Araştırma Makalesi
PDF EndNote BibTex Kaynak Göster

Tam Çiçeklenme Döneminde Yapraktan Uygulanan Kitosan, Demir Oksit ve Kitosanla Kaplanmış Demir Oksit Nanopartiküllerinin Farklı Konsantrasyonlarının Hypericum triquetrifolium Turra.’nın İkincil Metabolitleri Üzerine Etkileri

Yıl 2022, Cilt 25, Sayı 4, 811 - 818, 31.08.2022
https://doi.org/10.18016/ksutarimdoga.vi.882856

Öz

Hypericum triquetrifolium Turra. (Hypericaceae) önemli tıbbi bitkilerden biridir. Bu bitki Türk halk tıbbında antidepresan, antelmintik ve antiseptik etkileri nedeniyle kullanılmaktadır. Hypericum özütleri ilaç endüstrisinde önemli bir ticari değere sahiptir. Bu nedenle içerdiği ikincil metabolitlerin miktarını artırmaya yönelik çalışmalar yaygınlaşmaktadır. Elisitörler, bitkilerde ikincil metabolitlerin sentezini etkileyebilen biyolojik ve biyolojik olmayan faktörlerdir. Son yıllarda, aktif bileşen miktarını artırmak için nanoelisitörler kullanılmaktadır. Bu çalışmada, H. triquetrifolium'un biyolojik aktif sekonder bileşiklerinin sentezini uyarmak için; tam çiçeklenme döneminde yaprakların üzerine 0 (kontrol), 50, 75, 100 ve 150 ppm konsantrasyonlarında kitosan, demir oksit ve kitosanla kaplanmış demir oksit nanopartikülleri püskürtülmüştür. LC-MS/MS analizi, 100 ve 150 ppm’lik kitosan nanopartikülleri uygulanmasının, H. triquetrifolium'da flavonol (hiperosit ve kuersitrin) ve naftodiantronların (psödohiperisin ve hiperisin) miktarını artırdığını göstermiştir. 50 ppm demir oksit nanopartikülü hiperosit, kuersitrin ve psödohiperisin; 75 ve 100 ppm'lik demir oksit nanopartikülleri ise hiperosit, kuersitrin ve hiperforin miktarlarını artırmıştır. 150 ppm'lik demir oksit nanopartikülü, hiperisin dışındaki tüm bileşiklerde artış sağlamıştır. Bu çalışmada, demir oksidin kimyasal ve biyolojik özelliklerini iyileştirmek için kitosanla kaplanmış demir oksit nanopartikülleri de elisitör olarak kullanılmıştır. Bu seride, 100 ppm'lik kitosanla kaplanmış demir oksit nanopartikülü etkili olmuş ve kuersitrin, kaempferol ve psödohiperisin miktarlarını arttırmıştır. Bu grubun 75 ppm'lik konsantrasyonu kuersitrin üzerinde etkili olmuştur.

Kaynakça

  • Abdel-Aziz H, Hasaneen M.N, Omar A. 2018. Effect of Foliar Application of Nano Chitosan NPK Fertilizer on the Chemical Composition of Wheat Grains. Egyptian Journal of Botany, 58(1): 87-95.
  • Acar Ü. 2018. Sarı kantaron (Hypericum perforatum) yağının sazan yavrularının (Cyprinus carpio) büyüme performansı ve bazı kan parametreleri üzerine etkisi. Alınteri Zirai Bilimler Dergisi, 33(1): 21-27.
  • Agostinis P, Vantieghem A, Merlevede W, Witte P. A. 2002. Hypericin in cancer treatment: more light on the way. The International Journal of Biochemistry & Cell Biology, 34(3):221-241.
  • Ahmad B, Shabbir A, Jaleel H, Khan M. M. A, Sadiq Y. 2018. Efficacy of titanium dioxide nanoparticles in modulating photosynthesis, peltate glandular trichomes and essential oil production and quality in Mentha piperita L. Current Plant Biology, 13: 6-15.
  • Alali F, Tawaha K, Al-Eleimat T. 2004. Determination of hypericin content in Hypericum triquetrifolium Turra (Hypericaceae) growing wild in Jordan. Natural Product Research, 18(2): 147-151.
  • Askary M, Talebi S. M, Amini F, Bangan A. D. B. 2017. Effects of iron nanoparticles on Mentha piperita L. under salinity stress. Biologija, 63(1).
  • Baytop T. 1999. Türkiye'de bitkiler ile tedavi: geçmişte ve bugün. Nobel Tıp Kitabevleri.
  • Bharathi D, Ranjithkumar R, Vasantharaj S, Chandarshekar B, Bhuvaneshwari V. 2019. Synthesis and characterization of chitosan/iron oxide nanocomposite for biomedical applications. International Journal of Biological Macromolecules, 132: 880-887.
  • Bistgani Z. E, Siadat S. A, Bakhshandeh A, Pirbalouti A. G, Hashemi M. 2017. Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. The Crop Journal, 5(5): 407-415.
  • Brasili E, Pratico G, Marini F, Valletta A, Capuani G, Sciubba F, Pasqua G. 2014. A non-targeted metabolomics approach to evaluate the effects of biomass growth and chitosan elicitation on primary and secondary metabolism of Hypericum perforatum in vitro roots. Metabolomics, 10(6): 1186-1196.
  • Brunner T. J, Wick P, Manserp P, Spohn P, Grass R. N, Limbach L. K, Bruinink A. and Stark W. J. 2006 Environmental Science & Technology,40(14): 4374-4381.
  • Dağhan H. 2017 Nano Gübreler. Türkiye Tarımsal Araştırmalar Dergisi, 4(2): 197-203.
  • Davis P. H. 1966. Flora of Turkey and the East Aegean Island, Edinburg Univ. Press, Edinburg, 7: 384-394.
  • Franklin G, Conceição L. F, Kombrink E, Dias A. C. 2009. Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry, 70(1): 60-68.
  • Hatami M, Naghdi Badi H, Ghorbanpour M. 2018. Nano-Elicitation of Secondary Pharmaceutical Metabolites in Plant Cells: A Review, Journal of Medicinal Plants, 18 (71): 6-36.
  • Hosni K, Msaada K, Taârit M. B, Marzouk B. 2011. Phenological variations of secondary metabolites from Hypericum triquetrifolium Turra. Biochemical Systematics and Ecology, 39 (1):43-50.
  • Kumar M. N. R. 2000. A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1): 1-27.
  • Lei C, Ma D, Pu G, Qiu X, Du Z, Wang H, Liu B. 2011. Foliar application of chitosan activates artemisinin biosynthesis in Artemisia annua L. Industrial Crops and Products, 33(1): 176-182.
  • Mahil E. I, Kumar B. N. 2019. Foliar application of nanofertilizers in agricultural crops–A review. J. Farm Sci., 32(3): 239-249.
  • Marslin G, Sheeba CJ, Franklin G 2017. Nanoparticles alter secondary metabolism in plants via ROS burst. Frontiers in Plant Science, 8: 832.
  • Mohammadi Masjedlo, Mahtab 2020. Investigation on the Effects of Iron Nano Particles and Salicylic acid on Regeneration and Secondary Metabolites Production of Hypericum perforatum Under In vitro Conditions. Masters thesis, University of Mohaghegh Ardabili.11898.
  • Mullaicharam A.R, Halligudi N. 2019. St John's wort (Hypericum perforatum L.): Kimyasının, Farmakolojisinin ve Klinik Özelliklerinin İncelenmesi. Uluslararası Fitokimyasal ve Farmakolojik Bilimler Araştırmaları Dergisi,1 (1): 5-11.
  • Muxika A, Etxabide A, Uranga J, Guerrero P, De La Caba K. 2017. Chitosan as a bioactive polymer: Processing, properties and applications. International Journal of Biological Macromolecules, 105 :1358-1368.
  • Nehra P, Chauhan R. P, Garg N, Verma K. 2018. Antibacterial and antifungal activity of chitosan coated iron oxide nanoparticles. British Journal of Biomedical Science, 75(1): 13-18.
  • Nourozi E, Hosseini B, Maleki R, Mandoulakan B. A. 2019. Iron oxide nanoparticles: a novel elicitor to enhance anticancer flavonoid production and gene expression in Dracocephalum kotschyi hairy-root cultures, Sci Food Agric, 99(14): 6418-6430.
  • Oskay D, Oskay M. 2009. Bitki sekonder metabolitlerinin biyoteknolojik önemi. Ecological Life Sciences, 4(2): 31-41.
  • Rabea E. I, Badawy M. E. T, Stevens C. V, Smagghe G, Steurbaut W. 2003. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4(6): 1457-1465.
  • Sharafi E, Fotokian MH, Loo H 2013. Improvement of hypericin and hyperforin production using zinc and iron nano-oxides as elicitors in cell suspension culture of John’swort (Hypericum perforatum L). Journal of Medicinal Plants and Byproducts, 2(2): 177-184.
  • Simic S. G, Tusevski O, Maury S, Delaunay A, Lainé E, Joseph C, Hagège D. 2015. Polysaccharide elicitors enhance phenylpropanoid and naphtodianthrone production in cell suspension cultures of Hypericum perforatum. Plant Cell, Tissue and Organ Culture (PCTOC), 122(3): 649-663.
  • Süntar I, Oyardı O, Akkol E. K, Ozçelik B. 2016. Antimicrobial effect of the extracts from Hypericum perforatum against oral bacteria and biofilm formation. Pharmaceutical Biology, 54(6): 1065-1070.
  • Tirillini B. 2006. Induction of hypericin in Hypericum perforatum in response to chromium. Fitoterapia, 77(3): 164–170.
  • Tocci N, Ferrari F, Santamaria A. R, Valletta A, Rovardi I, Pasqua G. 2010. Chitosan enhances xanthone production in Hypericum perforatum subsp. angustifolium cell cultures. Natural Product Research, 24(3): 286-293.
  • Tocci N, Simonetti G, D’Auria F. D, Panella S, Palamara A. T, Valletta A, Pasqua G. 2011. Root cultures of Hypericum perforatum subsp. angustifolium elicited with chitosan and production of xanthone-rich extracts with antifungal activity. Applied Microbiology and Biotechnology, 91(4): 977-987.
  • Tural B, Ertaş E, Tural S. 2016. Removal of phenolic pollutants from aqueous solutions by a simple magnetic separation. Desalination and water treatment, 57(54): 26153-26164.
  • Yin H, Fretté X. C, Christensen L. P, Grevsen K. 2012. Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare ssp. hirtum). Journal of Agricultural and Food Chemistry, 60(1): 136-143.
  • Zhu N, Ji H, Yu, P Niu, J Farooq, MU, Akram MW, Niu X 2018. Surface modification of magnetic iron oxide nanoparticles. Nanomaterials, 8(10): 810.

The Effects of Different Concentrations of Foliar Applied Chitosan, Iron Oxide and Chitosan-Coated Iron Oxide Nanoparticles on the Secondary Metabolites of Hypericum triquetrifolium Turra. During Full Bloom

Yıl 2022, Cilt 25, Sayı 4, 811 - 818, 31.08.2022
https://doi.org/10.18016/ksutarimdoga.vi.882856

Öz

Hypericum triquetrifolium Turra. (Hypericaceae) is one of the important medicinal plants. This herb is used in Turkish folk medicine for its antidepressant, anthelmintic and antiseptic effects. Hypericum extracts have an important commercial value in the pharmaceutical industry. Therefore, studies to increase the amount of secondary metabolites it contains are becoming widespread. Elicitors are biological and non-biological factors that can affect the synthesis of secondary metabolites in plants. In recent years, nanoelicitors have been used to increase the amount of active ingredients. In this study, to stimulate the synthesis of biologically active secondary compounds of H. triquetrifolium; chitosan, iron oxide and chitosan-coated iron oxide nanoparticles in concentrations of 0 (control), 50, 75, 100 and 150 ppm were sprayed on the leaves during full bloom. LC-MS/MS analysis showed that application of 100 and 150 ppm chitosan nanoparticles increased the amount of flavonol (hyperocyte and quercitrin) and naphthodianthrons (pseudohypericin and hypericin) in H. triquetrifolium. 50 ppm iron oxide nanoparticle hyperocyte, quercitrin and pseudohypericin; 75 and 100 ppm iron oxide nanoparticles increased the amount of hyperocyte, quercitrin and hyperforin. The 150 ppm iron oxide nanoparticle resulted in an increase in all compounds except hypericin. In this study, iron oxide nanoparticles coated with chitosan were also used as elicitors to improve the chemical and biological properties of iron oxide. In this series, iron oxide nanoparticle coated with 100 ppm chitosan was effective and increased the amounts of quercitrine, kaempferol and pseudohypericin. The concentration of 75 ppm of this group was effective on quercitrin.

Kaynakça

  • Abdel-Aziz H, Hasaneen M.N, Omar A. 2018. Effect of Foliar Application of Nano Chitosan NPK Fertilizer on the Chemical Composition of Wheat Grains. Egyptian Journal of Botany, 58(1): 87-95.
  • Acar Ü. 2018. Sarı kantaron (Hypericum perforatum) yağının sazan yavrularının (Cyprinus carpio) büyüme performansı ve bazı kan parametreleri üzerine etkisi. Alınteri Zirai Bilimler Dergisi, 33(1): 21-27.
  • Agostinis P, Vantieghem A, Merlevede W, Witte P. A. 2002. Hypericin in cancer treatment: more light on the way. The International Journal of Biochemistry & Cell Biology, 34(3):221-241.
  • Ahmad B, Shabbir A, Jaleel H, Khan M. M. A, Sadiq Y. 2018. Efficacy of titanium dioxide nanoparticles in modulating photosynthesis, peltate glandular trichomes and essential oil production and quality in Mentha piperita L. Current Plant Biology, 13: 6-15.
  • Alali F, Tawaha K, Al-Eleimat T. 2004. Determination of hypericin content in Hypericum triquetrifolium Turra (Hypericaceae) growing wild in Jordan. Natural Product Research, 18(2): 147-151.
  • Askary M, Talebi S. M, Amini F, Bangan A. D. B. 2017. Effects of iron nanoparticles on Mentha piperita L. under salinity stress. Biologija, 63(1).
  • Baytop T. 1999. Türkiye'de bitkiler ile tedavi: geçmişte ve bugün. Nobel Tıp Kitabevleri.
  • Bharathi D, Ranjithkumar R, Vasantharaj S, Chandarshekar B, Bhuvaneshwari V. 2019. Synthesis and characterization of chitosan/iron oxide nanocomposite for biomedical applications. International Journal of Biological Macromolecules, 132: 880-887.
  • Bistgani Z. E, Siadat S. A, Bakhshandeh A, Pirbalouti A. G, Hashemi M. 2017. Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. The Crop Journal, 5(5): 407-415.
  • Brasili E, Pratico G, Marini F, Valletta A, Capuani G, Sciubba F, Pasqua G. 2014. A non-targeted metabolomics approach to evaluate the effects of biomass growth and chitosan elicitation on primary and secondary metabolism of Hypericum perforatum in vitro roots. Metabolomics, 10(6): 1186-1196.
  • Brunner T. J, Wick P, Manserp P, Spohn P, Grass R. N, Limbach L. K, Bruinink A. and Stark W. J. 2006 Environmental Science & Technology,40(14): 4374-4381.
  • Dağhan H. 2017 Nano Gübreler. Türkiye Tarımsal Araştırmalar Dergisi, 4(2): 197-203.
  • Davis P. H. 1966. Flora of Turkey and the East Aegean Island, Edinburg Univ. Press, Edinburg, 7: 384-394.
  • Franklin G, Conceição L. F, Kombrink E, Dias A. C. 2009. Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry, 70(1): 60-68.
  • Hatami M, Naghdi Badi H, Ghorbanpour M. 2018. Nano-Elicitation of Secondary Pharmaceutical Metabolites in Plant Cells: A Review, Journal of Medicinal Plants, 18 (71): 6-36.
  • Hosni K, Msaada K, Taârit M. B, Marzouk B. 2011. Phenological variations of secondary metabolites from Hypericum triquetrifolium Turra. Biochemical Systematics and Ecology, 39 (1):43-50.
  • Kumar M. N. R. 2000. A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1): 1-27.
  • Lei C, Ma D, Pu G, Qiu X, Du Z, Wang H, Liu B. 2011. Foliar application of chitosan activates artemisinin biosynthesis in Artemisia annua L. Industrial Crops and Products, 33(1): 176-182.
  • Mahil E. I, Kumar B. N. 2019. Foliar application of nanofertilizers in agricultural crops–A review. J. Farm Sci., 32(3): 239-249.
  • Marslin G, Sheeba CJ, Franklin G 2017. Nanoparticles alter secondary metabolism in plants via ROS burst. Frontiers in Plant Science, 8: 832.
  • Mohammadi Masjedlo, Mahtab 2020. Investigation on the Effects of Iron Nano Particles and Salicylic acid on Regeneration and Secondary Metabolites Production of Hypericum perforatum Under In vitro Conditions. Masters thesis, University of Mohaghegh Ardabili.11898.
  • Mullaicharam A.R, Halligudi N. 2019. St John's wort (Hypericum perforatum L.): Kimyasının, Farmakolojisinin ve Klinik Özelliklerinin İncelenmesi. Uluslararası Fitokimyasal ve Farmakolojik Bilimler Araştırmaları Dergisi,1 (1): 5-11.
  • Muxika A, Etxabide A, Uranga J, Guerrero P, De La Caba K. 2017. Chitosan as a bioactive polymer: Processing, properties and applications. International Journal of Biological Macromolecules, 105 :1358-1368.
  • Nehra P, Chauhan R. P, Garg N, Verma K. 2018. Antibacterial and antifungal activity of chitosan coated iron oxide nanoparticles. British Journal of Biomedical Science, 75(1): 13-18.
  • Nourozi E, Hosseini B, Maleki R, Mandoulakan B. A. 2019. Iron oxide nanoparticles: a novel elicitor to enhance anticancer flavonoid production and gene expression in Dracocephalum kotschyi hairy-root cultures, Sci Food Agric, 99(14): 6418-6430.
  • Oskay D, Oskay M. 2009. Bitki sekonder metabolitlerinin biyoteknolojik önemi. Ecological Life Sciences, 4(2): 31-41.
  • Rabea E. I, Badawy M. E. T, Stevens C. V, Smagghe G, Steurbaut W. 2003. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4(6): 1457-1465.
  • Sharafi E, Fotokian MH, Loo H 2013. Improvement of hypericin and hyperforin production using zinc and iron nano-oxides as elicitors in cell suspension culture of John’swort (Hypericum perforatum L). Journal of Medicinal Plants and Byproducts, 2(2): 177-184.
  • Simic S. G, Tusevski O, Maury S, Delaunay A, Lainé E, Joseph C, Hagège D. 2015. Polysaccharide elicitors enhance phenylpropanoid and naphtodianthrone production in cell suspension cultures of Hypericum perforatum. Plant Cell, Tissue and Organ Culture (PCTOC), 122(3): 649-663.
  • Süntar I, Oyardı O, Akkol E. K, Ozçelik B. 2016. Antimicrobial effect of the extracts from Hypericum perforatum against oral bacteria and biofilm formation. Pharmaceutical Biology, 54(6): 1065-1070.
  • Tirillini B. 2006. Induction of hypericin in Hypericum perforatum in response to chromium. Fitoterapia, 77(3): 164–170.
  • Tocci N, Ferrari F, Santamaria A. R, Valletta A, Rovardi I, Pasqua G. 2010. Chitosan enhances xanthone production in Hypericum perforatum subsp. angustifolium cell cultures. Natural Product Research, 24(3): 286-293.
  • Tocci N, Simonetti G, D’Auria F. D, Panella S, Palamara A. T, Valletta A, Pasqua G. 2011. Root cultures of Hypericum perforatum subsp. angustifolium elicited with chitosan and production of xanthone-rich extracts with antifungal activity. Applied Microbiology and Biotechnology, 91(4): 977-987.
  • Tural B, Ertaş E, Tural S. 2016. Removal of phenolic pollutants from aqueous solutions by a simple magnetic separation. Desalination and water treatment, 57(54): 26153-26164.
  • Yin H, Fretté X. C, Christensen L. P, Grevsen K. 2012. Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare ssp. hirtum). Journal of Agricultural and Food Chemistry, 60(1): 136-143.
  • Zhu N, Ji H, Yu, P Niu, J Farooq, MU, Akram MW, Niu X 2018. Surface modification of magnetic iron oxide nanoparticles. Nanomaterials, 8(10): 810.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyoloji
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Ayşe BAL Bu kişi benim (Sorumlu Yazar)
Dicle University
0000-0002-3181-7772
Türkiye


Hasan Çetin ÖZEN>
Dicle University
0000-0001-6670-6469
Türkiye


Bilsen TURAL>
Dicle University
0000-0001-7555-2481
Türkiye


Erdal ERTAŞ>
Dicle University
0000-0002-0325-1257
Türkiye

Destekleyen Kurum Dicle Üniversitesi, Bilimsel Araştırmalar Proje (DUBAP)Koordinatörlüğü tarafından destek sağlanmıştır.
Proje Numarası project no: FEN.18.013
Yayımlanma Tarihi 31 Ağustos 2022
Başvuru Tarihi 18 Şubat 2021
Kabul Tarihi 3 Eylül 2021
Yayınlandığı Sayı Yıl 2022, Cilt 25, Sayı 4

Kaynak Göster

APA Bal, A. , Özen, H. Ç. , Tural, B. & Ertaş, E. (2022). The Effects of Different Concentrations of Foliar Applied Chitosan, Iron Oxide and Chitosan-Coated Iron Oxide Nanoparticles on the Secondary Metabolites of Hypericum triquetrifolium Turra. During Full Bloom . Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi , 25 (4) , 811-818 . DOI: 10.18016/ksutarimdoga.vi.882856
  • download

  • Uluslararası Hakemli Dergi (International Peer Reviewed Journal)
  •        Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır (Free submission and publication).
  •       Yılda 6 sayı yayınlanır. (Published 6 times a year)
  •       88x31.png Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


download