Lemon Peel Extract for Synthesizing Non-Toxic Silver Nanoparticles through One-Step Microwave-Accelerated Scheme
Yıl 2021,
Cilt: 24 Sayı: 1, 1 - 10, 28.02.2021
Israt Jahan
,
İbrahim Işıldak
Öz
In this study, biofunctionalized globular or oval shaped silver nanoparticles were obtained by using aqueous extract of lemon peel (Citrus limon) via microwave-accelerated heating system. While UV−visible spectroscopy, FTIR and XRD analyses were applied to recognize the formation of nano-silver, TEM and Zeta analysis were employed to reveal their morphological features. UV–vis spectrum of fabricated AgNPs indicated its characteristic maximum absorbance at 445 nm. Phytosynthesized silver nanoparticles were poly-dispersed with Z-average value of 41.86 nm, and showed excellent stability for several months with no aggregation and agglomeration. The non-toxic nature of the developed Ag nanoparticles was further confirmed by applying on healthy mouse fibroblast L929 cell line, which may expand their potentials for further studies related to medical science and other biological applications.
Teşekkür
This study was produced as part of the PhD dissertation of the first author. The authors would like to express their cordial gratefulness to all the lab members of the Polymeric Biomaterials and Macromolecular Synthesis laboratory at Yıldız Technical University for their precious support and assistance. The authors also present special gratefulness to Dr. Fatih Erci and Dr. Rabia ÇAKIR KOÇ for their immense support.
Kaynakça
- Ahamed M, Alsalhi MS, Siddiqui MK, 2010. Silver nanoparticle applications and human health. Clinica Chimica Acta; International Journal of Clinical Chemistry, 411(23-24): 1841-1848. DOI:10.1016/j.cca.2010.08.016
- Ahmed A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Satyr M, 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 28(4): 313–318. DOI: 10.1016/S0927-7765(02)00174-1
- Akter M, Sikder MT, Rahman MM, Ullah AKMA, Hossain KFB, Banik S, Hosokawa T, Saito T, Kurasaki M, 2018. A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. Journal of Advanced Research, 9: 1-16.
- Ayinde WB, Gitari WM, Samie A, 2019. Optimization of microwave-assisted synthesis of silver nanoparticle by Citrus paradisi peel and its application against pathogenic water strain. Green Chemistry Letters and Reviews, 12(3): 225-234. DOI: 10.1080/17518253.2019.1627427
- Basavegowda N, Lee YR, 2013. Synthesis of silver nanoparticles using Satsuma mandarin (Citrus unshiu) peel extract: a novel approach towards waste utilization. Materials Letters, 109: 31–33. DOI: 10.1016/j.matlet.2013.07.039
- Bocco A, Cuvelier ME, Richard H, Berset C, 1998. Antioxidant activity and phenolic composition of citrus peel and seed extracts. Journal of Agricultural and Food Chemistry, 46(6): 2123-2129. DOI: 10.1021/jf9709562
- Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC, 2005. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Sciences: An Official Journal of the Society of Toxicology, 88(2): 412-419. doi:10.1093/toxsci/kfi256
- Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K, 2014. Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science & Engineering. C, Materials for Biological Applications, 44: 278-284. DOI: 10.1016/j.msec.2014.08.031
- Faedmaleki F, Shirazi FS, Salarian A-A, Ashtiani HA, Rastegar H, 2014. Toxicity effect of silver nanoparticles on mice liver primary cell culture and HepG2 cell line. Iranian Journal of Pharmaceutical Research, 13(1): 235–242.
- Faraji M, Yamini Y, Rezaee M, 2010. Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. Journal of the Iranian Chemical Society, 7(1): 1-37. DOI: 10.1007/BF03245856
- Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ, 2004. Silver nanoparticle and polymeric medical device: A new approach to prevention of infection? The Journal of Antimicrobial Chemotherapy, 54(6):1019-1024. DOI: 10.1093/jac/dkh478
- Grillet N, Manchon D, Cottancin E, Bertorelle F, Bonnet C, Broyer M, Lermé J, Pellarin M, 2013. Photo-oxidation of individual silver nanoparticles: a real-time tracking of optical and morphological changes. The Journal of Physical Chemistry C, 117(5): 2274–2282. DOI: 10.1021/jp311502h
- Gumustas M, Sengel-Turk CT, Gumustas A, Ozkan SA, Uslu B, 2017. Effect of polymer-based nanoparticles on the assay of antimicrobial drug delivery systems. In: Grumezescu AM (Ed.), Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics, Elsevier, Amsterdam, pp. 67-108. DOI: 10.1016/B978-0-323-
52725-5.00005-8
- Hamedi S, Shojaosadati SA, Mohammadi A 2017. Evaluation of the catalytic, antibacterial and anti-biofilm activities of the Convolvulus arvensis extract functionalized silver nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 167: 36-44. DOI: 10.1016/j.jphotobiol.2016.12.025
- Hind AR, Bhargava SK, McKinnon A, 2001. At the solid/liquid interfaces: FTIR/ATR—the tool of choice. Advances in Colloid and Interface Science, 93(1-3):91-114. DOI: 10.1016/s0001-8686(00)00079-8
- Iravani S, 2011. Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10): 2638–2650. DOI: 10.1039/C1GC15386B
- Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B, 2014. Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9(6): 385–406.
- Jahan I, Erci F, Isildak I, 2019. Microwave-assisted green synthesis of non-cytotoxic silver nanoparticles using the aqueous extract of Rosa santana (rose) petals and their antimicrobial activity. Analytical Letters, 52(12): 1860-1873. DOI: 10.1080/00032719.2019.1572179
- Kaba SI, Egorova EM, 2015. In vitro studies of the toxic effects of silver nanoparticles on HeLa and U937 cells. Nanotechnology, Science and Applications, 8:19-29. DOI: 10.2147/NSA.S78134
- Kahrilas GA, Wally LM, Fredrick SJ, Hiskey M, Prieto AL, Owens JE, 2014. Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustainable Chemistry & Engineering, 2 (3): 367-376.
- Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumar J, Srinivasan K 2011. Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(3): 594-598. DOI: 10.1016/j.saa.2011.03.040
- Kudle KR, Donda MR, Merugu R, Kudle MR, Rudra MPP, 2013. Microwave assisted green synthesis of silver nanoparticles using Boswellia Serrata flower extract and evaluation of their antimicrobial activity. International Research Journal of Pharmacy, 4 (6), 197-200.
- Kumar A, Dixit CK, 2017. Methods for characterization of nanoparticles. In: S Nimesh, R Chandra & N Gupta (Eds.), Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, Elsevier, Amsterdam, pp. 43-58. DOI: 10.1016/B978-0-08-100557-6.00003-1
- Lankoff A, Sandberg WJ, Wegierek-Ciuk A, Lisowska H, Refsnes M, Sartowska B, Schwarze PE, Meczynska-Wielgosz S, Wojewodzka M, Kruszewski M, 2012. The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells. Toxicology Letters, 208(3): 197-213. DOI:
10.1016/j.toxlet.2011.11.006
- Lee KJ, Jun BH, Choi J, Lee Y, Joung J, Oh YO, 2007. Environmentally friendly synthesis of organic-soluble silver nanoparticles for printed electronics. Nanotechnology, 18(33): 335601. DOI: 10.1088/0957-4484/18/33/335601
- Li S, Lo CY, Ho CT, 2006. Hydroxylatedpolymethoxy-flavones and methylated flavonoids in sweet orange
(Citrus sinensis) peel. Journal of Agricultural and Food Chemistry, 54(12): 4176-4185. DOI: 10.1021/jf060234n
- Lin L, Wang W, Huang J, 2010. Nature factory of silver nanowires: Plant-mediated synthesis using broth of Cassia fistula leaf. Chemical Engineering Journal, 162: 852-858. DOI: 10.1016/j.cej.2010.06.023
- Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, QF Zhou, Yan B, Jiang GB, 2010. Impact of silver nanoparticles on human cells: Effect of particle size. Nanotoxicology, 4(3): 319-330. DOI: 10.3109/17435390.2010.483745
- López-García J, Lehocký M, Humpolíček P, Sáha P, 2014. HaCaT keratinocytes response on antimicrobial atelocollagen substrates: extent of cytotoxicity, cell viability and proliferation. Journal of Functional Biomaterials, 5(2): 43-57. DOI: 10.3390/jfb5020043
- M’hiri N, Ioannou I, Ghoul M, Boudhrioua N M, 2014. Extraction methods of citrus peel phenolic compounds. Food Reviews International, 30(4): 265-290. DOI: 10.1080/87559129.2014.924139
- Mohanpuria P, Rana NK, Yadav SK, 2008. Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 10: 507–517. DOI: 10.1007/s11051-007-9275-x
- Murphy CJ, Gole AM, Hunyadi SE, Stone, JW, Sisco PN, Alkilany A, Kinard BE, Hankins P, 2008. Chemical sensing and imaging with metallic nanorods. Chemical Communities, 5: 544-557. DOI: 10.1039/B711069C
- Nisha SN, Aysha OS, Syed J, Rahaman N, Kumar PV, Valli S, Nirmala P, Reena A, 2014. Lemon peels mediated synthesis of silver nanoparticles and its antidermatophytic activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 124: 194-198. DOI: 10.1016/j.saa.2013.12.019
- Park EJ, Yi J, Kim Y, Choi K, Park K, 2010. Silver nanoparticles induced toxicity by a Trojan-horse type mechanism. Toxicology in Vitro, 24(3):872-878. DOI: 10.1016/j.tiv.2009.12.001
- Perde-Schrepler M, Florea A, Brie I, Virag P, Fischer-Fodor E, Vâlcan A, Gurzău E, Lisencu C, Maniu A, 2019. Size-dependent cytotoxicity and genotoxicity of silver nanoparticles in cochlear cells in vitro. Journal of Nanomaterials, 2019: Article ID 6090259. DOI: 10.1155/2019/6090259
- Rai M, Yadav A, 2013. Plants as potential synthesizer of precious metal nanoparticles: progress and prospects. IET Nanobiotechnology, 7(3):117-124. DOI: 10.1049/iet-nbt.2012.0031
- Roy K, Sarkar CK, Ghosh CK, 2014. Green Synthesis of silver nanoparticles using fruit extract of Malus domestica and study of its antimicrobial activity. Digest Journal of Nanomaterials and Biostructures, 9(3): 1137-1147.
- Sahu D, Kannan GM, Tailang M, Vijayaraghavan R 2016. In-Vitro Cytotoxicity of Nanoparticles: A Comparison between Particle Size and Cell Type. Journal of Nanoscience, ID: 4023852 (9 pages). DOI: 10.1155/2016/4023852
- Seil JT, Webster TJ, 2012. Antimicrobial applications of nanotechnology: Methods and literature. International Journal of Nanomedicine, 7: 2767-2781. DOI: 10.2147/IJN.S24805
- Silver S, 2003. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. Federation of European Microbiological Societies, 27(2-3):341-353. DOI: 10.1016/S0168-6445(03)00047-0
- Stoehr LC, Gonzalez E, Stampfl A, Casals E, Duschl A, Puntes V, Oostingh GJ, 2011. Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Particle and Fibre Toxicology, 8 (36): 1-15. DOI:
10.1186/1743-8977-8-36
- Thakkar KN, Mhatre SS, Parikh RY, 2010. Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 6 (2): 257–262. DOI: 10.1016/j.nano.2009.07.002
- Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T, 2005. Microwave-assisted synthesis of metallic nanostructures in solution, Chemistry, 11(2): 440-452. DOI: 10.1002/chem.200400417
- Usha S, Ramappa KT, Hiregoudar S, Vasanthkumar GD, Aswathanarayana DS, 2017. Biosynthesis and characterization of copper nanoparticles from tulasi (Ocimum sanctum L.) leaves. International Journal of
Current Microbiology and Applied Sciences, 6 (11): 2219-2228. DOI: 10.20546/ijcmas.2017.611.263
- Yin YL, Zhong Z, Gates B, Venkateswaran S 2002. Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. Journal of Materials Chemistry, 12: 522-527. DOI: 10.1039/B107469E
- Zhang XF, Liu ZG, Shen W, Gurunathan S, 2016. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. International Journal of Molecular Sciences, 17(9): E1534. DOI: 10.3390/ijms17091534
Mikrodalga Hızlandırmalı Yöntemi İle Limon Kabuk Ekstraktsiyonu Kullanarak Non-toksik Gümüş Nanopartiküllerin Sentezlenmesi
Yıl 2021,
Cilt: 24 Sayı: 1, 1 - 10, 28.02.2021
Israt Jahan
,
İbrahim Işıldak
Öz
Bu çalışmada, mikrodalga hızlandırmalı ısıtma sistemi yöntemi ile limon kabuk (Citrus limon) ekstraktsiyonu kullanarak biyofonksiyonel küre şeklinde veya oval şekilli gümüş nanopartiküller elde edilmiştir. Çalışmada gümüş nanopartiküllerin oluşumunu tanımak için UV–vis absorpsiyon spektroskopi, FTIR ve XRD analizleri uygulanırken, nanopartiküllerin morfolojik özelliklerini ortaya çıkarmak için TEM ve Zeta analizi uygulanılmıştır. Üretilmiş AgNP’lerin UV-vis spektrumu, 445 nm’de karakteristik maksimum absorbansını göstermiştir. Fitosentezlenmiş gümüş nanopartiküller, Z-ortalama değeri 41,86 nm olan poli-dispersiyon haline getirilmesi ile birlikte herhangi bir agregasyon ve agglomerasyon olmadan birkaç ay boyunca mükemmel stabilite sergilemiştir. Daha sonra, sağlıklı fare fibroblast hücreleri (L929 hücre çizgisi) üzerindeki biyosentezlenmiş bu Ag NP’lerin non-toksik özelliği doğrulanmıştır. Bu durum, tıp bilimlerin yanı sıra çeşitli biyolojik uygulamalarda da bu nanopartiküllerin potansiyellerini göstermektedir.
Kaynakça
- Ahamed M, Alsalhi MS, Siddiqui MK, 2010. Silver nanoparticle applications and human health. Clinica Chimica Acta; International Journal of Clinical Chemistry, 411(23-24): 1841-1848. DOI:10.1016/j.cca.2010.08.016
- Ahmed A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Satyr M, 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 28(4): 313–318. DOI: 10.1016/S0927-7765(02)00174-1
- Akter M, Sikder MT, Rahman MM, Ullah AKMA, Hossain KFB, Banik S, Hosokawa T, Saito T, Kurasaki M, 2018. A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. Journal of Advanced Research, 9: 1-16.
- Ayinde WB, Gitari WM, Samie A, 2019. Optimization of microwave-assisted synthesis of silver nanoparticle by Citrus paradisi peel and its application against pathogenic water strain. Green Chemistry Letters and Reviews, 12(3): 225-234. DOI: 10.1080/17518253.2019.1627427
- Basavegowda N, Lee YR, 2013. Synthesis of silver nanoparticles using Satsuma mandarin (Citrus unshiu) peel extract: a novel approach towards waste utilization. Materials Letters, 109: 31–33. DOI: 10.1016/j.matlet.2013.07.039
- Bocco A, Cuvelier ME, Richard H, Berset C, 1998. Antioxidant activity and phenolic composition of citrus peel and seed extracts. Journal of Agricultural and Food Chemistry, 46(6): 2123-2129. DOI: 10.1021/jf9709562
- Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC, 2005. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Sciences: An Official Journal of the Society of Toxicology, 88(2): 412-419. doi:10.1093/toxsci/kfi256
- Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K, 2014. Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science & Engineering. C, Materials for Biological Applications, 44: 278-284. DOI: 10.1016/j.msec.2014.08.031
- Faedmaleki F, Shirazi FS, Salarian A-A, Ashtiani HA, Rastegar H, 2014. Toxicity effect of silver nanoparticles on mice liver primary cell culture and HepG2 cell line. Iranian Journal of Pharmaceutical Research, 13(1): 235–242.
- Faraji M, Yamini Y, Rezaee M, 2010. Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. Journal of the Iranian Chemical Society, 7(1): 1-37. DOI: 10.1007/BF03245856
- Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ, 2004. Silver nanoparticle and polymeric medical device: A new approach to prevention of infection? The Journal of Antimicrobial Chemotherapy, 54(6):1019-1024. DOI: 10.1093/jac/dkh478
- Grillet N, Manchon D, Cottancin E, Bertorelle F, Bonnet C, Broyer M, Lermé J, Pellarin M, 2013. Photo-oxidation of individual silver nanoparticles: a real-time tracking of optical and morphological changes. The Journal of Physical Chemistry C, 117(5): 2274–2282. DOI: 10.1021/jp311502h
- Gumustas M, Sengel-Turk CT, Gumustas A, Ozkan SA, Uslu B, 2017. Effect of polymer-based nanoparticles on the assay of antimicrobial drug delivery systems. In: Grumezescu AM (Ed.), Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics, Elsevier, Amsterdam, pp. 67-108. DOI: 10.1016/B978-0-323-
52725-5.00005-8
- Hamedi S, Shojaosadati SA, Mohammadi A 2017. Evaluation of the catalytic, antibacterial and anti-biofilm activities of the Convolvulus arvensis extract functionalized silver nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 167: 36-44. DOI: 10.1016/j.jphotobiol.2016.12.025
- Hind AR, Bhargava SK, McKinnon A, 2001. At the solid/liquid interfaces: FTIR/ATR—the tool of choice. Advances in Colloid and Interface Science, 93(1-3):91-114. DOI: 10.1016/s0001-8686(00)00079-8
- Iravani S, 2011. Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10): 2638–2650. DOI: 10.1039/C1GC15386B
- Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B, 2014. Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9(6): 385–406.
- Jahan I, Erci F, Isildak I, 2019. Microwave-assisted green synthesis of non-cytotoxic silver nanoparticles using the aqueous extract of Rosa santana (rose) petals and their antimicrobial activity. Analytical Letters, 52(12): 1860-1873. DOI: 10.1080/00032719.2019.1572179
- Kaba SI, Egorova EM, 2015. In vitro studies of the toxic effects of silver nanoparticles on HeLa and U937 cells. Nanotechnology, Science and Applications, 8:19-29. DOI: 10.2147/NSA.S78134
- Kahrilas GA, Wally LM, Fredrick SJ, Hiskey M, Prieto AL, Owens JE, 2014. Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustainable Chemistry & Engineering, 2 (3): 367-376.
- Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumar J, Srinivasan K 2011. Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(3): 594-598. DOI: 10.1016/j.saa.2011.03.040
- Kudle KR, Donda MR, Merugu R, Kudle MR, Rudra MPP, 2013. Microwave assisted green synthesis of silver nanoparticles using Boswellia Serrata flower extract and evaluation of their antimicrobial activity. International Research Journal of Pharmacy, 4 (6), 197-200.
- Kumar A, Dixit CK, 2017. Methods for characterization of nanoparticles. In: S Nimesh, R Chandra & N Gupta (Eds.), Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, Elsevier, Amsterdam, pp. 43-58. DOI: 10.1016/B978-0-08-100557-6.00003-1
- Lankoff A, Sandberg WJ, Wegierek-Ciuk A, Lisowska H, Refsnes M, Sartowska B, Schwarze PE, Meczynska-Wielgosz S, Wojewodzka M, Kruszewski M, 2012. The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells. Toxicology Letters, 208(3): 197-213. DOI:
10.1016/j.toxlet.2011.11.006
- Lee KJ, Jun BH, Choi J, Lee Y, Joung J, Oh YO, 2007. Environmentally friendly synthesis of organic-soluble silver nanoparticles for printed electronics. Nanotechnology, 18(33): 335601. DOI: 10.1088/0957-4484/18/33/335601
- Li S, Lo CY, Ho CT, 2006. Hydroxylatedpolymethoxy-flavones and methylated flavonoids in sweet orange
(Citrus sinensis) peel. Journal of Agricultural and Food Chemistry, 54(12): 4176-4185. DOI: 10.1021/jf060234n
- Lin L, Wang W, Huang J, 2010. Nature factory of silver nanowires: Plant-mediated synthesis using broth of Cassia fistula leaf. Chemical Engineering Journal, 162: 852-858. DOI: 10.1016/j.cej.2010.06.023
- Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, QF Zhou, Yan B, Jiang GB, 2010. Impact of silver nanoparticles on human cells: Effect of particle size. Nanotoxicology, 4(3): 319-330. DOI: 10.3109/17435390.2010.483745
- López-García J, Lehocký M, Humpolíček P, Sáha P, 2014. HaCaT keratinocytes response on antimicrobial atelocollagen substrates: extent of cytotoxicity, cell viability and proliferation. Journal of Functional Biomaterials, 5(2): 43-57. DOI: 10.3390/jfb5020043
- M’hiri N, Ioannou I, Ghoul M, Boudhrioua N M, 2014. Extraction methods of citrus peel phenolic compounds. Food Reviews International, 30(4): 265-290. DOI: 10.1080/87559129.2014.924139
- Mohanpuria P, Rana NK, Yadav SK, 2008. Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 10: 507–517. DOI: 10.1007/s11051-007-9275-x
- Murphy CJ, Gole AM, Hunyadi SE, Stone, JW, Sisco PN, Alkilany A, Kinard BE, Hankins P, 2008. Chemical sensing and imaging with metallic nanorods. Chemical Communities, 5: 544-557. DOI: 10.1039/B711069C
- Nisha SN, Aysha OS, Syed J, Rahaman N, Kumar PV, Valli S, Nirmala P, Reena A, 2014. Lemon peels mediated synthesis of silver nanoparticles and its antidermatophytic activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 124: 194-198. DOI: 10.1016/j.saa.2013.12.019
- Park EJ, Yi J, Kim Y, Choi K, Park K, 2010. Silver nanoparticles induced toxicity by a Trojan-horse type mechanism. Toxicology in Vitro, 24(3):872-878. DOI: 10.1016/j.tiv.2009.12.001
- Perde-Schrepler M, Florea A, Brie I, Virag P, Fischer-Fodor E, Vâlcan A, Gurzău E, Lisencu C, Maniu A, 2019. Size-dependent cytotoxicity and genotoxicity of silver nanoparticles in cochlear cells in vitro. Journal of Nanomaterials, 2019: Article ID 6090259. DOI: 10.1155/2019/6090259
- Rai M, Yadav A, 2013. Plants as potential synthesizer of precious metal nanoparticles: progress and prospects. IET Nanobiotechnology, 7(3):117-124. DOI: 10.1049/iet-nbt.2012.0031
- Roy K, Sarkar CK, Ghosh CK, 2014. Green Synthesis of silver nanoparticles using fruit extract of Malus domestica and study of its antimicrobial activity. Digest Journal of Nanomaterials and Biostructures, 9(3): 1137-1147.
- Sahu D, Kannan GM, Tailang M, Vijayaraghavan R 2016. In-Vitro Cytotoxicity of Nanoparticles: A Comparison between Particle Size and Cell Type. Journal of Nanoscience, ID: 4023852 (9 pages). DOI: 10.1155/2016/4023852
- Seil JT, Webster TJ, 2012. Antimicrobial applications of nanotechnology: Methods and literature. International Journal of Nanomedicine, 7: 2767-2781. DOI: 10.2147/IJN.S24805
- Silver S, 2003. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. Federation of European Microbiological Societies, 27(2-3):341-353. DOI: 10.1016/S0168-6445(03)00047-0
- Stoehr LC, Gonzalez E, Stampfl A, Casals E, Duschl A, Puntes V, Oostingh GJ, 2011. Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Particle and Fibre Toxicology, 8 (36): 1-15. DOI:
10.1186/1743-8977-8-36
- Thakkar KN, Mhatre SS, Parikh RY, 2010. Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 6 (2): 257–262. DOI: 10.1016/j.nano.2009.07.002
- Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T, 2005. Microwave-assisted synthesis of metallic nanostructures in solution, Chemistry, 11(2): 440-452. DOI: 10.1002/chem.200400417
- Usha S, Ramappa KT, Hiregoudar S, Vasanthkumar GD, Aswathanarayana DS, 2017. Biosynthesis and characterization of copper nanoparticles from tulasi (Ocimum sanctum L.) leaves. International Journal of
Current Microbiology and Applied Sciences, 6 (11): 2219-2228. DOI: 10.20546/ijcmas.2017.611.263
- Yin YL, Zhong Z, Gates B, Venkateswaran S 2002. Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. Journal of Materials Chemistry, 12: 522-527. DOI: 10.1039/B107469E
- Zhang XF, Liu ZG, Shen W, Gurunathan S, 2016. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. International Journal of Molecular Sciences, 17(9): E1534. DOI: 10.3390/ijms17091534