Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of in vitro Biocontrol Efficacy and Mechanisms of Action of Endophytic and Epiphytic Bacterial Isolates against Some Citrus Fungal Disease Agents

Yıl 2024, Cilt: 27 Sayı: 6, 1376 - 1391, 07.11.2024
https://doi.org/10.18016/ksutarimdoga.vi.1459337

Öz

In this study, it was aimed to determine the in vitro antagonistic activities and mechanisms of activity of 48 different antagonist biological control agents (BCA) and plant growth promoting (PGP) endophyte and epiphyte bacterial isolates against some fungal disease agents (Colletotrichum gloeosporioides, Fusarium solani, Geotrichum citri-aurantii) in citrus fruits. As a result of MALDI-TOF identification studies, 33 isolates were identified as Gram-positive (Bacillus, Lysinibacillus, Cronobacter, Staphylococcus) and 15 isolates were identified as Gram-negative (Acinetobacter, Pseudomonas, Kosakonia, Enterobacter, Herbaspirillum, Klebsiella, Pantoea, Rahnella, Raoultella, Rhizobium, Siccibacter). Bacillus vallismortis YGL73ep, B. thuringiensis YGT22en, B. subtilis YGS5en, B. cereus YGK25en and Pseudomonas chlororapsis YGM82ep isolates were found to be the most effective antagonist isolates suppressing mycelial growth of G. citri-aurantii, C. gloeosporioides and F. solani by 65.5-77.2% in in vitro dual culture tests. Volatile organic compounds (VOCs) produced by representative isolates P. chlororapsis YGM82ep, B. vallismortis 73YGep, B. thuringiensis 22YGen, and B. cererus 25YGen significantly inhibited in vitro mycelial growth of fungal agents. Of the 25 bacterial isolates tested, 20 isolates were positive for siderophore, 24 isolates for ammonia, 19 isolates for protease, and 5 isolates for hydrogen cyanide production. Of the bacterial isolates tested, 21 isolates produced the hormone IAA and 7 isolates were found to be capable of solubilizing phosphorus. The results showed that the BCA isolates with high levels of antagonistic and PGP activities have the potential to be used as biopreparat for the suppression of citrus fungal diseases and also as biofertilizer in citrus cultivation.

Proje Numarası

Proje Numarası: 20.YL.022

Kaynakça

  • Acebo-Guerrero, Y., Hernandez-Rodriguez, A., Vandeputte, O., Miguelez-Sierra, Y., Heydrich-Perez, M., Cornelis, P., Bertin, P. & El Jaziri, M. ,(2015). Characterization of Pseudomonas chlororaphis from Theobroma cacao L. rhizosphere with antagonistic activity against Phytophthora palmivora (Butler). Journal of Applied Microbiology, 119, 1112-1126. https://doi.org/10.1111/jam.12910
  • Aktan, Z.C. & Soylu, S., (2020). Diyarbakır ilinde yetişen badem ağaçlarından endofit ve epifit bakteri türlerinin izolasyonu ve bitki gelişimini teşvik eden mekanizmalarının karakterizasyonu. KSU Tarım ve Doğa Dergisi, 23, 641-654. https://doi.org/10.18016/ksutarimdoga.vi.659802
  • Al-Sadi, A.M., Al-Ghaithi, A.G., Al-Fahdi, N. & Al-Yahyai, R. (2014). Characterization and pathogenicity of fungal pathogens associated with root diseases of citrusin Oman. International Journal of Agriculture and Biology, 16, 371‒376.
  • Atay, M., Kara, M., Uysal, A., Soylu, S., Kurt, Ş. & Soylu, E.M. (2020). In vitro antifungal activities of endophytic bacterial isolates against postharvest heart rot disease agent Alternaria alternata in pomegranate fruits. Acta Horticulturae, 1289, 309-314. https://doi.org/10.17660/ActaHortic.2020.1289.44
  • Baez-Vallejo, N., Camarena-Pozos, D.A., Monribot-Villanueva, J.L., Ramirez-Vazquez, M., Carrion-Villarnovo, G.L., Guerrero-Analco, J.A., Partida-Martinez, L.P. & Reverchon, F., (2020). Forest tree associated bacteria for potential biological control of Fusarium solani and of Fusarium kuroshium, causal agent of Fusarium dieback. Microbiological Research, 235, 126440.
  • Bueno, C.J., Fischer I.H., Rosa, D.D., Firmino, A.C., Harakava, R., Oliveira, C.M.G. & Furtado, E.L. (2014). Fusarium solani f. sp. passiflorae: a new forma specialis causing collar rot in yellow passion fruit. Plant Pathology, 63, 382–389. https://doi.org/10.1111/ppa.12098
  • Cappuccino, J.C. and Sherman, N., 2013. In: Microbiology: A Laboratory Manual, 3rd ed. Benjamin Cummings Pub. Co, New York, pp. 125-179.
  • Castric, P.A. (1977). Glycine metabolism by Pseudomonas aeruginosa: hydrogen cyanide biosynthesis. Journal of Bacteriology, 130, 826-831. https://doi.org/10.1128/jb.130.2.826-831.1977
  • Chaves-Lopez, C., Serio, A., Ginotti, G., Sacchetti, G., Ndagijimana, M., Ciccarane, C., Stellarini, A., Corsetti, A. & Paparella, A. (2015). Diversity of food-borne Bacillus volatile compounds and influence on fungal growth. Journal of Applied Microbiology, 119, 487-499. https://doi.org/10.1111/jam.12847
  • Chen, K., Tian, Z., Luo, Y., Cheng, Y. & Long, C., (2018). Antagonistic activity and the mechanism of Bacillus amyloliquefaciens dh-4 against citrus green mold. Phytopathology, 108, 1253-1262.
  • Chenniappan, C., Narayanasamy, M., Daniel, G.M., Ramaraj, G.B., Ponnusamy, P., Sekar, J. & Ramalingam, P.V. (2019). Biocontrol efficiency of native plant growth promoting rhizobacteria against rhizome rot disease of turmeric. Biological Control, 129, 55-64. https://doi.org/10.1016/j.biocontrol.2018.07.002
  • Cho, S.M., Kang, B.R., Han, S.H., Anderson, A.J., Park, J.Y., Lee, Y.H., Cho, B.H., Yang, K.Y., Ryu, C.M. & Kim, Y.C., (2008). 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 21(8), 1067–1075.
  • Dimkic, I., Janakiev, T., Petrovic, M., Degrassi, G. & Fira, D. (2022). Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms-A review. Physiological and Molecular Plant Pathology, 117, 101754. https://doi.org/10.1016/j.biocontrol.2018.07.002
  • Duman, K. & Soylu, S. (2019). Characterization of plant growth-promoting traits and antagonistic potentials of endophytic bacteria from bean plants against Pseudomonas syringae pv. phaseolicola. Bitki Koruma Bülteni, 59, 59-69. https://doi.org/10.16955/bitkorb.597214
  • Ezrari, S., Mhidra, O., Radouane, N., Tahiri, A., Polizzi, G., Lazraq, A. & Lahlali, R., (2021). Potential role of rhizobacteria ısolated from citrus rhizosphere for biological control of citrus dry root rot. Plants-Basel, 10, 872.
  • FAO (2021). FAOSTAT, Word Production Data. http://www.fao.org/faostat/en/#data/QC/visualize (Erişim Tarihi: 25.03.2024)
  • Ghazy & N. & El-Nahrawy, S. (2021). Siderophore production by Bacillus subtilis MF497446 and Pseudomonas koreensis MG209738 and their efficacy in controlling Cephalosporium maydis in maize plant. Archives of Microbiology, 203, 1195–1209. https://doi.org/10.1007/s00203-020-02113-5
  • Glickman, E. & Dessaux, Y. (1995). A critical evaluation of the specificity of salkowski reagent for indole compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61, 793–796. https://doi.org/10.1128/aem.61.2.793-796.1995
  • Guarnaccia, V., Groenewald, J.Z., Polizzi, G. & Crous, P.W. (2017). High species diversity in Colletotrichum associated with citrus diseases in Europe. Persoonia, 39, 32-50. https://doi.org/10.3767/persoonia.2017.39.02
  • Gusain, Y.S., Kamal, R., Mehta, C.M., Singh, U.S. & Sharma, A.K. (2015). Phosphate solubilizing and indole-3-acetic acid producing bacteria from the soil of Garhwal Himalaya aimed to improve the growth of rice. Journal of Environmental Biology, 36, 301-307.
  • Güney, İ.G., Tekin, F., Günen, T.U., Özer, G. & Derviş, S. (2023). Alternaria alternata causing inner black rot of lemon (Citrus limon) fruits in Turkey: Genetic diversity and characterisation. Physiological and Molecular Plant Pathology, 125, 101998. https://doi.org/10.1016/j.pmpp.2023.101998
  • Han, S.H, Lee SJ, Moon JH, Park KH, Yang KY, Cho BH, Kim KY, Kim YW, Lee MC, Anderson AJ & Kim YC., (2006). GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Molecular Plant-Microbe Interactions, 19, 924–930.
  • Hong, P., Hao, W.N., Luo, J.J., Chen, S.H., Hu, M.Y. & Zhong, G.H., (2014). Combination of hot water, Bacillus amyloliquefaciens HF-01 and sodium bicarbonate treatments to control postharvest decay of mandarin fruit. Postharvest Biology and Technology, 88, 96-102.
  • İmriz, G., Özdemir, F., Topal, İ., Ercan, B., Taş, M. N., Yakışır, E. & Okur, O. (2014). Bitkisel üretimde bitki gelişimini teşvik eden rizobakteri (PGPR)'ler ve etki mekanizmaları. Elektronik Mikrobiyoloji Dergisi, 12(2), 1-19.
  • Kara, M. & Soylu, E.M. (2020). Assessment of glucosinolate-derived isothiocyanates as potential natural antifungal compounds against citrus sour rot disease agent Geotrichum citri-aurantii. Journal of Plant Pathology, 168 (5), 279-289. https://doi.org/10.1111/jph.12889
  • Kara, M., Soylu, S., (2022). Isolation of endophytic bacterial isolates from healthy banana trees and determination of their in vitro antagonistic activities against crown rot disease agent Fusarium verticillioides. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 27(1), 36-46. https://doi.org/10.37908/mkutbd.1021349
  • Kara, M., Soylu, S., Kurt, Ş., Soylu, E.M. & Uysal, A. (2020). Determination of antagonistic traits of bacterial isolates obtained from apricot against green fruit rot disease agent Sclerotinia sclerotiorum. Acta Horticulturae, 1290, 135-142. https://doi.org/10.17660/ActaHortic.2020.1290.25
  • Kara, M., Soylu, S., Soylu, E.M., Uysal, A., Kurt, Ş., & Türkmen, M. (2024). Determination of the antifungal activity of wood vinegar (pyroligneous acid) against the onion bulb rot disease agent Fusarium proliferatum, chemical composition and its effect on the bacterial community in the soil. Gesunde Pflanzen, 76, 75-85. https://doi.org/10.1007/s10343-023-00931-3
  • Khalaf, E.M. & Raizada, M.N., (2018). Bacterial seed endophytes of domesticated cucurbits antagonize fungal and oomycete pathogens including powdery mildew. Frontiers in Microbiology, 9, 42. https://doi.org/10.3389/fmicb.2018.00042
  • Krasnov, H., Ezra, D., Bahri, B.A., Cacciola, S.O., Meparishvili, G. & Migheli, Q. & Blank. L. (2023). Potential distribution of the citrus Mal Secco disease in the Mediterranean basin under current and future climate conditions. Plant Pathology, 72, 765–773. https://doi.org/10.1111/ppa.13692
  • Kumar, P., Dubey, R.C. & Maheshwari, D.K. (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167, 493–499. https://doi.org/10.1016/j.micres.2012.05.002
  • Kurbetli, İ., Sülü, G., Aydoğdu, M., Özdemir, M., Sülü, S.M. & Polat, İ. (2016). First Report of Kumquat Shoot Blight Caused by Phytophthora citrophthora in Turkey. Plant Disease, 100(5), 1023-1023. https://doi.org/10.1094/PDIS-10-15-1154-PDN
  • Kurt, Ş., Uysal, A., Soylu, E.M., Kara, M. & Soylu S. (2020). Characterization and pathogenicity of Fusarium solani associated with dry root rot of citrus in the eastern Mediterranean region of Turkey. Journal of General Plant Pathology, 86 (4), 326-332. https://doi.org/10.1007/s10327-020-00922-6
  • Lelliot, R.A. & Stead, D.E. (1987). Methods for the diagnosis of bacterial diseases of plants. (T.F. Preece, Editör). In: Methods in Plant Pathology, Black well Scientific Publications, Oxford, pp.176-177.
  • Leslie, J.F, & Summerell B.A. (2006). The Fusarium laboratory manual. Blackwell Publishing, Ames, IA, USA. 388p.
  • Nandi, M., Selin, C., Brawerman, G., Fernando, W.G.D. & de Kievit, T. (2017). Hydrogen cyanide, which contributes to Pseudomonas chlororaphis strain PA23 biocontrol, is upregulated in the presence of glycine. Biological Control, 108, 47-54.
  • Patten, C.L. & Glick, B.R. (2002). Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68, 3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  • Perneel, M., Heyrman, J., Adiobo, A., De Maeyer, K., Raaijmakers, J. M., De Vos, P. & Höfte, M. (2007). Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. Journal of Applied Microbiology, 103, 1007-1020. https://doi.org/10.1111/j.1365-2672.2007.03345.x
  • Raio, A. & Puopolo, G. (2021). Pseudomonas chlororaphis metabolites as biocontrol promoters of plant health and improved crop yield. World Journal of Microbiology and Biotechnology, 37(6), 99. https://doi.org/10.1007/s11274-021-03063-w
  • Raio, A., Brilli, F., Baraldi, R., Neri, L. & Puopolo, G. (2020). Impact of spontaneous mutations on physiological traits and biocontrol activity of Pseudomonas chlororaphis M71. Microbiological Research, 239,126517.
  • Schwyn, B. & Neilands, J.B. (1987). Universal chemical assay for detection and determination of siderophores. Analytical Biochemistry, 160, 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  • Shahid, I., Rizwan, M., Baig, D.N., Saleem, R.S., Malik, K.A., & Mehnaz, S. (2017). Secondary metabolites production and plant growth promotion by Pseudomonas chlororaphis and P. aurantiaca strains isolated from cactus, cotton, and para grass. Journal of Microbiology and Biotechnology, 27, 480-491.
  • Shivas, R.G., Tan, Y.P., Edwards, J., Dinh, Q., Maxwell, A., Andjic, V., Liberato, J.R., Anderson, C., Beasley & D.R., Bransgrove, K. (2016). Colletotrichum Species in Australia. Australasian Plant Pathology, 45, 447–464. https://doi.org/10.1007/s13313-016-0443-2
  • Soliman, K. M. & Badeaa, R. I. (2002). Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food and Chemical Toxicology, 40(11), 1669-1675. https://doi.org/10.1016/s0278-6915(02)00120-5
  • Soylu, E.M., Soylu, S., Kara, M. & Kurt, Ş. (2020). Sebzelerde sorun olan önemli bitki fungal hastalık etmenlerine karşı vermikomposttan izole edilen mikrobiyomların in vitro antagonistik etkilerinin belirlenmesi. KSU Tarım ve Doğa Dergisi, 23, 7-18. https://doi.org/10.18016/ksutarimdoga.vi.601936
  • Soylu, S., Kara, M., Soylu, E.M., Uysal, A. & Kurt, Ş. (2022). Geotrichum citri-aurantii’nin sebep olduğu turunçgil ekşi çürüklük hastalığının biyolojik mücadelesinde endofit bakterilerin biyokontrol potansiyellerinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 19, 177-191. https://doi.org/10.33462/jotaf.944704
  • Soylu, S., Kara, M., Uysal, A., Kurt, Ş. & Soylu, E.M. (2021). Determination of antagonistic potential of endophytic bacteria isolated from lettuce against lettuce white mould disease caused by Sclerotinia sclerotiorum. Zemdirbyste-Agriculture, 108, 303-312. https://doi.org/10.13080/z-a.2021.108.039
  • Soylu, S., Soylu, E.M., Kurt, Ş. & Ekici, Ö.K. (2005). Antagonistic potentials of rhizosphere-associated bacterial isolates against soil-borne diseases of tomato and pepper caused by Sclerotinia sclerotiorum and Rhizoctonia solani. Pakistan Journal of Biological Sciences, 8, 43-48.
  • SPSS (2008). SPSS Statistics for Windows, Version 17.0. Chicago: SPSS Inc.
  • Sturz, A.V., Christie, B.R. & Nowak, J. (2000). Bacterial endophytes: potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences, 19,(1), 1-30. https://doi.org/10.1080/07352680091139169
  • Tariq, M., Khan, A., Asif, M., Khan, F., Ansari, T., Shariq, M. & Siddiqui, M.A. (2020). Biological control: a sustainable and practical approach for plant disease management. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 70, 507-524.
  • Tekiner, N., Tozlu, E., & Kotan, R. (2019). Portakalda Antraknoz Hastalığı Etmeni Colletotrichum gloeosporioides’in Biyolojik Mücadele İmkanlarının Araştırılması. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 50(3), 282-291. https://doi.org/10.17097/ataunizfd.544964
  • Tian, D. D., Zhou, W., Li, C. S., Wei, D., Qin, L. Y., Huang, S. M., Wei, L.P., Long, S. F., He, Z. F., & Wei, S. L. 2020. Isolation and identification of lipopetide antibiotic produced by Bacillus amyloliquefaciens GKT04 antagonistic to banana Fusarium wilt. Journal of South China Agricultural University, 51, 1122–1127.
  • Toloza-Moreno, D.L., Lizarazo-Forero, L.M. & Uribe-Velez, D., (2020). Antagonist capacity of bacteria isolated from cape gooseberry cultures (Physalis peruviana L.) for biological control of Fusarium oxysporum. Tropical Plant Pathology, 45, 1-12.
  • Uysal, A. and Kurt, Ş., 2019. First report of Colletotrichum karstii causing anthracnose on citrus in the Mediterranean region of Turkey. Journal of Plant Pathology, 101, 753. https://doi.org/10.1007/s42161-018-00215-0
  • Uysal, A., Kurt, Ş. & Guarnaccia, V. (2022). Distribution and characterization of Colletotrichum species associated with Citrus anthracnose in eastern Mediterranean region of Turkey. European Journal of Plant Pathology, 163, 125–141. https://doi.org/10.1007/s10658-022-02462-5
  • Vazquez, P., Holguin, G., Puente, M.E., Lopez-Cortes, A. & Bashan, Y. (2000). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30, 460–468. https://doi.org/10.1007/s003740050024
  • Wang, W., de Silva, D.D., Moslemi, A., Edwards, J., Ades, P.K., Crous, P.W. & Taylor, P.W.J. (2021). Colletotrichum species causing anthracnose of citrus in Australia. Journal of Fungi, 7, 47. https://doi.org/10.3390/jof7010047
  • Yaseen, T. & D’Onghia, A.M. (2012). Fusarium spp. associated to citrus dry root rot: an emerging issue for Mediterranean citriculture. ISHS Acta Horticulturae, 940, 647-655. https://doi.org/10.17660/ActaHortic.2012.940.89
  • Yıldız, H.N., Altınok, H.H. & Dikilitas, M. (2012). Screening of rhizobacteria against Fusarium oxysporum f.sp. melongenae, the causal agent of wilt disease of eggplant. African Journal of Microbiol. Research, 6 (15), 3700-3706. https://doi.org/10.5897/AJMR12.307
  • Zhang, Y., Li, T., Liu, Y., Li, X., Zhang, C., Feng, Z., Peng, X., Li, Z., Qin, S. & Xing, K., (2019). Volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as biological fumigants to control Ceratocystis fimbriata in postharvest sweet potatoes. Journal of Agricultural and Food Chemistry, 67(13), 3702–3710. https://doi.org/10.1021/acs.jafc.9b00289

Endofit ve Epifit Bakteri İzolatlarının Bazı Turunçgil Fungal Hastalık Etmenlerine Karşı in vitro Biyokontrol Etkinlik ve Etki Mekanizmalarının Belirlenmesi

Yıl 2024, Cilt: 27 Sayı: 6, 1376 - 1391, 07.11.2024
https://doi.org/10.18016/ksutarimdoga.vi.1459337

Öz

Bu çalışmada, sağlıklı turunçgil çeşitlerinden izole edilen 48 farklı antagonist biyolojik mücadele etmeni (BCA) ve bitki gelişimini teşvik eden (PGP) endofit ve epifit bakteri izolatının turunçgillerde sorun bazı fungal hastalık etmenlerine (Colletotrichum gloeosporioides, Fusarium solani, Geotrichum citri-aurantii) karşı in vitro antagonistik etkinlikleri ve etkinlik mekanizmalarının belirlenmesi amaçlanmıştır. MALDI-TOF tanılama çalışmaları sonucunda 33 izolat Gram-pozitif (Bacillus, Lysinibacillus, Cronobacter, Staphylococcus) 15 izolat ise Gram-negatif (Acinetobacter, Pseudomonas, Kosakonia, Enterobacter, Herbaspirillum, Klebsiella, Pantoea, Rahnella, Raoultella, Rhizobium, Siccibacter) bakteri cinslerine ait türler olarak belirlenmiştir. İkili kültür testlerinde Bacillus vallismortis YGL73ep, B. thuringiensis YGT22en, B. subtilis YGS5en, B. cereus YGK25en ve Pseudomonas chlororapsis YGM82ep izolatları G. citri-aurantii, C. gloeosporioides ve F. solani’nin misel gelişimini %65.5-77.2 oranlarında engelleyen en etkili antagonist bakteri izolatları olarak belirlenmiştir. Temsili olarak seçilen P. chlororapsis YGM82ep, B. vallismortis 73YGep, B. thuringiensis 22YGen ve B. cererus 25YGen izolatları tarafından üretilen uçucu organik bileşikler (VOC’s) fungal etmenlerin in vitro misel gelişimlerini önemli ölçüde engellemiştir. Test edilen 25 bakteri izolatının, 20 tanesi siderofor, 24 tanesi amonyak, 19 tanesi protease, 5 tanesi ise hidrojen siyanür üretiminde pozitif etkinlik göstermiştir. Bakteri izolatlarından 21 tanesi IAA hormonu üretmiş, 7 izolatın ise fosforu çözebilme yeteneğinde olduğu belirlenmiştir. Elde edilen sonuçlar, yüksek düzeyde antagonist ve PGP etkinliği gösteren BCA izolatlarının, turunçgil fungal hastalıkların baskılanmasında biyopreparat, yetiştiriciliğinde ise biyogübre olarak kullanılma potansiyeline sahip olduğunu göstermiştir.

Etik Beyan

Yazarlar makaleye eşit oranda katkı sağlamış olduklarını beyan eder. Makale yazarları aralarında herhangi bir çıkar çatışması olmadığını beyan ederler. Çalışma için Etik Kurul Onayına ihtiyaç bulunmamaktadır.

Destekleyen Kurum

Hatay Mustafa Kemal Üniversitesi Bilimsel Araştırma Projeleri Komisyonu

Proje Numarası

Proje Numarası: 20.YL.022

Teşekkür

Bu çalışma Hatay Mustafa Kemal Üniversitesi Bilimsel Araştırma Projeleri Komisyonu tarafından finansal olarak desteklenmiştir (Proje Numarası: 20.YL.022).

Kaynakça

  • Acebo-Guerrero, Y., Hernandez-Rodriguez, A., Vandeputte, O., Miguelez-Sierra, Y., Heydrich-Perez, M., Cornelis, P., Bertin, P. & El Jaziri, M. ,(2015). Characterization of Pseudomonas chlororaphis from Theobroma cacao L. rhizosphere with antagonistic activity against Phytophthora palmivora (Butler). Journal of Applied Microbiology, 119, 1112-1126. https://doi.org/10.1111/jam.12910
  • Aktan, Z.C. & Soylu, S., (2020). Diyarbakır ilinde yetişen badem ağaçlarından endofit ve epifit bakteri türlerinin izolasyonu ve bitki gelişimini teşvik eden mekanizmalarının karakterizasyonu. KSU Tarım ve Doğa Dergisi, 23, 641-654. https://doi.org/10.18016/ksutarimdoga.vi.659802
  • Al-Sadi, A.M., Al-Ghaithi, A.G., Al-Fahdi, N. & Al-Yahyai, R. (2014). Characterization and pathogenicity of fungal pathogens associated with root diseases of citrusin Oman. International Journal of Agriculture and Biology, 16, 371‒376.
  • Atay, M., Kara, M., Uysal, A., Soylu, S., Kurt, Ş. & Soylu, E.M. (2020). In vitro antifungal activities of endophytic bacterial isolates against postharvest heart rot disease agent Alternaria alternata in pomegranate fruits. Acta Horticulturae, 1289, 309-314. https://doi.org/10.17660/ActaHortic.2020.1289.44
  • Baez-Vallejo, N., Camarena-Pozos, D.A., Monribot-Villanueva, J.L., Ramirez-Vazquez, M., Carrion-Villarnovo, G.L., Guerrero-Analco, J.A., Partida-Martinez, L.P. & Reverchon, F., (2020). Forest tree associated bacteria for potential biological control of Fusarium solani and of Fusarium kuroshium, causal agent of Fusarium dieback. Microbiological Research, 235, 126440.
  • Bueno, C.J., Fischer I.H., Rosa, D.D., Firmino, A.C., Harakava, R., Oliveira, C.M.G. & Furtado, E.L. (2014). Fusarium solani f. sp. passiflorae: a new forma specialis causing collar rot in yellow passion fruit. Plant Pathology, 63, 382–389. https://doi.org/10.1111/ppa.12098
  • Cappuccino, J.C. and Sherman, N., 2013. In: Microbiology: A Laboratory Manual, 3rd ed. Benjamin Cummings Pub. Co, New York, pp. 125-179.
  • Castric, P.A. (1977). Glycine metabolism by Pseudomonas aeruginosa: hydrogen cyanide biosynthesis. Journal of Bacteriology, 130, 826-831. https://doi.org/10.1128/jb.130.2.826-831.1977
  • Chaves-Lopez, C., Serio, A., Ginotti, G., Sacchetti, G., Ndagijimana, M., Ciccarane, C., Stellarini, A., Corsetti, A. & Paparella, A. (2015). Diversity of food-borne Bacillus volatile compounds and influence on fungal growth. Journal of Applied Microbiology, 119, 487-499. https://doi.org/10.1111/jam.12847
  • Chen, K., Tian, Z., Luo, Y., Cheng, Y. & Long, C., (2018). Antagonistic activity and the mechanism of Bacillus amyloliquefaciens dh-4 against citrus green mold. Phytopathology, 108, 1253-1262.
  • Chenniappan, C., Narayanasamy, M., Daniel, G.M., Ramaraj, G.B., Ponnusamy, P., Sekar, J. & Ramalingam, P.V. (2019). Biocontrol efficiency of native plant growth promoting rhizobacteria against rhizome rot disease of turmeric. Biological Control, 129, 55-64. https://doi.org/10.1016/j.biocontrol.2018.07.002
  • Cho, S.M., Kang, B.R., Han, S.H., Anderson, A.J., Park, J.Y., Lee, Y.H., Cho, B.H., Yang, K.Y., Ryu, C.M. & Kim, Y.C., (2008). 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 21(8), 1067–1075.
  • Dimkic, I., Janakiev, T., Petrovic, M., Degrassi, G. & Fira, D. (2022). Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms-A review. Physiological and Molecular Plant Pathology, 117, 101754. https://doi.org/10.1016/j.biocontrol.2018.07.002
  • Duman, K. & Soylu, S. (2019). Characterization of plant growth-promoting traits and antagonistic potentials of endophytic bacteria from bean plants against Pseudomonas syringae pv. phaseolicola. Bitki Koruma Bülteni, 59, 59-69. https://doi.org/10.16955/bitkorb.597214
  • Ezrari, S., Mhidra, O., Radouane, N., Tahiri, A., Polizzi, G., Lazraq, A. & Lahlali, R., (2021). Potential role of rhizobacteria ısolated from citrus rhizosphere for biological control of citrus dry root rot. Plants-Basel, 10, 872.
  • FAO (2021). FAOSTAT, Word Production Data. http://www.fao.org/faostat/en/#data/QC/visualize (Erişim Tarihi: 25.03.2024)
  • Ghazy & N. & El-Nahrawy, S. (2021). Siderophore production by Bacillus subtilis MF497446 and Pseudomonas koreensis MG209738 and their efficacy in controlling Cephalosporium maydis in maize plant. Archives of Microbiology, 203, 1195–1209. https://doi.org/10.1007/s00203-020-02113-5
  • Glickman, E. & Dessaux, Y. (1995). A critical evaluation of the specificity of salkowski reagent for indole compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61, 793–796. https://doi.org/10.1128/aem.61.2.793-796.1995
  • Guarnaccia, V., Groenewald, J.Z., Polizzi, G. & Crous, P.W. (2017). High species diversity in Colletotrichum associated with citrus diseases in Europe. Persoonia, 39, 32-50. https://doi.org/10.3767/persoonia.2017.39.02
  • Gusain, Y.S., Kamal, R., Mehta, C.M., Singh, U.S. & Sharma, A.K. (2015). Phosphate solubilizing and indole-3-acetic acid producing bacteria from the soil of Garhwal Himalaya aimed to improve the growth of rice. Journal of Environmental Biology, 36, 301-307.
  • Güney, İ.G., Tekin, F., Günen, T.U., Özer, G. & Derviş, S. (2023). Alternaria alternata causing inner black rot of lemon (Citrus limon) fruits in Turkey: Genetic diversity and characterisation. Physiological and Molecular Plant Pathology, 125, 101998. https://doi.org/10.1016/j.pmpp.2023.101998
  • Han, S.H, Lee SJ, Moon JH, Park KH, Yang KY, Cho BH, Kim KY, Kim YW, Lee MC, Anderson AJ & Kim YC., (2006). GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Molecular Plant-Microbe Interactions, 19, 924–930.
  • Hong, P., Hao, W.N., Luo, J.J., Chen, S.H., Hu, M.Y. & Zhong, G.H., (2014). Combination of hot water, Bacillus amyloliquefaciens HF-01 and sodium bicarbonate treatments to control postharvest decay of mandarin fruit. Postharvest Biology and Technology, 88, 96-102.
  • İmriz, G., Özdemir, F., Topal, İ., Ercan, B., Taş, M. N., Yakışır, E. & Okur, O. (2014). Bitkisel üretimde bitki gelişimini teşvik eden rizobakteri (PGPR)'ler ve etki mekanizmaları. Elektronik Mikrobiyoloji Dergisi, 12(2), 1-19.
  • Kara, M. & Soylu, E.M. (2020). Assessment of glucosinolate-derived isothiocyanates as potential natural antifungal compounds against citrus sour rot disease agent Geotrichum citri-aurantii. Journal of Plant Pathology, 168 (5), 279-289. https://doi.org/10.1111/jph.12889
  • Kara, M., Soylu, S., (2022). Isolation of endophytic bacterial isolates from healthy banana trees and determination of their in vitro antagonistic activities against crown rot disease agent Fusarium verticillioides. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 27(1), 36-46. https://doi.org/10.37908/mkutbd.1021349
  • Kara, M., Soylu, S., Kurt, Ş., Soylu, E.M. & Uysal, A. (2020). Determination of antagonistic traits of bacterial isolates obtained from apricot against green fruit rot disease agent Sclerotinia sclerotiorum. Acta Horticulturae, 1290, 135-142. https://doi.org/10.17660/ActaHortic.2020.1290.25
  • Kara, M., Soylu, S., Soylu, E.M., Uysal, A., Kurt, Ş., & Türkmen, M. (2024). Determination of the antifungal activity of wood vinegar (pyroligneous acid) against the onion bulb rot disease agent Fusarium proliferatum, chemical composition and its effect on the bacterial community in the soil. Gesunde Pflanzen, 76, 75-85. https://doi.org/10.1007/s10343-023-00931-3
  • Khalaf, E.M. & Raizada, M.N., (2018). Bacterial seed endophytes of domesticated cucurbits antagonize fungal and oomycete pathogens including powdery mildew. Frontiers in Microbiology, 9, 42. https://doi.org/10.3389/fmicb.2018.00042
  • Krasnov, H., Ezra, D., Bahri, B.A., Cacciola, S.O., Meparishvili, G. & Migheli, Q. & Blank. L. (2023). Potential distribution of the citrus Mal Secco disease in the Mediterranean basin under current and future climate conditions. Plant Pathology, 72, 765–773. https://doi.org/10.1111/ppa.13692
  • Kumar, P., Dubey, R.C. & Maheshwari, D.K. (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167, 493–499. https://doi.org/10.1016/j.micres.2012.05.002
  • Kurbetli, İ., Sülü, G., Aydoğdu, M., Özdemir, M., Sülü, S.M. & Polat, İ. (2016). First Report of Kumquat Shoot Blight Caused by Phytophthora citrophthora in Turkey. Plant Disease, 100(5), 1023-1023. https://doi.org/10.1094/PDIS-10-15-1154-PDN
  • Kurt, Ş., Uysal, A., Soylu, E.M., Kara, M. & Soylu S. (2020). Characterization and pathogenicity of Fusarium solani associated with dry root rot of citrus in the eastern Mediterranean region of Turkey. Journal of General Plant Pathology, 86 (4), 326-332. https://doi.org/10.1007/s10327-020-00922-6
  • Lelliot, R.A. & Stead, D.E. (1987). Methods for the diagnosis of bacterial diseases of plants. (T.F. Preece, Editör). In: Methods in Plant Pathology, Black well Scientific Publications, Oxford, pp.176-177.
  • Leslie, J.F, & Summerell B.A. (2006). The Fusarium laboratory manual. Blackwell Publishing, Ames, IA, USA. 388p.
  • Nandi, M., Selin, C., Brawerman, G., Fernando, W.G.D. & de Kievit, T. (2017). Hydrogen cyanide, which contributes to Pseudomonas chlororaphis strain PA23 biocontrol, is upregulated in the presence of glycine. Biological Control, 108, 47-54.
  • Patten, C.L. & Glick, B.R. (2002). Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68, 3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  • Perneel, M., Heyrman, J., Adiobo, A., De Maeyer, K., Raaijmakers, J. M., De Vos, P. & Höfte, M. (2007). Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. Journal of Applied Microbiology, 103, 1007-1020. https://doi.org/10.1111/j.1365-2672.2007.03345.x
  • Raio, A. & Puopolo, G. (2021). Pseudomonas chlororaphis metabolites as biocontrol promoters of plant health and improved crop yield. World Journal of Microbiology and Biotechnology, 37(6), 99. https://doi.org/10.1007/s11274-021-03063-w
  • Raio, A., Brilli, F., Baraldi, R., Neri, L. & Puopolo, G. (2020). Impact of spontaneous mutations on physiological traits and biocontrol activity of Pseudomonas chlororaphis M71. Microbiological Research, 239,126517.
  • Schwyn, B. & Neilands, J.B. (1987). Universal chemical assay for detection and determination of siderophores. Analytical Biochemistry, 160, 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  • Shahid, I., Rizwan, M., Baig, D.N., Saleem, R.S., Malik, K.A., & Mehnaz, S. (2017). Secondary metabolites production and plant growth promotion by Pseudomonas chlororaphis and P. aurantiaca strains isolated from cactus, cotton, and para grass. Journal of Microbiology and Biotechnology, 27, 480-491.
  • Shivas, R.G., Tan, Y.P., Edwards, J., Dinh, Q., Maxwell, A., Andjic, V., Liberato, J.R., Anderson, C., Beasley & D.R., Bransgrove, K. (2016). Colletotrichum Species in Australia. Australasian Plant Pathology, 45, 447–464. https://doi.org/10.1007/s13313-016-0443-2
  • Soliman, K. M. & Badeaa, R. I. (2002). Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food and Chemical Toxicology, 40(11), 1669-1675. https://doi.org/10.1016/s0278-6915(02)00120-5
  • Soylu, E.M., Soylu, S., Kara, M. & Kurt, Ş. (2020). Sebzelerde sorun olan önemli bitki fungal hastalık etmenlerine karşı vermikomposttan izole edilen mikrobiyomların in vitro antagonistik etkilerinin belirlenmesi. KSU Tarım ve Doğa Dergisi, 23, 7-18. https://doi.org/10.18016/ksutarimdoga.vi.601936
  • Soylu, S., Kara, M., Soylu, E.M., Uysal, A. & Kurt, Ş. (2022). Geotrichum citri-aurantii’nin sebep olduğu turunçgil ekşi çürüklük hastalığının biyolojik mücadelesinde endofit bakterilerin biyokontrol potansiyellerinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 19, 177-191. https://doi.org/10.33462/jotaf.944704
  • Soylu, S., Kara, M., Uysal, A., Kurt, Ş. & Soylu, E.M. (2021). Determination of antagonistic potential of endophytic bacteria isolated from lettuce against lettuce white mould disease caused by Sclerotinia sclerotiorum. Zemdirbyste-Agriculture, 108, 303-312. https://doi.org/10.13080/z-a.2021.108.039
  • Soylu, S., Soylu, E.M., Kurt, Ş. & Ekici, Ö.K. (2005). Antagonistic potentials of rhizosphere-associated bacterial isolates against soil-borne diseases of tomato and pepper caused by Sclerotinia sclerotiorum and Rhizoctonia solani. Pakistan Journal of Biological Sciences, 8, 43-48.
  • SPSS (2008). SPSS Statistics for Windows, Version 17.0. Chicago: SPSS Inc.
  • Sturz, A.V., Christie, B.R. & Nowak, J. (2000). Bacterial endophytes: potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences, 19,(1), 1-30. https://doi.org/10.1080/07352680091139169
  • Tariq, M., Khan, A., Asif, M., Khan, F., Ansari, T., Shariq, M. & Siddiqui, M.A. (2020). Biological control: a sustainable and practical approach for plant disease management. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 70, 507-524.
  • Tekiner, N., Tozlu, E., & Kotan, R. (2019). Portakalda Antraknoz Hastalığı Etmeni Colletotrichum gloeosporioides’in Biyolojik Mücadele İmkanlarının Araştırılması. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 50(3), 282-291. https://doi.org/10.17097/ataunizfd.544964
  • Tian, D. D., Zhou, W., Li, C. S., Wei, D., Qin, L. Y., Huang, S. M., Wei, L.P., Long, S. F., He, Z. F., & Wei, S. L. 2020. Isolation and identification of lipopetide antibiotic produced by Bacillus amyloliquefaciens GKT04 antagonistic to banana Fusarium wilt. Journal of South China Agricultural University, 51, 1122–1127.
  • Toloza-Moreno, D.L., Lizarazo-Forero, L.M. & Uribe-Velez, D., (2020). Antagonist capacity of bacteria isolated from cape gooseberry cultures (Physalis peruviana L.) for biological control of Fusarium oxysporum. Tropical Plant Pathology, 45, 1-12.
  • Uysal, A. and Kurt, Ş., 2019. First report of Colletotrichum karstii causing anthracnose on citrus in the Mediterranean region of Turkey. Journal of Plant Pathology, 101, 753. https://doi.org/10.1007/s42161-018-00215-0
  • Uysal, A., Kurt, Ş. & Guarnaccia, V. (2022). Distribution and characterization of Colletotrichum species associated with Citrus anthracnose in eastern Mediterranean region of Turkey. European Journal of Plant Pathology, 163, 125–141. https://doi.org/10.1007/s10658-022-02462-5
  • Vazquez, P., Holguin, G., Puente, M.E., Lopez-Cortes, A. & Bashan, Y. (2000). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30, 460–468. https://doi.org/10.1007/s003740050024
  • Wang, W., de Silva, D.D., Moslemi, A., Edwards, J., Ades, P.K., Crous, P.W. & Taylor, P.W.J. (2021). Colletotrichum species causing anthracnose of citrus in Australia. Journal of Fungi, 7, 47. https://doi.org/10.3390/jof7010047
  • Yaseen, T. & D’Onghia, A.M. (2012). Fusarium spp. associated to citrus dry root rot: an emerging issue for Mediterranean citriculture. ISHS Acta Horticulturae, 940, 647-655. https://doi.org/10.17660/ActaHortic.2012.940.89
  • Yıldız, H.N., Altınok, H.H. & Dikilitas, M. (2012). Screening of rhizobacteria against Fusarium oxysporum f.sp. melongenae, the causal agent of wilt disease of eggplant. African Journal of Microbiol. Research, 6 (15), 3700-3706. https://doi.org/10.5897/AJMR12.307
  • Zhang, Y., Li, T., Liu, Y., Li, X., Zhang, C., Feng, Z., Peng, X., Li, Z., Qin, S. & Xing, K., (2019). Volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as biological fumigants to control Ceratocystis fimbriata in postharvest sweet potatoes. Journal of Agricultural and Food Chemistry, 67(13), 3702–3710. https://doi.org/10.1021/acs.jafc.9b00289
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fitopatoloji
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Yusuf Gümüş 0000-0001-7818-1831

Emine Mine Soylu 0000-0001-5961-0848

Proje Numarası Proje Numarası: 20.YL.022
Erken Görünüm Tarihi 15 Ağustos 2024
Yayımlanma Tarihi 7 Kasım 2024
Gönderilme Tarihi 26 Mart 2024
Kabul Tarihi 8 Mayıs 2024
Yayımlandığı Sayı Yıl 2024Cilt: 27 Sayı: 6

Kaynak Göster

APA Gümüş, Y., & Soylu, E. M. (2024). Endofit ve Epifit Bakteri İzolatlarının Bazı Turunçgil Fungal Hastalık Etmenlerine Karşı in vitro Biyokontrol Etkinlik ve Etki Mekanizmalarının Belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 27(6), 1376-1391. https://doi.org/10.18016/ksutarimdoga.vi.1459337

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149