Araştırma Makalesi
BibTex RIS Kaynak Göster

Detection of the Presence of Powdery Mildew Resistance -Associated Genes (Ren1, Ren3, and Ren9) in Vitis labrusca L. Genotypes

Yıl 2024, Cilt: 27 Sayı: Ek Sayı 1 (Suppl 1), 163 - 173
https://doi.org/10.18016/ksutarimdoga.vi.1454506

Öz

Powdery mildew disease (Erysiphe necator Schwein) is a significant threat to grape cultivation in vineyards. Severe yield and quality losses could occur in vineyards when this pathogen is not managed correctly. Several commercial grape varieties are highly susceptible to powdery mildew. Therefore, large quantities of fungicides are applied throughout the growing season. In addition to yields and quality, new grapevine varieties that are genetically resistant to powdery mildew are required for sustainable viticulture. This study was conducted through molecular screening of powdery mildew resistance genes in nine different Vitis labrusca L. genotypes (TEG-Vl-1, TEG-Vl-2, TEG-Vl-3, TEG-Vl-4, TEG-Vl-5, TEG-Vl-6, TEG-Vl-7, TEG-Vl-8, and TEG-Vl-9) grown in the Black Sea Region of Türkiye. After PCR amplifications using Ren1, Ren3 and Ren9 locus-specific primers, Ren1, and Ren 9 genes were detected in three genotypes (TEG-Vl-1, TEG-Vl-3, and TEG-Vl-4). However, the Ren3 gene was not detected in any genotypes. It was concluded based on present findings that Vitis labrusca L. genotypes with resistance genes could be used as genetic resources in grapevine breeding programs and significant economic benefits can be provided accordingly.

Kaynakça

  • Agurto, M., Schlechter, R.O., Armijo, G., Solano, E., Serrano, C., Contreras, R.A., Zúñiga, G.E., & Arce-Johnson, P. (2017). RUN1 and REN1 pyramiding in grapevine (Vitis vinifera cv. Crimson Seedless) displays an improved defense response leading to enhanced resistance to Powdery Mildew (Erysiphe necator). Frontiers in Plant Science 8, 758, 1-15. https://doi.org/10.3389/fpls.2017.00758.
  • Akkurt, M., Welter, L., Maul, E., Topfer, R., & Zyprian, E. (2007). Development of SCAR markers linked to Powdery Mildew (Uncinula necator) resistance in grapevine (Vitis vinifera L. and vitis sp.). Molecular Breeding 19, 103-111. https://doi.org/10.1007/ s11032-006-9047-9.
  • Armijo, G., Espinoza, C., Loyola, R., Restovic, F., Santibáñez, C., Schlechter, R., Agurto, M., & Arce-Johnson, P. (2016). Grapevine biotechnology: molecular approaches underlying abiotic and biotic stress responses. In A. Morata, & I. Loira (Eds.), Grape and Wine Biotechnology Rijeka. InTech. https://doi.org/10.5772/64872
  • Atak, A. (2017). Determination of Downy Mildew and Powdery Mildew resistance of some grape cultivars and genotypes. South African Journal of Enology and Viticulture, 38(1), 11–17. https://doi.org/ 10.21548/38-1-671.
  • Atak, A., Akkurt, M., Polat, Z., Çelik, H., Kahraman, K.A., Akgül, D.S., Özer, N., Söylemezoğlu, G., Şire, G.G., & Eibach, R. (2017). Susceptibility to Downy Mildew (Plasmopara viticola) and Powdery Mildew (Erysiphe necator) of different Vitis cultivars and genotypes. Ciência e Técnica Vitivinícola 32, 23–32. https://doi.org/10.1051/ctv/20173201023.
  • Atak, A., Şen, A. (2021). A Grape Breeding Programme using Different Vitis Species. Plant Breeding 140, 1136-1149. https://doi.org/10.1111/pbr.12970.
  • Atak, A., Göksel, Z. (2019). Determination of some phenolic substance changes in cultivar/genotypes of different Vitis species. Journal of Agriculture Faculty of Ege University 56, 153-161, https://doi.org/10.20289/zfdergi.467136
  • Atak, A. (2023). New Perspectives in Grapevine (Vitis spp.) Breeding. IntechOpen. https://doi.org/10.5772/ intechopen.105194
  • Barker, C. L., Donald, T., Pauquet, J., Ratnaparkhe, M. B., Bouquet, A., Adam-Blondon, A. F., Thomas, M.R., & Dry, I. (2005). Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theoretical and Applied Genetics 111, 370–377. https://doi.org/10.1007/ s00122-005-2030-8
  • Bendek, C.E., Torres, R., Campbell, P.A., & Latorre, B.A. (2002). Aportes al conocimiento y control del oídio de la vid. Aconex 76, 5–11. https://hdl.handle.net/20.500.14001/36685.
  • Blanc, S., Wiedemann-Merdinoglu, S., Dumas, V., Mestre, P., & Merdinoglu, D. (2012). A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine Powdery Mildew. Theoretical and Applied Genetics 125, 1663-1675. https://doi.org/10.1007/s00122-012-1942-3.
  • Calonnec, A., Cartolaro, P., Poupot, C., Dubourdieu, D., & Darriet, P. (2004) Effects of Uncinula necator on the yield and quality of grapes (Vitis vinifera) and wine. Plant Pathology 53, 434-445. https://doi.org/10.1111/j.0032-0862.2004.01016.x.
  • Cadle-Davidson, L., Chicoine, D.R., & Consolie, N.H. (2011a). Variation within and among Vitis spp. for foliar resistance to the powdery mildew pathogen Erysiphe necator. Plant Disease 95, 202-211. https://doi.org/10.1094/PDIS-02-10-0092
  • Cadle-Davidson, L., Mahanil, S., Gadoury, D.M., Kozma, P., & Reisch, B.I. (2011b). Natural infection of Run1-positive vines by naïve genotypes of Erysiphe necator. Vitis 50, 173–175.
  • Cangi, R., Çelik, H., & Köse, B. (2006). Determination of ampelographic characters of some natural foxy grape (Vitis labrusca L.) types grown in northern Turkey (Ordu and Giresun province). Asian Journal of Plant Sciences 2(2), 171–176. https://doi.org/10.3923/ijb.2006.171.176.
  • Coleman, C., Copetti, D., Cipriani, G., Hoffmann, S., Kozma, P., Kovacs, L., Morgante, M., Testolin, R., & Di Gaspero, G. (2009). The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two central Asian grapevines. BMC Genetics 10, 89. https://doi.org/10.1186/1471-2156-10-89
  • Çelik, H., Köse, B., & Cangi, R. (2008) Determination of fox grape genotypes (Vitis labrusca L.) grown in northeastern Anatolia. Horticultural Science 35, 162–170. https://doi.org/10.17221/655-HORTSCI.
  • Dilli, Y., Ünal, A., Kesgin, M., İnan, M.S., & Söylemezoğlu, G. (2014). Comparison of ampelographic characteristics of some important grape varieties are grown in the Aegean Region, rootstock and clones. Turkish Journal of Agricultural and Natural Sciences 2, 1546–1552.
  • Doebley, J.F., Gaut, B.S., & Smith, B.D. (2006). The molecular genetics of crop domestication. Cell 127, 1309-1321. https://doi.org/10.1016/j.cell.2006.12.006.
  • Doyle, J.J., & Doyle, J.L. (1990). Isolation of plant DNA from fresh tissue. Focus 12, 13-15. https://doi.org/10.2307/2419362.
  • Dry, I.B., Feechan, A., Anderson, C., Jermakow, A.M., Bouquet, A., Adam-Blondon, A.F., & Thomas, M.R. (2010). Molecular strategies to enhance the genetic resistance of grapevines to Powdery Mildew. Australian Journal of Grape and Wine Research 16, 94-105. https://doi.org/10.1111/j.1755-0238.2009.00076.x.
  • Eibach, R., & Töpfer, R. (2003). Success in resistance breeding: ‘Regent’ and its steps into the market. Acta Horticulturae 603, 687–691. https://doi.org/10.17660/ActaHortic.2003.603.95.
  • Ergül, A., & Ağaoğlu, Y.S. (2001) Molecular similarity analysis of some grapevine rootstocks from different nursery in Turkey. Journal of Agricultural Sciences 7(2), 141–143.
  • Ergül, A., Perez-Rivera, G., Söylemezoğlu, G., Kazan, K., & Arroyo-Garcia, R. (2011). Genetic diversity in Anatolian wild grapes (Vitis vinifera subsp. sylvestris) estimated by SSR markers. Plant Genetic Resources 9(3), 375-383. https://doi.org/10.1017/S1479262111000013.
  • Feechan, A., Kabbara, S., & Dry, I.B. (2011). Mechanisms of powdery mildew resistance in the Vitaceae family. Molecular Plant Pathology 12, 263–274. https://doi.org/10.1111/j.1364-3703.2010.00668.x
  • Feechan, A., Kocsis, M., Riaz, S., Zhang, W., Gadoury, D.M., Walker, M.A., Dry, I.B., Reisch, B., & Cadle-Davidson, L. (2015). Strategies for RUN1 deployment using RUN2 and REN2 to manage grapevine Powdery Mildew informed by studies of race specificity. Phytopathology 105, 1104-1113. https://doi.org/10.1094/PHYTO-09-14-0244-R.
  • Gadoury, D.M., Seem, R.C., Ficke, A., & Wilcox, W.F. (2003). Ontogenic resistance to Powdery Mildew in grape berries. Phytopathology 93, 547-555. https://doi.org/10.1094/PHYTO.2003.93.5.547.
  • Gadoury, D.M., Cadle-Davidson, L., Wilcox, W.F., Dry, I.B., Seem, R.C., & Milgroom, M.G. (2012). Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Molecular Plant Pathology 13, 1–16. https://doi.org/10.1111/j.1364-3703.2011.00728.x
  • Gao, M., Wang, Q., Wan, R., Fei, Z., & Wang, X. (2012). Identification of genes differentially expressed in grapevine associated with resistance to Elsinoe ampelina through suppressive subtraction hybridization. Plant Physiology and Biochemistry 58, 253-268. https://doi.org/10.1016/j.plaphy.2012.07.009.
  • Glawe, D.A. (2008). The powdery mildews: a review of the world’s most familiar (yet poorly known) plant pathogens. Annual Review of Phytopathology 46, 27–51. https://doi.org/10.1146/annurev.phyto.46.081407.104740
  • Hoffmann, S., Di Gaspero, G., Kovács, L., Howard, S., Kiss, E., Galbács, Z., Testolin, R., & Kozma, P. (2008). Resistance to Erysiphe necator in the grapevine ‘Kishmish Vatkana’ is controlled by a single locus through restriction of hyphal growth. Theoretical and Applied Genetics 116, 427-438. https://doi.org/10.1007/s00122-007-0680-4.
  • Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., & Vitulo, N. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463-465. https://doi.org/10.1038/nature06148.
  • Jiao, C., Sun, X., Yan, X., Xu, X., Yan, Q., Gao, M., Fei, Z., & Wang, X. (2021). Grape transcriptome response to Powdery Mildew infection: comparative transcriptome profiling of chinese wild grapes provides insights into powdery mildew resistance. Phytopathology 111, 2041-2051. https://doi.org/10.1094/PHYTO-01-21-0006-R.
  • Korbuly, J. (1999). Evaluation of different sources of resistance for breeding Powdery Mildew resistant grapevine varieties. International Journal of Horticultural Science 5(1-2), 35-40. https://doi.org/10.31421/IJHS/5/1-2/19.
  • Kozma, P., Kiss, E., Hoffmann, S., Galbács, Z.S., & Dula, T. (2006). Using the Powdery Mildew resistant Muscadinia rotundifolia and Vitis vinifera ‘Kishmish Vatkana’ for breeding new cultivars. ISHS Acta Horticulturae 827, 559-564. https://doi.org/10.17660/ActaHortic.2009.827.97.
  • Li, C., Erwin, A., Pap, D., Coleman, C., Higgins, A.D., Kiss, E., Kozma, P., Hoffmann, S., Ramming, D.W., & Kovács, L.G. (2013). Selection for Run1-Ren1 dihybrid grapevines using microsatellite markers. American Journal of Enology and Viticulture 64, 152-155. https://doi.org/10.5344/ajev.2012.12060.
  • Maul, H. (2023). Vitis International Variety Catalogue 2023. Available online: www.vivc.de (Accessed on: 04.02.2023).
  • Mermer Doğu, D., Zobar, D., Doğu, K., Özer, N., Bayraktar, H. (2022). Reactions of some grape cultivars to downy mildew disease under natural infection conditions. KSU Journal of Agricultural and Natural 25(6), 1279-1286. https://doi.org/10.18016/ksutarimdoga.vi.911000.
  • Montaigne, E., Coelho, A., Zadmehran, S.A. (2021). Comprehensive Economic Examination and Prospects on Innovation in New Grapevine Varieties dealing with Global Warming and Fungal Diseases. Sustainability 13, 13254. https://doi.org/10.3390/su132313254.
  • Mortensen, J. (1981). Sources and inheritance of resistance to anthracnose in Vitis. Journal of Heredity 72, 423-426. https://doi.org/10.1093/oxfordjournals.jhered.a109545.
  • Pap, D., Riaz, S., Dry, I.B., Jermakow, A., Tenscher, A.C., Cantu, D., Oláh, R., & Walker, M.A. (2016). Identification of two novel Powdery Mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC Plant Biology 16, 170. https://doi.org/10.1186/s12870-016-0855-8.
  • Pozharskiy, A.S., Aubakirova, K.P., Gritsenko, D.A., Tlevlesov, N.I., Karimov, N.Zh, Galiakparov, N.N., & Ryabushkina, N.A. (2020). Genotyping and morphometric analysis of Kazakhstani grapevine cultivars versus Asian and European cultivars. Genetics and Molecular Research 19(1), gmr18482. http://dx.doi.org/10.4238/gmr18482.
  • Peressotti, E., Wiedemann-Merdinoglu, S., Delmotte, F., Bellin, D., Di Gaspero, G., Testolin, R., Merdinoglu, D., & Mestre, P. (2010). Breakdown of resistance to grapevine downy mildew upon limited deployment of a resistant variety. BMC Plant Biology 10, 147. https://doi.org/10.1186/1471-2229-10-147
  • Qiu, W., Feechan, A., & Dry, I. (2015). Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. Horticulture Research 2, 15020. https://doi.org/10.1038/hortres.2015.20
  • Ramming, D.W., Gabler, F., Smilanick, J., Cadle-Davidson, M., Barba, P., Mahanil, S., & Cadle-Davidson, L. (2011). A single dominant locus, Ren4, confers rapid non-race-specific resistance to grapevine powdery mildew. Phytopathology 101, 502–508. https://doi.org/10.1094/PHYTO-09-10-0237
  • Reisch, B.I., Peterson, D.V., Pool, R.M., & Martens, M.H. (1993). Table grape varieties for cool climates, Information Bulletin 234. Cornell Cooperative Extension, Cornell University, New York, 9 p.
  • Reisch, B.I., Luce, R.S., & Mansfield, A.K. (2014). Arandell-A disease-resistant red wine grape. HortScience 49, 503-505. https://doi.org/10.21273/HORTSCI.49.4.503.
  • Riaz, S., Doligez, A., Henry, R.J., & Walker, M.A. (2007). “Grape,” in Fruits and Nuts. Springer, Berlin:Ed. Kole, C. 63–101. https://doi.org/ 10.1007/978-3-540-34533-6_2
  • Riaz, S., Boursiquot, J.M., Dangl, G.S., Lacombe, T., Laucou, V., Tenscher, A.C., & Walker, M.A. (2013). Identification of mildew resistance in wildand cultivated Central Asian grape germplasm. BMC Plant Biology 13, 149. http://dx.doi.org/ 10.1186/1471-2229-13-149.
  • Riaz, S., Tenscher, A.C., Ramming, D.W., & Walker, M.A. (2011). Using a limited mapping strategy to identify major QTLs for resistance to grapevine Powdery Mildew (Erysiphe necator) and their use in marker-assisted breeding. Theoretical and Applied Genetics 122, 1059-1073. http://dx.doi.org/10.1007/s00122-010-1511-6.
  • Sargolzaei, M., Rustioni, L., Cola, G., Ricciardi, V., Bianco, P.A., Maghradze, D., Failla, O., Quaglino, F., Toffolatti, S.L., & De Lorenzis, G. (2021). Georgian Grapevine Cultivars: Ancient Biodiversity for Future Viticulture. Frontiers in Plant Science 12, 1–13. http://dx.doi.org/ 10.3389/fpls.2021.630122.
  • Sosa-Zuniga, V., Vidal Valenzuela, Á., Barba, P., Espinoza Cancino, C., Romero-Romero, J.L., & Arce-Johnson, P. (2022). Powdery Mildew resistance genes in vines: an opportunity to achieve a more sustainable viticulture. Pathogens 11, 703. https://doi.org/10.3390/pathogens11060703.
  • Tahmaz, H., Yüksel Küskü, D., Söylemezoğlu, G., & Çelik, H. (2022). Phenolic compound and antioxidant capacity contents of Vitis labrusca L. genotypes. Journal of Tekirdag Agricultural Faculty 19(2), 318-331. https://doi.org/10.33462/ jotaf.952108.
  • This, P., Lacombe, T., & Thomas, M.R. (2006). Historical origins and genetic diversity of wine grapes, Trend in Genetics 22, 511-519. https://doi.org/10.1016/j.tig.2006.07.008.
  • Üneş, D. (2016). İzabella Üzümü (Vitis labrusca L.) Meyvesinin Fenolik Bileşenleri ve Antioksidan Etkisinin Araştırılması (Tez no 437984). [Yüksek Lisans Tezi, Bartın Üniversitesi Fen Bilimleri Enstitüsü Orman Endüstri Mühendisliği Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • van Heerden, C.J., Burger, P., Vermeulen, A., & Prins, R. (2014). Detection of Downy and Powdery Mildew resistance QTL in a ‘Regent’בRedGlobe’ population. Euphytica 200, 281-295. https://doi.org/10.1007/s10681-014-1167-4.
  • Wan, Y., Schwaninger, H.R., Baldo, A.M., Labate, J.A., Zhong, G.Y., & Simon, C.J. (2013). A phylogenetic analysis of the grape genus (Vitis L.) reveals broad reticulation and concurrent diversification during neogeneand quaternary climate change. BMC Evolutionary Biology 13, 141. https://doi.org/10.1186/1471-2148-13-141.
  • Welter, L.J., Göktürk-Baydar, N., Akkurt, M., Maul, E., Eibach, R., Töpfer, R., & Zyprian, E.M. (2007). Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Molecular Breeding 20, 359-374. https://doi.org/ 10.1007/s11032-007-9097-7.
  • Yıldırım, Z., Atak, A., & Akkurt, M. (2019). Determination of Downy and Powdery Mildew resistance of some Vitis spp. Ciência e Técnica Vitivinícola 34(1), 15-24. https://doi.org/10.1051/ ctv/20193401015.
  • Zendler, D., Schneider, P., Töpfer, R., & Zyprian, E. (2017). Fine mapping of Ren3 reveals two loci mediating hypersensitive response against Erysiphe necator in grapevine. Euphytica 213, 68. https://doi.org/10.1007/s10681-017-1857-9.
  • Zendler, D., Töpfer, R., & Zyprian, E. (2020). Confirmation and fine mapping of the resistance locus Ren9 from the grapevine cultivar ‘Regent’. Plants 10(1), 24. https://doi.org/10.3390/ plants10010024.
  • Zhou, Y., Massonnet, M., Sanjak, J.S., Cantu, D., & Gaut, B.S. (2017). Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication. Proceedings of the National Academy of Sciences 114(44), 11715-11720. https://doi.org/10.1073/ pnas.1709257114.

Vitis labrusca L. Genotiplerinde Küllemeye Dirençle İlişkili Genlerin (Ren1, Ren3 ve Ren9) Varlığının Tespiti

Yıl 2024, Cilt: 27 Sayı: Ek Sayı 1 (Suppl 1), 163 - 173
https://doi.org/10.18016/ksutarimdoga.vi.1454506

Öz

Bağlarda görülen külleme hastalığı (Erysiphe necator Schwein) üzüm yetiştiriciliği için büyük bir tehdittir. Bu patojene karşı mücadele edilmediğinde, üzüm verim ve kalitesinde önemli düşüşler meydana gelmektedir. Çoğu ticari üzüm çeşidi, küllemeye karşı oldukça hassastır. Bu nedenle yetiştirme dönemi boyunca fazla miktarlarda fungisit uygulanmaktadır. Sürdürülebilir bir bağcılık için verim ve kalitenin yanında, külleme hastalığına karşı genetik olarak dirençli yeni asma çeşitlerine ihtiyaç duyulmaktadır. Bu çalışmada, Türkiye’nin Karadeniz Bölgesi’nde yetiştiriciliği yapılan dokuz farklı Vitis labrusca L. genotipinde (TEG-Vl-1, TEG-Vl-2, TEG-Vl-3, TEG-Vl-4, TEG-Vl-5, TEG-Vl-6, TEG-Vl-7, TEG-Vl-8 ve TEG-Vl-9) külleme hastalığına dirençli genlerin moleküler taraması yapılmıştır. Ren1, Ren3 ve Ren9 lokuslarına özgü primerler kullanılarak gerçekleştirilen PCR amplifikasyonu sonrasında üç genotipte (TEG-Vl-1, TEG-Vl-3 ve TEG-Vl-4) Ren1 ve Ren9 genlerinin bulunduğu tespit edilmiştir. Ancak Ren3 geni hiçbir örnekte saptanamamıştır. Araştırma sonuçlarında direnç genlerine sahip oldukları belirlenen Vitis labrusca L. genotiplerinin, gelecekte dirençli asma çeşitlerinin ıslahında genetik kaynaklar olarak kullanılabilecekleri ve bu sayede önemli ekonomik faydalar sağlanabileceği düşünülmektedir.

Etik Beyan

Yok

Destekleyen Kurum

Yok

Teşekkür

Tokat ili Erbaa ilçesi bağcılarına teşekkür ederiz.

Kaynakça

  • Agurto, M., Schlechter, R.O., Armijo, G., Solano, E., Serrano, C., Contreras, R.A., Zúñiga, G.E., & Arce-Johnson, P. (2017). RUN1 and REN1 pyramiding in grapevine (Vitis vinifera cv. Crimson Seedless) displays an improved defense response leading to enhanced resistance to Powdery Mildew (Erysiphe necator). Frontiers in Plant Science 8, 758, 1-15. https://doi.org/10.3389/fpls.2017.00758.
  • Akkurt, M., Welter, L., Maul, E., Topfer, R., & Zyprian, E. (2007). Development of SCAR markers linked to Powdery Mildew (Uncinula necator) resistance in grapevine (Vitis vinifera L. and vitis sp.). Molecular Breeding 19, 103-111. https://doi.org/10.1007/ s11032-006-9047-9.
  • Armijo, G., Espinoza, C., Loyola, R., Restovic, F., Santibáñez, C., Schlechter, R., Agurto, M., & Arce-Johnson, P. (2016). Grapevine biotechnology: molecular approaches underlying abiotic and biotic stress responses. In A. Morata, & I. Loira (Eds.), Grape and Wine Biotechnology Rijeka. InTech. https://doi.org/10.5772/64872
  • Atak, A. (2017). Determination of Downy Mildew and Powdery Mildew resistance of some grape cultivars and genotypes. South African Journal of Enology and Viticulture, 38(1), 11–17. https://doi.org/ 10.21548/38-1-671.
  • Atak, A., Akkurt, M., Polat, Z., Çelik, H., Kahraman, K.A., Akgül, D.S., Özer, N., Söylemezoğlu, G., Şire, G.G., & Eibach, R. (2017). Susceptibility to Downy Mildew (Plasmopara viticola) and Powdery Mildew (Erysiphe necator) of different Vitis cultivars and genotypes. Ciência e Técnica Vitivinícola 32, 23–32. https://doi.org/10.1051/ctv/20173201023.
  • Atak, A., Şen, A. (2021). A Grape Breeding Programme using Different Vitis Species. Plant Breeding 140, 1136-1149. https://doi.org/10.1111/pbr.12970.
  • Atak, A., Göksel, Z. (2019). Determination of some phenolic substance changes in cultivar/genotypes of different Vitis species. Journal of Agriculture Faculty of Ege University 56, 153-161, https://doi.org/10.20289/zfdergi.467136
  • Atak, A. (2023). New Perspectives in Grapevine (Vitis spp.) Breeding. IntechOpen. https://doi.org/10.5772/ intechopen.105194
  • Barker, C. L., Donald, T., Pauquet, J., Ratnaparkhe, M. B., Bouquet, A., Adam-Blondon, A. F., Thomas, M.R., & Dry, I. (2005). Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theoretical and Applied Genetics 111, 370–377. https://doi.org/10.1007/ s00122-005-2030-8
  • Bendek, C.E., Torres, R., Campbell, P.A., & Latorre, B.A. (2002). Aportes al conocimiento y control del oídio de la vid. Aconex 76, 5–11. https://hdl.handle.net/20.500.14001/36685.
  • Blanc, S., Wiedemann-Merdinoglu, S., Dumas, V., Mestre, P., & Merdinoglu, D. (2012). A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine Powdery Mildew. Theoretical and Applied Genetics 125, 1663-1675. https://doi.org/10.1007/s00122-012-1942-3.
  • Calonnec, A., Cartolaro, P., Poupot, C., Dubourdieu, D., & Darriet, P. (2004) Effects of Uncinula necator on the yield and quality of grapes (Vitis vinifera) and wine. Plant Pathology 53, 434-445. https://doi.org/10.1111/j.0032-0862.2004.01016.x.
  • Cadle-Davidson, L., Chicoine, D.R., & Consolie, N.H. (2011a). Variation within and among Vitis spp. for foliar resistance to the powdery mildew pathogen Erysiphe necator. Plant Disease 95, 202-211. https://doi.org/10.1094/PDIS-02-10-0092
  • Cadle-Davidson, L., Mahanil, S., Gadoury, D.M., Kozma, P., & Reisch, B.I. (2011b). Natural infection of Run1-positive vines by naïve genotypes of Erysiphe necator. Vitis 50, 173–175.
  • Cangi, R., Çelik, H., & Köse, B. (2006). Determination of ampelographic characters of some natural foxy grape (Vitis labrusca L.) types grown in northern Turkey (Ordu and Giresun province). Asian Journal of Plant Sciences 2(2), 171–176. https://doi.org/10.3923/ijb.2006.171.176.
  • Coleman, C., Copetti, D., Cipriani, G., Hoffmann, S., Kozma, P., Kovacs, L., Morgante, M., Testolin, R., & Di Gaspero, G. (2009). The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two central Asian grapevines. BMC Genetics 10, 89. https://doi.org/10.1186/1471-2156-10-89
  • Çelik, H., Köse, B., & Cangi, R. (2008) Determination of fox grape genotypes (Vitis labrusca L.) grown in northeastern Anatolia. Horticultural Science 35, 162–170. https://doi.org/10.17221/655-HORTSCI.
  • Dilli, Y., Ünal, A., Kesgin, M., İnan, M.S., & Söylemezoğlu, G. (2014). Comparison of ampelographic characteristics of some important grape varieties are grown in the Aegean Region, rootstock and clones. Turkish Journal of Agricultural and Natural Sciences 2, 1546–1552.
  • Doebley, J.F., Gaut, B.S., & Smith, B.D. (2006). The molecular genetics of crop domestication. Cell 127, 1309-1321. https://doi.org/10.1016/j.cell.2006.12.006.
  • Doyle, J.J., & Doyle, J.L. (1990). Isolation of plant DNA from fresh tissue. Focus 12, 13-15. https://doi.org/10.2307/2419362.
  • Dry, I.B., Feechan, A., Anderson, C., Jermakow, A.M., Bouquet, A., Adam-Blondon, A.F., & Thomas, M.R. (2010). Molecular strategies to enhance the genetic resistance of grapevines to Powdery Mildew. Australian Journal of Grape and Wine Research 16, 94-105. https://doi.org/10.1111/j.1755-0238.2009.00076.x.
  • Eibach, R., & Töpfer, R. (2003). Success in resistance breeding: ‘Regent’ and its steps into the market. Acta Horticulturae 603, 687–691. https://doi.org/10.17660/ActaHortic.2003.603.95.
  • Ergül, A., & Ağaoğlu, Y.S. (2001) Molecular similarity analysis of some grapevine rootstocks from different nursery in Turkey. Journal of Agricultural Sciences 7(2), 141–143.
  • Ergül, A., Perez-Rivera, G., Söylemezoğlu, G., Kazan, K., & Arroyo-Garcia, R. (2011). Genetic diversity in Anatolian wild grapes (Vitis vinifera subsp. sylvestris) estimated by SSR markers. Plant Genetic Resources 9(3), 375-383. https://doi.org/10.1017/S1479262111000013.
  • Feechan, A., Kabbara, S., & Dry, I.B. (2011). Mechanisms of powdery mildew resistance in the Vitaceae family. Molecular Plant Pathology 12, 263–274. https://doi.org/10.1111/j.1364-3703.2010.00668.x
  • Feechan, A., Kocsis, M., Riaz, S., Zhang, W., Gadoury, D.M., Walker, M.A., Dry, I.B., Reisch, B., & Cadle-Davidson, L. (2015). Strategies for RUN1 deployment using RUN2 and REN2 to manage grapevine Powdery Mildew informed by studies of race specificity. Phytopathology 105, 1104-1113. https://doi.org/10.1094/PHYTO-09-14-0244-R.
  • Gadoury, D.M., Seem, R.C., Ficke, A., & Wilcox, W.F. (2003). Ontogenic resistance to Powdery Mildew in grape berries. Phytopathology 93, 547-555. https://doi.org/10.1094/PHYTO.2003.93.5.547.
  • Gadoury, D.M., Cadle-Davidson, L., Wilcox, W.F., Dry, I.B., Seem, R.C., & Milgroom, M.G. (2012). Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Molecular Plant Pathology 13, 1–16. https://doi.org/10.1111/j.1364-3703.2011.00728.x
  • Gao, M., Wang, Q., Wan, R., Fei, Z., & Wang, X. (2012). Identification of genes differentially expressed in grapevine associated with resistance to Elsinoe ampelina through suppressive subtraction hybridization. Plant Physiology and Biochemistry 58, 253-268. https://doi.org/10.1016/j.plaphy.2012.07.009.
  • Glawe, D.A. (2008). The powdery mildews: a review of the world’s most familiar (yet poorly known) plant pathogens. Annual Review of Phytopathology 46, 27–51. https://doi.org/10.1146/annurev.phyto.46.081407.104740
  • Hoffmann, S., Di Gaspero, G., Kovács, L., Howard, S., Kiss, E., Galbács, Z., Testolin, R., & Kozma, P. (2008). Resistance to Erysiphe necator in the grapevine ‘Kishmish Vatkana’ is controlled by a single locus through restriction of hyphal growth. Theoretical and Applied Genetics 116, 427-438. https://doi.org/10.1007/s00122-007-0680-4.
  • Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., & Vitulo, N. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463-465. https://doi.org/10.1038/nature06148.
  • Jiao, C., Sun, X., Yan, X., Xu, X., Yan, Q., Gao, M., Fei, Z., & Wang, X. (2021). Grape transcriptome response to Powdery Mildew infection: comparative transcriptome profiling of chinese wild grapes provides insights into powdery mildew resistance. Phytopathology 111, 2041-2051. https://doi.org/10.1094/PHYTO-01-21-0006-R.
  • Korbuly, J. (1999). Evaluation of different sources of resistance for breeding Powdery Mildew resistant grapevine varieties. International Journal of Horticultural Science 5(1-2), 35-40. https://doi.org/10.31421/IJHS/5/1-2/19.
  • Kozma, P., Kiss, E., Hoffmann, S., Galbács, Z.S., & Dula, T. (2006). Using the Powdery Mildew resistant Muscadinia rotundifolia and Vitis vinifera ‘Kishmish Vatkana’ for breeding new cultivars. ISHS Acta Horticulturae 827, 559-564. https://doi.org/10.17660/ActaHortic.2009.827.97.
  • Li, C., Erwin, A., Pap, D., Coleman, C., Higgins, A.D., Kiss, E., Kozma, P., Hoffmann, S., Ramming, D.W., & Kovács, L.G. (2013). Selection for Run1-Ren1 dihybrid grapevines using microsatellite markers. American Journal of Enology and Viticulture 64, 152-155. https://doi.org/10.5344/ajev.2012.12060.
  • Maul, H. (2023). Vitis International Variety Catalogue 2023. Available online: www.vivc.de (Accessed on: 04.02.2023).
  • Mermer Doğu, D., Zobar, D., Doğu, K., Özer, N., Bayraktar, H. (2022). Reactions of some grape cultivars to downy mildew disease under natural infection conditions. KSU Journal of Agricultural and Natural 25(6), 1279-1286. https://doi.org/10.18016/ksutarimdoga.vi.911000.
  • Montaigne, E., Coelho, A., Zadmehran, S.A. (2021). Comprehensive Economic Examination and Prospects on Innovation in New Grapevine Varieties dealing with Global Warming and Fungal Diseases. Sustainability 13, 13254. https://doi.org/10.3390/su132313254.
  • Mortensen, J. (1981). Sources and inheritance of resistance to anthracnose in Vitis. Journal of Heredity 72, 423-426. https://doi.org/10.1093/oxfordjournals.jhered.a109545.
  • Pap, D., Riaz, S., Dry, I.B., Jermakow, A., Tenscher, A.C., Cantu, D., Oláh, R., & Walker, M.A. (2016). Identification of two novel Powdery Mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC Plant Biology 16, 170. https://doi.org/10.1186/s12870-016-0855-8.
  • Pozharskiy, A.S., Aubakirova, K.P., Gritsenko, D.A., Tlevlesov, N.I., Karimov, N.Zh, Galiakparov, N.N., & Ryabushkina, N.A. (2020). Genotyping and morphometric analysis of Kazakhstani grapevine cultivars versus Asian and European cultivars. Genetics and Molecular Research 19(1), gmr18482. http://dx.doi.org/10.4238/gmr18482.
  • Peressotti, E., Wiedemann-Merdinoglu, S., Delmotte, F., Bellin, D., Di Gaspero, G., Testolin, R., Merdinoglu, D., & Mestre, P. (2010). Breakdown of resistance to grapevine downy mildew upon limited deployment of a resistant variety. BMC Plant Biology 10, 147. https://doi.org/10.1186/1471-2229-10-147
  • Qiu, W., Feechan, A., & Dry, I. (2015). Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. Horticulture Research 2, 15020. https://doi.org/10.1038/hortres.2015.20
  • Ramming, D.W., Gabler, F., Smilanick, J., Cadle-Davidson, M., Barba, P., Mahanil, S., & Cadle-Davidson, L. (2011). A single dominant locus, Ren4, confers rapid non-race-specific resistance to grapevine powdery mildew. Phytopathology 101, 502–508. https://doi.org/10.1094/PHYTO-09-10-0237
  • Reisch, B.I., Peterson, D.V., Pool, R.M., & Martens, M.H. (1993). Table grape varieties for cool climates, Information Bulletin 234. Cornell Cooperative Extension, Cornell University, New York, 9 p.
  • Reisch, B.I., Luce, R.S., & Mansfield, A.K. (2014). Arandell-A disease-resistant red wine grape. HortScience 49, 503-505. https://doi.org/10.21273/HORTSCI.49.4.503.
  • Riaz, S., Doligez, A., Henry, R.J., & Walker, M.A. (2007). “Grape,” in Fruits and Nuts. Springer, Berlin:Ed. Kole, C. 63–101. https://doi.org/ 10.1007/978-3-540-34533-6_2
  • Riaz, S., Boursiquot, J.M., Dangl, G.S., Lacombe, T., Laucou, V., Tenscher, A.C., & Walker, M.A. (2013). Identification of mildew resistance in wildand cultivated Central Asian grape germplasm. BMC Plant Biology 13, 149. http://dx.doi.org/ 10.1186/1471-2229-13-149.
  • Riaz, S., Tenscher, A.C., Ramming, D.W., & Walker, M.A. (2011). Using a limited mapping strategy to identify major QTLs for resistance to grapevine Powdery Mildew (Erysiphe necator) and their use in marker-assisted breeding. Theoretical and Applied Genetics 122, 1059-1073. http://dx.doi.org/10.1007/s00122-010-1511-6.
  • Sargolzaei, M., Rustioni, L., Cola, G., Ricciardi, V., Bianco, P.A., Maghradze, D., Failla, O., Quaglino, F., Toffolatti, S.L., & De Lorenzis, G. (2021). Georgian Grapevine Cultivars: Ancient Biodiversity for Future Viticulture. Frontiers in Plant Science 12, 1–13. http://dx.doi.org/ 10.3389/fpls.2021.630122.
  • Sosa-Zuniga, V., Vidal Valenzuela, Á., Barba, P., Espinoza Cancino, C., Romero-Romero, J.L., & Arce-Johnson, P. (2022). Powdery Mildew resistance genes in vines: an opportunity to achieve a more sustainable viticulture. Pathogens 11, 703. https://doi.org/10.3390/pathogens11060703.
  • Tahmaz, H., Yüksel Küskü, D., Söylemezoğlu, G., & Çelik, H. (2022). Phenolic compound and antioxidant capacity contents of Vitis labrusca L. genotypes. Journal of Tekirdag Agricultural Faculty 19(2), 318-331. https://doi.org/10.33462/ jotaf.952108.
  • This, P., Lacombe, T., & Thomas, M.R. (2006). Historical origins and genetic diversity of wine grapes, Trend in Genetics 22, 511-519. https://doi.org/10.1016/j.tig.2006.07.008.
  • Üneş, D. (2016). İzabella Üzümü (Vitis labrusca L.) Meyvesinin Fenolik Bileşenleri ve Antioksidan Etkisinin Araştırılması (Tez no 437984). [Yüksek Lisans Tezi, Bartın Üniversitesi Fen Bilimleri Enstitüsü Orman Endüstri Mühendisliği Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • van Heerden, C.J., Burger, P., Vermeulen, A., & Prins, R. (2014). Detection of Downy and Powdery Mildew resistance QTL in a ‘Regent’בRedGlobe’ population. Euphytica 200, 281-295. https://doi.org/10.1007/s10681-014-1167-4.
  • Wan, Y., Schwaninger, H.R., Baldo, A.M., Labate, J.A., Zhong, G.Y., & Simon, C.J. (2013). A phylogenetic analysis of the grape genus (Vitis L.) reveals broad reticulation and concurrent diversification during neogeneand quaternary climate change. BMC Evolutionary Biology 13, 141. https://doi.org/10.1186/1471-2148-13-141.
  • Welter, L.J., Göktürk-Baydar, N., Akkurt, M., Maul, E., Eibach, R., Töpfer, R., & Zyprian, E.M. (2007). Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Molecular Breeding 20, 359-374. https://doi.org/ 10.1007/s11032-007-9097-7.
  • Yıldırım, Z., Atak, A., & Akkurt, M. (2019). Determination of Downy and Powdery Mildew resistance of some Vitis spp. Ciência e Técnica Vitivinícola 34(1), 15-24. https://doi.org/10.1051/ ctv/20193401015.
  • Zendler, D., Schneider, P., Töpfer, R., & Zyprian, E. (2017). Fine mapping of Ren3 reveals two loci mediating hypersensitive response against Erysiphe necator in grapevine. Euphytica 213, 68. https://doi.org/10.1007/s10681-017-1857-9.
  • Zendler, D., Töpfer, R., & Zyprian, E. (2020). Confirmation and fine mapping of the resistance locus Ren9 from the grapevine cultivar ‘Regent’. Plants 10(1), 24. https://doi.org/10.3390/ plants10010024.
  • Zhou, Y., Massonnet, M., Sanjak, J.S., Cantu, D., & Gaut, B.S. (2017). Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication. Proceedings of the National Academy of Sciences 114(44), 11715-11720. https://doi.org/10.1073/ pnas.1709257114.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Şarapçılık ve Bağcılık
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Adem Yağcı 0000-0002-3650-4679

Selda Daler 0000-0003-0422-1444

Abdurrahim Bozkurt 0000-0001-7315-202X

Davut Soner Akgül 0000-0002-9990-4194

Erken Görünüm Tarihi 15 Eylül 2024
Yayımlanma Tarihi
Gönderilme Tarihi 17 Mart 2024
Kabul Tarihi 14 Mayıs 2024
Yayımlandığı Sayı Yıl 2024Cilt: 27 Sayı: Ek Sayı 1 (Suppl 1)

Kaynak Göster

APA Yağcı, A., Daler, S., Bozkurt, A., Akgül, D. S. (2024). Detection of the Presence of Powdery Mildew Resistance -Associated Genes (Ren1, Ren3, and Ren9) in Vitis labrusca L. Genotypes. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 27(Ek Sayı 1 (Suppl 1), 163-173. https://doi.org/10.18016/ksutarimdoga.vi.1454506

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149