Araştırma Makalesi
BibTex RIS Kaynak Göster

Kırmızı Şaraplarda Antioksidan Kapasite ile Toplam Fenolik Bileşik ve Toplam Monomerik Antosiyanin Düzeylerinin İlişkileri

Yıl 2023, Cilt: 26 Sayı: 4, 743 - 753, 31.08.2023
https://doi.org/10.18016/ksutarimdoga.vi.1098837

Öz

Bu araştırmada üç farklı kırmızı şarabın toplam fenolik bileşik, toplam monomerik antosiyanin ve antioksidan kapasitelerinin belirlenmesi ve birbirleri ile ilişkilerinin incelenmesi amaçlanmıştır. Araştırmada fermantasyonlarını tamamlamış Merlot, Cabernet Franc, Cabernet Sauvignon şaraplarının toplam fenolik bileşik, toplam monomerik antosiyanin ve ABTS, DPPH, FRAP ve ORAC yöntemleri ile antioksidan kapasiteleri belirlenmiş, sonuçların birbirleri ile korelasyonları incelenmiştir. Kırmızı şarapların toplam fenolik bileşik düzeyleri 2874 ile 3451 mg GAE L-1, toplam monomerik antosiyanin düzeyleri 305-357 mg L-1 aralıklarında değişen seviyelerde ölçülmüştür. Antioksidan kapasite düzeylerinin sırası ile ABTS, DPPH, ORAC ve FRAP yöntemlerine göre 32.74-35.83 μmol troloksmL-1; 14.98-19.21 μmol troloks mL-1; 25.93-29.07 μmol troloks mL-1; 28.12-36.05 μmol troloksmL-1 düzeylerinde olduğu tespit edilmiştir. ORAC yöntemi dışında incelenen bütün parametreler birbirleri ile ilişkili bulunmuştur. Araştırmada incelenen kırmızı şarapların fenolik bileşik ve antioksidan kapasiteleri yüksek olmakla birlikte, antioksidan kapasite tayini amaçlı ORAC yöntemi dışındaki yöntemlerin birbirleri ile değişebilir ve karşılaştırılabilir oldukları sonucuna varılmıştır.

Teşekkür

Şarapları temin ettiğimiz Chateau Kalpak firmasından Buket Yıldız ve Bülent Kalpak’a teşekkürlerimizi sunarız.

Kaynakça

  • Alañón, M.E., Castro-Vázquez, L., Díaz-Maroto, M.C., Gordon, M.H., & Pérez-Coello, M.S. (2011). A study of the antioxidant capacity of oak wood used in wine ageing and the correlation with polyphenol composition. Food Chemistry, 128(4), 997-1002.
  • Arnous, A., Makris, D.P., & Kefalas, P. (2002). Correlation of pigment andflavanolcontent with antioxidant properties in selected aged regional wines from Greece. Journal of Food Composition and Analysis, 15(6), 655-665.
  • Atak, A., & Goksel, Z. (2019). Farklı Vitis Türlerine Mensup Üzüm Çeşit/Genotiplerinde Bazı Fenolik Madde Değişimlerinin Belirlenmesi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 56(2), 153-161.
  • Averilla, J.N., Oh, J., Kim, H.J., Kim, J.S., & Kim, J.S. (2019). Potential health benefits of phenolic compounds in grape processing by-products. Food science and biotechnology, 28(6), 1607-1615.
  • Awika, J.M., Rooney, L.W., Wu, X., Prior, R.L., & Cisneros-Zevallos, L. (2003). Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. Journal of Agricultural and Food Chemistry, 51, 6657–6662.
  • Basalekou, M., Pappas, C., Kotseridis, Y., Tarantilis, P.A., Kontaxakis, E., & Kallithraka, S. (2017). Red wine age estimation by the alteration of its color parameters: Fourier transform infrared spectroscopy as a tool to monitor wine maturation time. Journal of analytical methods in chemistry, 2017.
  • Benzie, I.F.F., & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as measurement of ‘‘antioxidant power’’: The Frap assay. Analytical Biochemistry, 239, 70–76.
  • Burin, V.M., Costa, L.L.F., Rosier, J.P., & Bordignon-Luiz, M.T. (2011). Cabernet Sauvignon wines from two different clones, characterization and evolution during bottle ageing. LWT-Food Science and Technology, 44(9), 1931-1938.
  • Cliff, M.A., King, M.C., & Schlosser, J. (2007). Anthocyanin, phenolic composition, colour measurement and sensory analysis of BC commercial red wines. Food Research International, 40(1), 92-100.
  • Cosme, F., Pinto, T., & Vilela, A. (2018). Phenolic compounds and antioxidant activity in grape juices: A chemical and sensory view. Beverages, 4(1), 22.
  • Di Majo, D., La Guardia, M., Giammanco, S., La Neve, L., & Giammanco, M. (2008). The antioxidant capacity of red wine in relationship with its polyphenolic constituents. Food Chemistry, 111, 45-49.
  • Di Profio, F., Reynolds, A.G., & Kasimos, A. (2011). Canopy management and enzyme impacts on Merlot, Cabernet franc, and Cabernet Sauvignon. II. Wine composition and quality. American journal of enology and viticulture, 62(2), 152-168.
  • Dorman, H. J. D., Peltoketo, A., Hiltunen, R., & Tikkanen, M. J. (2003). Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food chemistry, 83(2), 255-262.
  • Doshi, P., Adsule, P., Banerjee, K., & Oulkar, D.(2015). Phenolic compounds, antioxidant activity and insulinotropic effect of extracts prepared from grape (Vitis vinifera L.) by products. Journal of Food Science and Technology, 52(1), 181–190.
  • Finotti, E., & Di Majo, D. (2003). Influence of solvents on the antioxidant property of flavonoids. Nahrung/Food, 47(3), 186–187.
  • Giusti, M.M., & Wrolstad, R.E. (2001). Characterization and measurement of anthocyanins by UV visible spectroscopy. Current protocols in food analytical chemistry, (1), F1-2.
  • Granato, D., Katayama, F.C.U., & Castro, I.A. (2010). Assessing the associationbetween phenolic compounds and the antioxidant activity of Brazilianred wines using chemometrics. LWT-Food Science and Technology, 43, 1542-1549.
  • Guerrini, L., Pantani, O.L., Politi, S., Angeloni, G., Masella, P., Calamai, L., & Parenti, A. (2019). Does bottle color protect red wine from photo‐oxidation?. Packaging Technology and Science, 32(5), 259-265.
  • He, F., Liang, N.N., Mu, L., Pan, Q.H., Wang, J., Reeves, M.J., & Duan, C.Q. (2012). Anthocyanins and their variation in red wines II. Anthocyanin derived pigments and their color evolution. Molecules, 17(2), 1483-1519.
  • Huang, D.J., Ou, B.X., Hampsch-Woodill, M., Flanagan, J.A., & Prior, R.L. (2002). High-throughput assay of oxygen radical absorbance capacity (ORAC) using amultichannel liquid handling system coupled with a microplate fluorescencereader in 96-well format. Journal of Agricultural and Food Chemistry, 50(16), 4437–4444.
  • Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of agricultural and food chemistry, 53(6), 1841-1856.
  • OIV. (2015). Compendium of International Methods of Wine and Must Analysis, Vol 1& 2.
  • Obreque-Slier, E., López-Solís, R., Castro-Ulloa, L., Romero-Díaz, C., & Peña-Neira, Á. (2012). Phenolic composition and physicochemical parameters of Carménère, Cabernet Sauvignon, Merlot and Cabernet Franc grape seeds (Vitis vinifera L.) during ripening. LWT-food Science and Technology, 48(1), 134-141.
  • Kalkan Yıldırım, H., & Şener, H. (2010). Farklı Mayşe Fermantasyon Sıcaklığı ve Süresinin Kırmızı Şarabın Cabernet Sauvignon Kimyasal ve Fiziksel Özelliklerine Etkisi . Akademik Gıda, 8(5), 12-19.
  • Katalinić, V., Milos, M., Modun, D., Musić, I., & Boban, M. (2004). Antioxidant effectiveness of selected wines in comparison with (+)-catechin. Food chemistry, 86(4), 593-600.
  • Kanner, J., Frankel, E., Granit, R., German, B., & Kinsella, E. (1994). Natural antioxidants in grapes and wines.Journal of Agricultural and Food Chemistry, 42, 64–69.
  • Lachman, J., Šulc, M., Faitová, K., & Pivec, V. (2009). Major factors influencing antioxidant contents and antioxidant activity in grapes and wines. International Journal of Wine Research, 1, 101–121.
  • Leal, C., Santos, R.A., Pinto, R., Queiroz, M., Rodrigues, M., Saavedra, M.J., Barros, A., & Gouvinhas, I. (2020). Recovery of bioactive compounds from white grape (Vitis vinifera L.) stems as potential antimicrobial agents for human health. Saudi journal of biological sciences, 27(4), 1009-1015.
  • Lee, S.Y., Lee, S.J., Yim, D.G., & Hur, S.J. (2020). Changes in the content and bioavailability of onion quercetin and grape resveratrol during in vitro human digestion. Foods, 9(6), 694.
  • López-Alarcón, C., & Lissi, E. (2006). A novel and simple ORAC methodology based on the interaction of Pyrogallol Red with peroxyl radicals. Free Radical Research, 40(9), 979-985.
  • Manini, P., Lino, V., Franchi, P., Gentile, G., Sibillano, T., Giannini, C., Picardi, E., Napolitano, A., Valgimigli, L., Chiappe, C., & d'Ischia, M. (2019). A Robust Fungal Allomelanin Mimic: An Antioxidant and Potent π‐Electron Donor with Free‐Radical Properties that can be Tuned by Ionic Liquids. Chem Plus Chem, 84(9), 1331-1337.
  • McDonald, M.S., Hughes, M., Burns, J., Lean, M.E.J., Matthews, D., & Crozier, A. (1998). Survey of the free and conjugated myricetin and quercetin content of red wines of different geographical origins. Journal of Agricultur and Food Chemistry, 46, 368–375.
  • Mercurio, M.D., Dambergs, R.G., Herderich, M.J., & Smith, P.A. (2007). High throughput analysis of red wine and grape phenolics-adaptation and validation of methyl cellulose precipitable tannin assay and modified somers color assay to a rapid 96 well plate format. Journal of Agricultural and Food Chemistry, 55(12), 4651−4657.
  • Mercurio, M.D., & Smith, P.A. (2008). Tannin quantification in red grapes and wine: comparison of polysaccharide-and protein-based tannin precipitation techniques and their ability to model wine astringency. Journal of Agricultural and Food Chemistry. 56(14), 5528−5537.
  • Merkytė, V., Longo, E., Windisch, G., & Boselli, E. (2020). Phenolic Compounds as Markers of Wine Quality and Authenticity. Foods,9(12), 1785.
  • Miliauskas, G., Venskutonis, P.R., & Van Beek, T.A. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food chemistry, 85(2), 231-237.
  • Minussi, R.C., Rossi, M., Bologna, L., Cordi, L., Rotilio, D., Pastore, G.M., & Duran, N. (2003). Phenolic compounds and total antioxidant potentialof commercial wines. Food Chemistry, 82, 409–416.
  • Panceri, C.P., De Gois, J.S., Borges, D.L., & Bordignon-Luiz, M.T. (2015). Effect of grape dehydration under controlled conditions on chemical composition and sensory characteristics of Cabernet Sauvignon and Merlot wines. LWT-Food Science and Technology, 63(1), 228-235.
  • Pertuzatti, P.B., Mendonça, S.C., Alcoléa, M., Guedes, C.T., da Encarnação Amorim, F., Beckmann, A.P.S., Gama, L.G., & Américo, M.F. (2020). Bordo grape marc (Vitis labrusca): Evaluation of bioactive compounds in vitro and in vivo. LWT, 129, 109625.
  • Pisoschi, A.M., Pop, A., Iordache, F., Stanca, L., Predoi, G., & Serban, A.I. (2021). Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry, 209, 112891.
  • Price, S.F., Breen, P.J., Valladao, M., & Watson, B.T. (1995). Cluster sun exposure and quercetin in Pinot noir grapes and wines. American Journal of Enology and Viticulture, 46, 187–194.
  • Prior, R. L., & Cao, G. (1999). In vivo total antioxidant capacity: comparison of different analytical methods1. Free radical biology and medicine, 27(11-12), 1173-1181.
  • Radonjic, S.S., Maras, V., & Kosmerl, T. (2019). The importance of total polyphenols content in red wine. In The Third Mediterranean International Congress on Natural Sciences, Health Sciences and Engineering, Podgorica, Montenegro.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237.
  • Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2006). Handbook of Enology, Vol. 2: The Chemistry of Wine. Wiley: West Sessex. pp 1−441.
  • Romero-Díez, R., Rodríguez-Rojo, S., Cocero, M.J., Duarte, C.M., Matias, A.A., & Bronze, M.R. (2018). Phenolic characterization of aging wine lees: Correlation with antioxidant activities. Food chemistry, 259, 188-195.
  • Saint-Criq de Gaulejac, N., Provost, C., & Vivasournal, N. (1999). Comparative study of polyphenol scavenging activities assessed by different methods. Journal of Agricultural Food Chemistry, 47, 425-431.
  • Sartor, S., Caliari, V., Malinovski, L.I., Toaldo, I.M., & Bordignon-Luiz, M.T. (2017). Bioactive profiling of polyphenolics and oenological properties of red wines from Italian grapes (Vitis vinifera L.) cultivated in a selected subtropical region. International journal of food properties, 20(2), 1319-1328.
  • Singleton, V.L., & Rossi, J.J.A. (1965). Colorimetric of totalmphenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–58.
  • Snopek, L., Mlček, J., Fic, V., Hlaváčová, I, Škrovánková, S., Fišera, M., Velichová, H., & Ondrášová, M. (2018). Interaction of polyphenols and wine antioxidants with its Sulfur dioxide preservative. Potravinarstvo Slovak Journal of Food Sciences, 12, 180–185.
  • Somers, T.C., & Evans, M.E. (1977). Spectral evaluation of young red wines: Anthocyanin equilibria, total phenolics,free and molecular SO2, “chemical age. Journal of the Science of Food and Agriculture, 28(3), 279–287.
  • Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Hawkins-Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP and ORAC assay for estimating antioxidant activity form guava fruit extracts. Journal of Food Composition and Analysis, 19, 669–675.
  • Trouillas, P., Calliste, C. A., Allais, D. P., Simon, A., Marfak, A., Delage, C., & Duroux, J. L. (2003). Antioxidant, anti-inflammatory and antiproliferative properties of sixteen water plant extracts used in the Limousin countryside as herbal teas. Food chemistry, 80(3), 399-407.
  • Tufarelli, V., Casalino, E., D'Alessandro, A.G., & Laudadio, V. (2017). Dietary phenolic compounds: biochemistry, metabolism and significance in animal and human health. Current drug metabolism, 18(10), 905-913.
  • Urvieta, R., Jones, G., Buscema, F., Bottini, R., & Fontana, A. (2021). Terroir and vintage discrimination of Malbec wines based on phenolic composition across multiple sites in Mendoza, Argentina. Scientific reports, 11(1), 1-13.
  • Zafrilla, P., Morillas, J., Mulero, J., Cayuela, J.M., Martínez-Cachá, A., Pardo, F., & López Nicolás, J.M. (2003). Changes during storage in conventional and ecological wine: phenoliccontent and antioxidant activity. Journal of Agricultural and Food Chemistry, 51(16), 4694-4700.

Relationships between Antioxidant Capacity and Total Phenolic Compound and Total Monomeric Anthocyanin Levels in Red Wines

Yıl 2023, Cilt: 26 Sayı: 4, 743 - 753, 31.08.2023
https://doi.org/10.18016/ksutarimdoga.vi.1098837

Öz

In this study, it was aimed to determine the total phenolic compound, total monomeric anthocyanin and antioxidant capacities of three different red wines and to examine their relationship with each other. The total phenolic compounds, total monomeric anthocyanins and antioxidant capacities of Merlot, Cabernet Franc and Cabernet Sauvignon wines that have completed their fermentation were determined by ABTS, DPPH, FRAP, and ORAC methods, and the correlation levels of the results were estimated. The total phenolic compound levels of red wines were measured at levels ranging from 2874 to 3451 mg GAE L-1, and total monomeric anthocyanin levels ranged between 305-357 mg L-1. Antioxidant capacity levels were 32.74-35.83 µmol troloxmL-1; 14.98-19.21 µmol trolox mL-1; 25.93-29.07 µmol troloxmL-1; 28.12-36.05 µmol trolox mL-1 according to ABTS, DPPH, ORAC, and FRAP methods, respectively. All the parameters studied were related to each other except the ORAC method. In addition to the phenolic compound and antioxidant capacities of the red wines examined in our study are high, it has been concluded that the methods other than the ORAC method for determining antioxidant capacity are different and comparable with each other.

Kaynakça

  • Alañón, M.E., Castro-Vázquez, L., Díaz-Maroto, M.C., Gordon, M.H., & Pérez-Coello, M.S. (2011). A study of the antioxidant capacity of oak wood used in wine ageing and the correlation with polyphenol composition. Food Chemistry, 128(4), 997-1002.
  • Arnous, A., Makris, D.P., & Kefalas, P. (2002). Correlation of pigment andflavanolcontent with antioxidant properties in selected aged regional wines from Greece. Journal of Food Composition and Analysis, 15(6), 655-665.
  • Atak, A., & Goksel, Z. (2019). Farklı Vitis Türlerine Mensup Üzüm Çeşit/Genotiplerinde Bazı Fenolik Madde Değişimlerinin Belirlenmesi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 56(2), 153-161.
  • Averilla, J.N., Oh, J., Kim, H.J., Kim, J.S., & Kim, J.S. (2019). Potential health benefits of phenolic compounds in grape processing by-products. Food science and biotechnology, 28(6), 1607-1615.
  • Awika, J.M., Rooney, L.W., Wu, X., Prior, R.L., & Cisneros-Zevallos, L. (2003). Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. Journal of Agricultural and Food Chemistry, 51, 6657–6662.
  • Basalekou, M., Pappas, C., Kotseridis, Y., Tarantilis, P.A., Kontaxakis, E., & Kallithraka, S. (2017). Red wine age estimation by the alteration of its color parameters: Fourier transform infrared spectroscopy as a tool to monitor wine maturation time. Journal of analytical methods in chemistry, 2017.
  • Benzie, I.F.F., & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as measurement of ‘‘antioxidant power’’: The Frap assay. Analytical Biochemistry, 239, 70–76.
  • Burin, V.M., Costa, L.L.F., Rosier, J.P., & Bordignon-Luiz, M.T. (2011). Cabernet Sauvignon wines from two different clones, characterization and evolution during bottle ageing. LWT-Food Science and Technology, 44(9), 1931-1938.
  • Cliff, M.A., King, M.C., & Schlosser, J. (2007). Anthocyanin, phenolic composition, colour measurement and sensory analysis of BC commercial red wines. Food Research International, 40(1), 92-100.
  • Cosme, F., Pinto, T., & Vilela, A. (2018). Phenolic compounds and antioxidant activity in grape juices: A chemical and sensory view. Beverages, 4(1), 22.
  • Di Majo, D., La Guardia, M., Giammanco, S., La Neve, L., & Giammanco, M. (2008). The antioxidant capacity of red wine in relationship with its polyphenolic constituents. Food Chemistry, 111, 45-49.
  • Di Profio, F., Reynolds, A.G., & Kasimos, A. (2011). Canopy management and enzyme impacts on Merlot, Cabernet franc, and Cabernet Sauvignon. II. Wine composition and quality. American journal of enology and viticulture, 62(2), 152-168.
  • Dorman, H. J. D., Peltoketo, A., Hiltunen, R., & Tikkanen, M. J. (2003). Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food chemistry, 83(2), 255-262.
  • Doshi, P., Adsule, P., Banerjee, K., & Oulkar, D.(2015). Phenolic compounds, antioxidant activity and insulinotropic effect of extracts prepared from grape (Vitis vinifera L.) by products. Journal of Food Science and Technology, 52(1), 181–190.
  • Finotti, E., & Di Majo, D. (2003). Influence of solvents on the antioxidant property of flavonoids. Nahrung/Food, 47(3), 186–187.
  • Giusti, M.M., & Wrolstad, R.E. (2001). Characterization and measurement of anthocyanins by UV visible spectroscopy. Current protocols in food analytical chemistry, (1), F1-2.
  • Granato, D., Katayama, F.C.U., & Castro, I.A. (2010). Assessing the associationbetween phenolic compounds and the antioxidant activity of Brazilianred wines using chemometrics. LWT-Food Science and Technology, 43, 1542-1549.
  • Guerrini, L., Pantani, O.L., Politi, S., Angeloni, G., Masella, P., Calamai, L., & Parenti, A. (2019). Does bottle color protect red wine from photo‐oxidation?. Packaging Technology and Science, 32(5), 259-265.
  • He, F., Liang, N.N., Mu, L., Pan, Q.H., Wang, J., Reeves, M.J., & Duan, C.Q. (2012). Anthocyanins and their variation in red wines II. Anthocyanin derived pigments and their color evolution. Molecules, 17(2), 1483-1519.
  • Huang, D.J., Ou, B.X., Hampsch-Woodill, M., Flanagan, J.A., & Prior, R.L. (2002). High-throughput assay of oxygen radical absorbance capacity (ORAC) using amultichannel liquid handling system coupled with a microplate fluorescencereader in 96-well format. Journal of Agricultural and Food Chemistry, 50(16), 4437–4444.
  • Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of agricultural and food chemistry, 53(6), 1841-1856.
  • OIV. (2015). Compendium of International Methods of Wine and Must Analysis, Vol 1& 2.
  • Obreque-Slier, E., López-Solís, R., Castro-Ulloa, L., Romero-Díaz, C., & Peña-Neira, Á. (2012). Phenolic composition and physicochemical parameters of Carménère, Cabernet Sauvignon, Merlot and Cabernet Franc grape seeds (Vitis vinifera L.) during ripening. LWT-food Science and Technology, 48(1), 134-141.
  • Kalkan Yıldırım, H., & Şener, H. (2010). Farklı Mayşe Fermantasyon Sıcaklığı ve Süresinin Kırmızı Şarabın Cabernet Sauvignon Kimyasal ve Fiziksel Özelliklerine Etkisi . Akademik Gıda, 8(5), 12-19.
  • Katalinić, V., Milos, M., Modun, D., Musić, I., & Boban, M. (2004). Antioxidant effectiveness of selected wines in comparison with (+)-catechin. Food chemistry, 86(4), 593-600.
  • Kanner, J., Frankel, E., Granit, R., German, B., & Kinsella, E. (1994). Natural antioxidants in grapes and wines.Journal of Agricultural and Food Chemistry, 42, 64–69.
  • Lachman, J., Šulc, M., Faitová, K., & Pivec, V. (2009). Major factors influencing antioxidant contents and antioxidant activity in grapes and wines. International Journal of Wine Research, 1, 101–121.
  • Leal, C., Santos, R.A., Pinto, R., Queiroz, M., Rodrigues, M., Saavedra, M.J., Barros, A., & Gouvinhas, I. (2020). Recovery of bioactive compounds from white grape (Vitis vinifera L.) stems as potential antimicrobial agents for human health. Saudi journal of biological sciences, 27(4), 1009-1015.
  • Lee, S.Y., Lee, S.J., Yim, D.G., & Hur, S.J. (2020). Changes in the content and bioavailability of onion quercetin and grape resveratrol during in vitro human digestion. Foods, 9(6), 694.
  • López-Alarcón, C., & Lissi, E. (2006). A novel and simple ORAC methodology based on the interaction of Pyrogallol Red with peroxyl radicals. Free Radical Research, 40(9), 979-985.
  • Manini, P., Lino, V., Franchi, P., Gentile, G., Sibillano, T., Giannini, C., Picardi, E., Napolitano, A., Valgimigli, L., Chiappe, C., & d'Ischia, M. (2019). A Robust Fungal Allomelanin Mimic: An Antioxidant and Potent π‐Electron Donor with Free‐Radical Properties that can be Tuned by Ionic Liquids. Chem Plus Chem, 84(9), 1331-1337.
  • McDonald, M.S., Hughes, M., Burns, J., Lean, M.E.J., Matthews, D., & Crozier, A. (1998). Survey of the free and conjugated myricetin and quercetin content of red wines of different geographical origins. Journal of Agricultur and Food Chemistry, 46, 368–375.
  • Mercurio, M.D., Dambergs, R.G., Herderich, M.J., & Smith, P.A. (2007). High throughput analysis of red wine and grape phenolics-adaptation and validation of methyl cellulose precipitable tannin assay and modified somers color assay to a rapid 96 well plate format. Journal of Agricultural and Food Chemistry, 55(12), 4651−4657.
  • Mercurio, M.D., & Smith, P.A. (2008). Tannin quantification in red grapes and wine: comparison of polysaccharide-and protein-based tannin precipitation techniques and their ability to model wine astringency. Journal of Agricultural and Food Chemistry. 56(14), 5528−5537.
  • Merkytė, V., Longo, E., Windisch, G., & Boselli, E. (2020). Phenolic Compounds as Markers of Wine Quality and Authenticity. Foods,9(12), 1785.
  • Miliauskas, G., Venskutonis, P.R., & Van Beek, T.A. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food chemistry, 85(2), 231-237.
  • Minussi, R.C., Rossi, M., Bologna, L., Cordi, L., Rotilio, D., Pastore, G.M., & Duran, N. (2003). Phenolic compounds and total antioxidant potentialof commercial wines. Food Chemistry, 82, 409–416.
  • Panceri, C.P., De Gois, J.S., Borges, D.L., & Bordignon-Luiz, M.T. (2015). Effect of grape dehydration under controlled conditions on chemical composition and sensory characteristics of Cabernet Sauvignon and Merlot wines. LWT-Food Science and Technology, 63(1), 228-235.
  • Pertuzatti, P.B., Mendonça, S.C., Alcoléa, M., Guedes, C.T., da Encarnação Amorim, F., Beckmann, A.P.S., Gama, L.G., & Américo, M.F. (2020). Bordo grape marc (Vitis labrusca): Evaluation of bioactive compounds in vitro and in vivo. LWT, 129, 109625.
  • Pisoschi, A.M., Pop, A., Iordache, F., Stanca, L., Predoi, G., & Serban, A.I. (2021). Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry, 209, 112891.
  • Price, S.F., Breen, P.J., Valladao, M., & Watson, B.T. (1995). Cluster sun exposure and quercetin in Pinot noir grapes and wines. American Journal of Enology and Viticulture, 46, 187–194.
  • Prior, R. L., & Cao, G. (1999). In vivo total antioxidant capacity: comparison of different analytical methods1. Free radical biology and medicine, 27(11-12), 1173-1181.
  • Radonjic, S.S., Maras, V., & Kosmerl, T. (2019). The importance of total polyphenols content in red wine. In The Third Mediterranean International Congress on Natural Sciences, Health Sciences and Engineering, Podgorica, Montenegro.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237.
  • Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2006). Handbook of Enology, Vol. 2: The Chemistry of Wine. Wiley: West Sessex. pp 1−441.
  • Romero-Díez, R., Rodríguez-Rojo, S., Cocero, M.J., Duarte, C.M., Matias, A.A., & Bronze, M.R. (2018). Phenolic characterization of aging wine lees: Correlation with antioxidant activities. Food chemistry, 259, 188-195.
  • Saint-Criq de Gaulejac, N., Provost, C., & Vivasournal, N. (1999). Comparative study of polyphenol scavenging activities assessed by different methods. Journal of Agricultural Food Chemistry, 47, 425-431.
  • Sartor, S., Caliari, V., Malinovski, L.I., Toaldo, I.M., & Bordignon-Luiz, M.T. (2017). Bioactive profiling of polyphenolics and oenological properties of red wines from Italian grapes (Vitis vinifera L.) cultivated in a selected subtropical region. International journal of food properties, 20(2), 1319-1328.
  • Singleton, V.L., & Rossi, J.J.A. (1965). Colorimetric of totalmphenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–58.
  • Snopek, L., Mlček, J., Fic, V., Hlaváčová, I, Škrovánková, S., Fišera, M., Velichová, H., & Ondrášová, M. (2018). Interaction of polyphenols and wine antioxidants with its Sulfur dioxide preservative. Potravinarstvo Slovak Journal of Food Sciences, 12, 180–185.
  • Somers, T.C., & Evans, M.E. (1977). Spectral evaluation of young red wines: Anthocyanin equilibria, total phenolics,free and molecular SO2, “chemical age. Journal of the Science of Food and Agriculture, 28(3), 279–287.
  • Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Hawkins-Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP and ORAC assay for estimating antioxidant activity form guava fruit extracts. Journal of Food Composition and Analysis, 19, 669–675.
  • Trouillas, P., Calliste, C. A., Allais, D. P., Simon, A., Marfak, A., Delage, C., & Duroux, J. L. (2003). Antioxidant, anti-inflammatory and antiproliferative properties of sixteen water plant extracts used in the Limousin countryside as herbal teas. Food chemistry, 80(3), 399-407.
  • Tufarelli, V., Casalino, E., D'Alessandro, A.G., & Laudadio, V. (2017). Dietary phenolic compounds: biochemistry, metabolism and significance in animal and human health. Current drug metabolism, 18(10), 905-913.
  • Urvieta, R., Jones, G., Buscema, F., Bottini, R., & Fontana, A. (2021). Terroir and vintage discrimination of Malbec wines based on phenolic composition across multiple sites in Mendoza, Argentina. Scientific reports, 11(1), 1-13.
  • Zafrilla, P., Morillas, J., Mulero, J., Cayuela, J.M., Martínez-Cachá, A., Pardo, F., & López Nicolás, J.M. (2003). Changes during storage in conventional and ecological wine: phenoliccontent and antioxidant activity. Journal of Agricultural and Food Chemistry, 51(16), 4694-4700.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Damla Yüksel Küskü 0000-0001-5398-1146

Hande Tahmaz Karaman 0000-0003-4842-6441

Erken Görünüm Tarihi 15 Mayıs 2023
Yayımlanma Tarihi 31 Ağustos 2023
Gönderilme Tarihi 5 Nisan 2022
Kabul Tarihi 2 Mart 2023
Yayımlandığı Sayı Yıl 2023Cilt: 26 Sayı: 4

Kaynak Göster

APA Yüksel Küskü, D., & Tahmaz Karaman, H. (2023). Kırmızı Şaraplarda Antioksidan Kapasite ile Toplam Fenolik Bileşik ve Toplam Monomerik Antosiyanin Düzeylerinin İlişkileri. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 26(4), 743-753. https://doi.org/10.18016/ksutarimdoga.vi.1098837

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149