö, Atak Ç 2012. Evalutation of proline accumulation and Delta1 pyrroline -5-carboxylate synthase (P5CS) gene expression during salinity stress in two soybean (Glycine max L. Merr) varieties. Polish Journal of Environmental. Studies, 21: 559-564.
  • Çelik Ö, Ünsal SG 2013. Expression analysis of proline metabolism-related genes in salt-tolerant soybean mutant plants. Plant Omics Journal, 6(5): 364-370.
  • Çöçü S, Uzun O 2011. Germination, seedling growth and ion accumulation of bitter vetch (Vicia ervilia (L.) Willd. ) lines under NaCl stress. African Journal of Biotechnology, 10: 15869-15874.
  • Fang J, Han X, Xie L, Liu M, Qiao G, Jiang J, Zhuo R 2014. Isolation of salt stress-related genes from Aspergillus glaucus CCHA by random overexpression in Escherichia coli. Scientific WorldJ ournal, 2014: 620959.
  • Fujita Y, Yoshida T, Yamaguchi-Shinozaki K 2013. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiologia Plantarum, 147: 15-27.
  • Ghaderi-Far F, Gherekhlo J, Alimagham M 2010. Influence of environmental factors on seed germination and seedling emergence of yellow sweet clover (Melilotus officinalis). Planta Daninha, 28: 463-469.
  • Gravandi S 2013. The examination of different NaCl concentrations on germination, radicle length and plumule length on three cultivars of clover. Annals of Biological Research, 4: 200-203.
  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ 2000. Plant Cellular and Molecular Responses to High Salinity. Annual Review Plant Physiology and Plant Molecular Biology, 51: 463-499.
  • Hazen SP, Pathan MS. Sanchez A, Baxter I, Dunn M, Estes B, Chang HS, Zhu T, Kreps JA, Nguyen HT 2005. Expression profiling of rice segregating for drought tolerance QTLs using a rice genome array. Functional and Integrative Genomics, 5: 104-116.
  • Hu Y, Chen L, Wang H, Zhang L, Wang F, Yu D 2013. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant Journal, 74: 730-45.
  • Ismail A, Takeda S, Nick P 2014. Life and death under salt stress: same players, different timing? Journal of Experimental Botany, 65: 2963-2979.
  • Jin HC, Sun Y, Yang QC, Chao YH, Kang JM, Jin, H., Li, Y., Margaret, G. 2010. Screening of genes induced by salt stress from Alfalfa. Molecular Biology Reports, 37, 745-753.
  • Kang J, Xie W, Sun Y, Yang Q, Wu M 2010. Identification of genes induced by salt stress from Medicago truncatula L. seedlings. African Journal of Biotechnology, 9: 7589-7594.
  • Kaplan Ş, Güçlü Ş, Baytekin G, Tiryaki İ 2015. Yonca (Medicago sativa L.) ve çayır üçgülü (Trifolium pratense L.) tohumlarının tuz ve kuraklık stresine verdikleri tepkilerin belirlenmesi. Türkiye 11. Tarla Bitkileri Kongresi, 7-10 Eylül 2015, Çanakkale.
  • Kishor KPB, Hong Z, Miao GH, Hu CAA, Verma DPS 1995. Overexpression of D1-pyrroline-5-carboxylate synthetase increase proline production and confers osmotolerance in transgenic plants. Plant Physiology, 108: 1387-1394.
  • Kishore PBK, Hong Z, Miao G-U, Hu C-A, Verma DPS 1995. Overexpression of D-pyrroline-5-carboxylase synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology, 108: 1387-1394.
  • Kocabay O, Emregul E, Aydin SS, Aras S 2013. Detection of superoxide radicals in tomato plants exposed to salinity, drought, cold and heavy metal stress using CMC-G-SOD biosensor. Artif Cells Nanomed Biotechnology, 41: 352-8.
  • Kueh JSH, Bright SWJ 1982. Biochemical and genetic analysis of three proline accumulating barley mutants. Plant Science Letters, 27: 233-224.
  • Lee S-B, Kim J-H, Yun J-C 2014. Availability of hairy vetch (Vicia villosa Roth) as leguminous green manure crops for organic rice cultivation in reclaimed saline land. in: Proceedings of the 4th ISOFAR Scientific Conference. Istanbul, Turkey, pp. eprint ID 23671.
  • Liu M, Qiao G, Jiang J, Han X, Sang J, Zhuo R 2014. Identification and expression analysis of salt-responsive genes using a comparative microarray approach in Salix matsudana. Molecular Biology Reports, 41: 6555-68.
  • Liu M, Wang T-Z, Zhang W-H 2015. Sodium extrusion associated with enhanced expression of SOS1underlies different salt tolerance between Medicago falcata and Medicago truncatula seedlings. Environmental and Experimental Botany, 110: 46-55.
  • Majidi MM, Jazayeri MR, Mohammadinejad G 2010. Effect of salt stress on germination characters and some ions accumulation of sainfoin (Onobrychis viciifolia Scop.) genotypes. Iranian Journal of Rangelands and Forests Plant Breeding Research, 17: 256-269.
  • Maughan PJ, Turner TB, Coleman CE, Elzinga DB, Jellen EN, Morales JA, Udall JA, Fairbanks DJ, Bonifacio A 2009. Characterization of Salt Overly Sensitive 1 (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd.). Genome, 52: 647-57.
  • Mezni, M., Ghnaya-Chakroun, A.B., Haffani, S. 2013. Growth and water status in narbonne vetch (Vicia narbonensis L.) under salt stres. Journal of Agriculture and Veterinary Science, 3(3): 2319-2372.
  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K 2012. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica Biophysica Acta, 1819: 86-96.
  • Mladenova YI 1990. Influence of salt stress on primary metabolism of Zea mays L. seedlings of model genotypes. Plant and Soil, 123: 217-222.
  • Munns R 2005. Genes and salt tolerance: bringing them together. New Phytologist, 167(3): 645-63.
  • Munns R, Gilliham M 2015. Salinity tolerance of crops - what is the cost? New Phytologist, 208: 668-73.
  • Munns R, Passioura JB 1984. Hydraulic resistance of plants. 3. Effects of NaCl in barley and lupin. Australian Journal of Plant Physiology, 11: 351-359.
  • Munns, R., Tester, M. 2008. Mechanisms of salinity tolerance. Annu Review of Plant Biology, 59: 651-81.
  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K 1999a. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Letters, 461: 205-210.
  • Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wada K, Tsukaya H, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K 1999c. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant Journal, 18: 185-193.
  • Onaga G, Wydra K 2016. Advances in Plant Tolerance to Abiotic Stresses. (Plant Genomics, InTech: Ed. Abdurakhmonov, D.I.Y.) 167-228.
  • Orak A, Ateş E 2005 Resistance to salinity stress and available water levels at the seedling stage of the common vetch (Vicia sativa L.). Plant Soil and Environment, 51: 51-56.
  • Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B, Zhang WK, Zhang JS, Chen SY 2010. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant Journal, 62: 316-29.
  • Parida AK, Das AB 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicol and Environ Safety, 60: 324-49.
  • Pastori GM, Foyer CH 2002. Common components, networks, and pathways of cross-tolerance to stress. The central role of "redox" and abscisic acid-mediated controls. Plant Physiology, 129: 460-468.
  • Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, Horie T, Leigh RA, Lin HX, Luan S, Maser P, Pantoja O, Rodriguez-Navarro A, Schachtman DP, Schroeder JI, Sentenac H, Uozumi N, Very AA, Zhu JK, Dennis ES, Tester M 2006.
  • Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends in Plant Science, 11: 372-4.
  • Platten JD, Egdane JA, Ismail AM 2013. Salinity tolerance, Na+ exclusion and allele mining of HKT1;5 in Oryza sativa and O. glaberrima: many sources, many genes, one mechanism? BMC Plant Biology, 13: 32.
  • Qadir M, Quillerou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD 2014.Economics of salt-induced land degradation and restoration. Natural Resources Forum 38: 282–295.
  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K 2003. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiology, 133: 1755-67.
  • Romo S, Labrador E, Dopico B 2001. Water stress-regulated gene expression in Cicer arietinum seedlings and plants. Plant Physiology and Biochemistry, 39: 1017-1026.
  • Roy SJ, Negrao S, Tester M 2014. Salt resistant crop plants. Current Opinion in Biotechnology, 26: 115-24.
  • Saberi M, Davari A, Pouzesh H, Shahriari A 2013. Effect of different levels of salinity and temperature on seeds germination characteristics of two range Species under laboratory condition. International Journal of Agriculture and Crop Science, 5: 1553-1559.
  • Sakamoto A, Murata N 2002. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell and Environment, 25: 163-171.
  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences of the United States, 97: 11655-11660.
  • Schmidt R, Mieulet D, Hubberten HM, Obata T, Hoefgen R, Fernie AR, Fisahn J, San Segundo B, Guiderdoni E, Schippers JH, Mueller- Roeber B 2013. Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell, 25: 2115-31.
  • Schmidt R, Schippers JH, Mieulet D, Watanabe M, Hoefgen R, Guiderdoni E, Mueller-Roeber B 2014. SALT-RESPONSIVE ERF1 is a negative regulator of grain filling and gibberellin-mediated seedling establishment in rice. Molecular Plant, 7: 404-21.
  • Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K 2002a. Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Functional and Integrative Genomics, 2: 282-91.
  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K 2001. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell, 13: 61-72.
  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K 2002b. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant Journal, 31: 279-92.
  • Shavrukov Y 2013. Salt stress or salt shock: which genes are we studying? Journal of Experimental Botany, 64(1): 119-27.
  • Shi H, Lee BH, Wu SJ, Zhu JK 2003. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology, 21: 81-5.
  • Sirault XRR, James RA, Furbank RT 2009. A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Functional Plant Biology, 36: 970-977.
  • Song S-Y, Chen Y, Chen J, Dai X-Y, Zhang W-H 2011. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta, 234: 331-345.
  • Sumaryati S, Negrutiu I, Jacobs M 1992. Characterization and regeneration of salt- and water-stress mutants from protoplast culture of Nicotiana plumbaginifolia (Viviani). Theoretical and Applied Genetetics, 83: 613-619.
  • Takahashi S, Seki M, Ishida J, Satou M, Sakurai T, Narusaka M, Kamiya A, Nakajima M, Enju A, Akiyama K, Yamaguchi-Shinozaki K, Shinozaki K 2004. Monitoring the expression profiles of genes induced by hyperosmotic, high salinity, and oxidative stress and abscisic acid treatment in Arabidopsis cell culture using a full-length cDNA microarray. Plant Molecular Biology, 56: 29-55.
  • Tang LL, Cai H, Ji W, Luo X, Wang ZY, Wu J, Wang XD, Cui L, Wang Y, Zhu YM, Bai X 2013. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiology and Biochemistry, 71: 22-30.
  • Temel S, Şimşek U 2011. Iğdır Ovası Toprakların Çoraklaşma Süreci ve Çözüm Önerileri. Alınteri, 21(B): 53-59.
  • Torres GAM, Pflieger S, Corre-Menguy F, Mazubert C, Hartmann C, Lelandais-Briere C 2006. Identification of novel drought-related mRNAs in common bean roots by differential display RT-PCR. Plant Science, 171: 300-307.
  • Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi MH 1999. A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell, 11: 1195-1206.
  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant Journal, 46(6): 1092-1092.
  • Verslues PE, Juenger TE 2011. Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Current Opinion in Plant Biology, 14: 240-245.
  • Volkov V 2015. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Frontiers in Plant Science, 6: 873.
  • Volkov V, Amtmann A 2006. Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress. Plant Journal, 48: 342-53.
  • Wu SJ, Ding L, Zhu JK 1996 SOS1, a Genetic Locus Essential for Salt Tolerance and Potassium Acquisition. The Plant Cell, 8: 617-627.
  • Zahran HH 2001. Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. Journal of Biotechnology, 91: 143-53.
  • Zahran, HH, Sprent JI 1986. Effects of sodium chloride and polyethylene glycol on root-hair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta, 167: 303-9.
  • Zhanwu G, Hui Z, Jicai G, Chunwu Y, Chunsheng M, Deli W 2011. Germination responses of Alfalfa (Medicago sativa L.) seeds to various salt-alkaline mixed stress. African Journal of Agricultural Research, 6: 3793-3803.
  • Zhu JK 2000. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology, 124(3): 941-8.
  • Zhu JK 2001. Plant salt tolerance. Trends in Plant Science, 6: 66-71.
  • Zhu JK 2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6, 441-445.
  • Zhu JK 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53: 247-73.

Bazı Tarla Bitkilerinin Tuz Stresine Gösterdikleri Adaptasyon Mekanizmaları

Yıl 2018, Cilt: 21 Sayı: 5, 800 - 808, 31.10.2018
https://doi.org/10.18016/ksudobil.325374

Öz

Topraklardaki
tuzluluk dünya genelinde bitkisel üretimde verimi doğrudan sınırlandıran en
önemli abiyotik stress faktörlerinden biridir. Tuz stresi aynı zamanda tarımsal
üretimin yapıldığı bölgelerde bitkisel çeşitliliği doğrudan belirler
niteliktedir. Tuz stresine karşı bitkisel tepkilerin oluşması ve ortaya çıkması,
kompleks moleküler mekanizmalar tarafından kontrol edilen fizyolojik
değişimlere neden olmakta ve devamında tolerans gelişmektedir. Bu değişim ve
farklılıklar bazen bitki türüne özgü bazen de tüm bitkilerde ortak olarak
ortaya çıkabilen benzer mekanizmalar ile tanımlanabilmektedir. Kompleks olan bu
mekanizmalar aynı zamanda doğrudan tuz stresine yönelik olarak gelişebileceği
gibi bazı durumlarda kuraklık gibi diğer abiyotik stress faktörleri ve hatta
biyotik stress faktörleri ile birlikte ortaklaşa kullanılan mekanizmalara bağlı
olarak gelişebilmektedir. Bu nedenle gerek bitki düzeyinde gerekse tolerans
mekanizmaları seviyesinde bitkilerdeki tuz stresi ve tolerans mekanizmalarının
anlaşılması, tuz stresini daha iyi tolere edebilen yeni bitki çeşitlerinin
geliştirilmesine çok önemli katkılar sunacaktır. Bu çalışma, güncel literatür
varlığında tuz stresine yönelik bitkisel tepkilerin anlaşılmasına katkı sunmak
amacıyla hazırlanmıştır

Kaynakça

  • Abel GH 1969. Inheritance of the capacity for chloride inclusion and exclusion by soybeans. Crop Science, 9: 697-698.
  • Annicchiarico P, Pecetti L, Tava A 2013. Physiological and morphological traits associated with adaptation of lucerne (Medicago sativa) to severely drought-stressed and to irrigated environments. Annals of Applied Biology, 162: 27-40.
  • Anonim 2005. Çölleşme ile mücadele Türkiye ulusal eylem programı. T.C. Çevre ve Orman Bakanlığı yayınları No: 250, Ankara, ISBN 975-7347-51-5.
  • Aslam M, Qureshi RH, Ahmed N 1993. A rapid screening technique for salt tolerance in rice (Oryza sativa L.). Plant Soil, 150: 99-107.
  • Ateş E, Tekeli AS 2007. Salinity tolerance of Persian clover (Trifolium resupinatum var. majus Boiss) lines at germination and seedling stage. World Journal of Agricultural Sciences, 3: 71-79.
  • Bai X, Liu J, Tang LL, Cai H, Chen M, Ji W, Liu Y, Zhu YM 2013. Overexpression of GsCBRLK from Glycine soja enhances tolerance to salt stress in transgenic alfalfa (Medicago sativa). Functional Plant Biology, 40: 1048-1056.
  • Bartels D, Sunkar R 2005. Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24: 23-58.
  • Biligili U, Çarpıcı EB, Aşık BB, Çelik N 2011. Root and shoot response of common vetch (Vicia sativa L.), forage pea (Pisum sativum L.) and canola (Brassica napus L.) to salt stress during early seedling growth stages. Turkish Journal of Field Crops, 16: 33-38.
  • Boukhatem ZF, Domergue O, Bekki A, Merabet C, Sekkour S, Bouazza F, Duponnois R, de Lajudie P, Galiana A 2012. Symbiotic characterization and diversity of rhizobia associated with native and introduced acacias in arid and semi-arid regions in Algeria. FEMS Microbiol Ecology, 80: 534-47.
  • Bu Y, Kou J, Sun, B, Takano T, Liu S 2015. Adverse effect of urease on salt stress during seed germination in Arabidopsis thaliana. FEBS Letter, 589: 1308-13.
  • Can E, Arslan M, Sener O, Daghan H 2013. Response of strawberry clover (Trifolium fragiferum L.) to salinity stress. Research on Crops, 14: 576-584.
  • Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM 2002. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Molecular Biology, 48: 649-665.
  • Chakraborty K, Sairam RK, Bhattacharya RC 2012. Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes. Plant Physiology Biochemistry, 51: 90-101.
  • Chazen O, Hartung W, Neumann PM 1995. The different effects of PEG 6000 and NaCI on leaf development are associated with differential inhibition of root water transport. Plant Cell and Environment, 18: 727-735.
  • Chen H, Zhang B, Hicks LM, Xiong L 2011. A nucleotide metabolite controls stress-responsive gene expression and plant development. PLoS One, 6: e26661.
  • Cho YH, Hong JW, Kim EC, Yoo SD 2012. Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development. Plant Physiology, 158: 1955-64.
  • Cramer GR, Alberico GJ, Schmidt C 1994. Leaf Expansion Limits Dry Matter Accumulation of Salt-stressed Maize. Australian Journal of Plant Physiology, 21: 663-674.
  • Croser JS, Clarke HJ, Siddique KHM, Khan TN 2003. Low-temperature stress: Implications for chickpea (Cicer arietinum L.) improvement. Critical Review in Plant Science, 22: 185-219.
  • Çelik Ö, Atak Ç 2012. Evalutation of proline accumulation and Delta1 pyrroline -5-carboxylate synthase (P5CS) gene expression during salinity stress in two soybean (Glycine max L. Merr) varieties. Polish Journal of Environmental. Studies, 21: 559-564.
  • Çelik Ö, Ünsal SG 2013. Expression analysis of proline metabolism-related genes in salt-tolerant soybean mutant plants. Plant Omics Journal, 6(5): 364-370.
  • Çöçü S, Uzun O 2011. Germination, seedling growth and ion accumulation of bitter vetch (Vicia ervilia (L.) Willd. ) lines under NaCl stress. African Journal of Biotechnology, 10: 15869-15874.
  • Fang J, Han X, Xie L, Liu M, Qiao G, Jiang J, Zhuo R 2014. Isolation of salt stress-related genes from Aspergillus glaucus CCHA by random overexpression in Escherichia coli. Scientific WorldJ ournal, 2014: 620959.
  • Fujita Y, Yoshida T, Yamaguchi-Shinozaki K 2013. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiologia Plantarum, 147: 15-27.
  • Ghaderi-Far F, Gherekhlo J, Alimagham M 2010. Influence of environmental factors on seed germination and seedling emergence of yellow sweet clover (Melilotus officinalis). Planta Daninha, 28: 463-469.
  • Gravandi S 2013. The examination of different NaCl concentrations on germination, radicle length and plumule length on three cultivars of clover. Annals of Biological Research, 4: 200-203.
  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ 2000. Plant Cellular and Molecular Responses to High Salinity. Annual Review Plant Physiology and Plant Molecular Biology, 51: 463-499.
  • Hazen SP, Pathan MS. Sanchez A, Baxter I, Dunn M, Estes B, Chang HS, Zhu T, Kreps JA, Nguyen HT 2005. Expression profiling of rice segregating for drought tolerance QTLs using a rice genome array. Functional and Integrative Genomics, 5: 104-116.
  • Hu Y, Chen L, Wang H, Zhang L, Wang F, Yu D 2013. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant Journal, 74: 730-45.
  • Ismail A, Takeda S, Nick P 2014. Life and death under salt stress: same players, different timing? Journal of Experimental Botany, 65: 2963-2979.
  • Jin HC, Sun Y, Yang QC, Chao YH, Kang JM, Jin, H., Li, Y., Margaret, G. 2010. Screening of genes induced by salt stress from Alfalfa. Molecular Biology Reports, 37, 745-753.
  • Kang J, Xie W, Sun Y, Yang Q, Wu M 2010. Identification of genes induced by salt stress from Medicago truncatula L. seedlings. African Journal of Biotechnology, 9: 7589-7594.
  • Kaplan Ş, Güçlü Ş, Baytekin G, Tiryaki İ 2015. Yonca (Medicago sativa L.) ve çayır üçgülü (Trifolium pratense L.) tohumlarının tuz ve kuraklık stresine verdikleri tepkilerin belirlenmesi. Türkiye 11. Tarla Bitkileri Kongresi, 7-10 Eylül 2015, Çanakkale.
  • Kishor KPB, Hong Z, Miao GH, Hu CAA, Verma DPS 1995. Overexpression of D1-pyrroline-5-carboxylate synthetase increase proline production and confers osmotolerance in transgenic plants. Plant Physiology, 108: 1387-1394.
  • Kishore PBK, Hong Z, Miao G-U, Hu C-A, Verma DPS 1995. Overexpression of D-pyrroline-5-carboxylase synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology, 108: 1387-1394.
  • Kocabay O, Emregul E, Aydin SS, Aras S 2013. Detection of superoxide radicals in tomato plants exposed to salinity, drought, cold and heavy metal stress using CMC-G-SOD biosensor. Artif Cells Nanomed Biotechnology, 41: 352-8.
  • Kueh JSH, Bright SWJ 1982. Biochemical and genetic analysis of three proline accumulating barley mutants. Plant Science Letters, 27: 233-224.
  • Lee S-B, Kim J-H, Yun J-C 2014. Availability of hairy vetch (Vicia villosa Roth) as leguminous green manure crops for organic rice cultivation in reclaimed saline land. in: Proceedings of the 4th ISOFAR Scientific Conference. Istanbul, Turkey, pp. eprint ID 23671.
  • Liu M, Qiao G, Jiang J, Han X, Sang J, Zhuo R 2014. Identification and expression analysis of salt-responsive genes using a comparative microarray approach in Salix matsudana. Molecular Biology Reports, 41: 6555-68.
  • Liu M, Wang T-Z, Zhang W-H 2015. Sodium extrusion associated with enhanced expression of SOS1underlies different salt tolerance between Medicago falcata and Medicago truncatula seedlings. Environmental and Experimental Botany, 110: 46-55.
  • Majidi MM, Jazayeri MR, Mohammadinejad G 2010. Effect of salt stress on germination characters and some ions accumulation of sainfoin (Onobrychis viciifolia Scop.) genotypes. Iranian Journal of Rangelands and Forests Plant Breeding Research, 17: 256-269.
  • Maughan PJ, Turner TB, Coleman CE, Elzinga DB, Jellen EN, Morales JA, Udall JA, Fairbanks DJ, Bonifacio A 2009. Characterization of Salt Overly Sensitive 1 (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd.). Genome, 52: 647-57.
  • Mezni, M., Ghnaya-Chakroun, A.B., Haffani, S. 2013. Growth and water status in narbonne vetch (Vicia narbonensis L.) under salt stres. Journal of Agriculture and Veterinary Science, 3(3): 2319-2372.
  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K 2012. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica Biophysica Acta, 1819: 86-96.
  • Mladenova YI 1990. Influence of salt stress on primary metabolism of Zea mays L. seedlings of model genotypes. Plant and Soil, 123: 217-222.
  • Munns R 2005. Genes and salt tolerance: bringing them together. New Phytologist, 167(3): 645-63.
  • Munns R, Gilliham M 2015. Salinity tolerance of crops - what is the cost? New Phytologist, 208: 668-73.
  • Munns R, Passioura JB 1984. Hydraulic resistance of plants. 3. Effects of NaCl in barley and lupin. Australian Journal of Plant Physiology, 11: 351-359.
  • Munns, R., Tester, M. 2008. Mechanisms of salinity tolerance. Annu Review of Plant Biology, 59: 651-81.
  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K 1999a. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Letters, 461: 205-210.
  • Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wada K, Tsukaya H, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K 1999c. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant Journal, 18: 185-193.
  • Onaga G, Wydra K 2016. Advances in Plant Tolerance to Abiotic Stresses. (Plant Genomics, InTech: Ed. Abdurakhmonov, D.I.Y.) 167-228.
  • Orak A, Ateş E 2005 Resistance to salinity stress and available water levels at the seedling stage of the common vetch (Vicia sativa L.). Plant Soil and Environment, 51: 51-56.
  • Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B, Zhang WK, Zhang JS, Chen SY 2010. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant Journal, 62: 316-29.
  • Parida AK, Das AB 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicol and Environ Safety, 60: 324-49.
  • Pastori GM, Foyer CH 2002. Common components, networks, and pathways of cross-tolerance to stress. The central role of "redox" and abscisic acid-mediated controls. Plant Physiology, 129: 460-468.
  • Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, Horie T, Leigh RA, Lin HX, Luan S, Maser P, Pantoja O, Rodriguez-Navarro A, Schachtman DP, Schroeder JI, Sentenac H, Uozumi N, Very AA, Zhu JK, Dennis ES, Tester M 2006.
  • Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends in Plant Science, 11: 372-4.
  • Platten JD, Egdane JA, Ismail AM 2013. Salinity tolerance, Na+ exclusion and allele mining of HKT1;5 in Oryza sativa and O. glaberrima: many sources, many genes, one mechanism? BMC Plant Biology, 13: 32.
  • Qadir M, Quillerou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD 2014.Economics of salt-induced land degradation and restoration. Natural Resources Forum 38: 282–295.
  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K 2003. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiology, 133: 1755-67.
  • Romo S, Labrador E, Dopico B 2001. Water stress-regulated gene expression in Cicer arietinum seedlings and plants. Plant Physiology and Biochemistry, 39: 1017-1026.
  • Roy SJ, Negrao S, Tester M 2014. Salt resistant crop plants. Current Opinion in Biotechnology, 26: 115-24.
  • Saberi M, Davari A, Pouzesh H, Shahriari A 2013. Effect of different levels of salinity and temperature on seeds germination characteristics of two range Species under laboratory condition. International Journal of Agriculture and Crop Science, 5: 1553-1559.
  • Sakamoto A, Murata N 2002. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell and Environment, 25: 163-171.
  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences of the United States, 97: 11655-11660.
  • Schmidt R, Mieulet D, Hubberten HM, Obata T, Hoefgen R, Fernie AR, Fisahn J, San Segundo B, Guiderdoni E, Schippers JH, Mueller- Roeber B 2013. Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell, 25: 2115-31.
  • Schmidt R, Schippers JH, Mieulet D, Watanabe M, Hoefgen R, Guiderdoni E, Mueller-Roeber B 2014. SALT-RESPONSIVE ERF1 is a negative regulator of grain filling and gibberellin-mediated seedling establishment in rice. Molecular Plant, 7: 404-21.
  • Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K 2002a. Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Functional and Integrative Genomics, 2: 282-91.
  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K 2001. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell, 13: 61-72.
  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K 2002b. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant Journal, 31: 279-92.
  • Shavrukov Y 2013. Salt stress or salt shock: which genes are we studying? Journal of Experimental Botany, 64(1): 119-27.
  • Shi H, Lee BH, Wu SJ, Zhu JK 2003. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology, 21: 81-5.
  • Sirault XRR, James RA, Furbank RT 2009. A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Functional Plant Biology, 36: 970-977.
  • Song S-Y, Chen Y, Chen J, Dai X-Y, Zhang W-H 2011. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta, 234: 331-345.
  • Sumaryati S, Negrutiu I, Jacobs M 1992. Characterization and regeneration of salt- and water-stress mutants from protoplast culture of Nicotiana plumbaginifolia (Viviani). Theoretical and Applied Genetetics, 83: 613-619.
  • Takahashi S, Seki M, Ishida J, Satou M, Sakurai T, Narusaka M, Kamiya A, Nakajima M, Enju A, Akiyama K, Yamaguchi-Shinozaki K, Shinozaki K 2004. Monitoring the expression profiles of genes induced by hyperosmotic, high salinity, and oxidative stress and abscisic acid treatment in Arabidopsis cell culture using a full-length cDNA microarray. Plant Molecular Biology, 56: 29-55.
  • Tang LL, Cai H, Ji W, Luo X, Wang ZY, Wu J, Wang XD, Cui L, Wang Y, Zhu YM, Bai X 2013. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiology and Biochemistry, 71: 22-30.
  • Temel S, Şimşek U 2011. Iğdır Ovası Toprakların Çoraklaşma Süreci ve Çözüm Önerileri. Alınteri, 21(B): 53-59.
  • Torres GAM, Pflieger S, Corre-Menguy F, Mazubert C, Hartmann C, Lelandais-Briere C 2006. Identification of novel drought-related mRNAs in common bean roots by differential display RT-PCR. Plant Science, 171: 300-307.
  • Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi MH 1999. A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell, 11: 1195-1206.
  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant Journal, 46(6): 1092-1092.
  • Verslues PE, Juenger TE 2011. Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Current Opinion in Plant Biology, 14: 240-245.
  • Volkov V 2015. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Frontiers in Plant Science, 6: 873.
  • Volkov V, Amtmann A 2006. Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress. Plant Journal, 48: 342-53.
  • Wu SJ, Ding L, Zhu JK 1996 SOS1, a Genetic Locus Essential for Salt Tolerance and Potassium Acquisition. The Plant Cell, 8: 617-627.
  • Zahran HH 2001. Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. Journal of Biotechnology, 91: 143-53.
  • Zahran, HH, Sprent JI 1986. Effects of sodium chloride and polyethylene glycol on root-hair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta, 167: 303-9.
  • Zhanwu G, Hui Z, Jicai G, Chunwu Y, Chunsheng M, Deli W 2011. Germination responses of Alfalfa (Medicago sativa L.) seeds to various salt-alkaline mixed stress. African Journal of Agricultural Research, 6: 3793-3803.
  • Zhu JK 2000. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology, 124(3): 941-8.
  • Zhu JK 2001. Plant salt tolerance. Trends in Plant Science, 6: 66-71.
  • Zhu JK 2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6, 441-445.
  • Zhu JK 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53: 247-73.
Toplam 92 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm DERLEME MAKALE (Review Article)
Yazarlar

İskender Tiryaki

Yayımlanma Tarihi 31 Ekim 2018
Gönderilme Tarihi 1 Temmuz 2017
Kabul Tarihi 9 Nisan 2018
Yayımlandığı Sayı Yıl 2018Cilt: 21 Sayı: 5

Kaynak Göster

APA Tiryaki, İ. (2018). Bazı Tarla Bitkilerinin Tuz Stresine Gösterdikleri Adaptasyon Mekanizmaları. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 21(5), 800-808. https://doi.org/10.18016/ksudobil.325374

Cited By










21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149