Araştırma Makalesi
BibTex RIS Kaynak Göster

Katı Faz Fermantasyon Tekniği ile Bacillus circulans ATCC 4516’dan Ekstrasellüler β-Galaktosidaz Üretimi

Yıl 2019, , 480 - 486, 30.06.2019
https://doi.org/10.18016/ksutarimdoga.vi.503414

Öz

Çoğu mikrobiyal enzim, derin fermantasyonu ile
üretilmesine rağmen, katı faz fermantasyonu (KFF) ile tarımsal atıkların
substrat olarak kullanılmasıyla enzimlerin üretimi daha ekonomik hale gelir.
Enzim
üretim sürecini KFF açısından kayda değer ölçüde ucuz hale getirmek için,
maliyeti düşük substratların kullanımı büyük ilgi görmektedir. Bu çalışmada,
KFF yönteminde substrat olarak pirinç kepeği kullanılarak Bacillus circulans ATCC 4516’dan
β-galaktosidaz üretimi ve enzim üretimine etki eden
bazı parametlerin etkisi incelendi.
 İnkübasyon zamanı, inkübasyon sıcaklığı, inokülüm
seviyesi, başlangıç pH’sını içeren belirli fermantasyon parametreleri ayrı ayrı
incelendi. Maksimum miktarda β-galaktosidaz
üretimi; %35 inokülüm oranı, pH 7.5, 37°C'de ve
48. saatte elde edildi.
Ayrıca fermantasyon ortamına çeşitli karbon ve azot kaynakları
eklenerek β-galaktosidaz üretimi üzerine etkisi incelendi. Elde edilen
sonuçlara göre ortama eklenen karbon ve azot kaynakları enzim üretimini
baskıladı.
Son zamanlarda endüstriyel önemi olan enzimlerin
daha ekonomik bir şekilde üretilmesine yönelik çalışmalara olan ilgi
artmaktadır. Elde edilen sonuçlara göre
pirinç kepeği substrat olarak kullanılarak Bacillus circulans ATCC 4516’dan düşük maliyetle β-galaktosidaz enzimi
üretilebilir.

Kaynakça

  • Ahmed SA, 2008. Optimization of production and extraction parameters of Bacillus megaterium levansucrase using solid-state fermentation. Journal of Applied Sciences Research, 4(10): 1199-1204.
  • Amissah JGN, Ellis WO, Oduro I, Manful JT, 2003. Nutrient composition of bran from new rice varieties under study in Ghana. Food Control. 14(1): 21-24.
  • Baysal Z, Uyar F, Aytekin Ç, 2003. Solid state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-springwater. Process Biochemistry. 38(12): 1665-1668.
  • Chapla D, Divecha J, Madamwar D, Shah D, 2010. Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochemical Engineering Journal, 49(3): 361-369.
  • Coulier L, Timmermans J, Bas R, Van Den Dool R, Haaksman I, Klarenbeek B, Slaghek T, Van Dongen W, 2009. In-depth characterization of prebiotic galacto-oligosaccharides by a combination of analytical techniques. Journal of Agriculture Food Chemistry, 57(18): 8488-8495.
  • Domingues L, Oliveira C, Castro I, Lima N, Teixeira JA, 2004. Production of β-galactosidase from recombinant Saccharomyces cerevisiae grown on lactose. Journal of Chemical Technology Biotechnology, 79(8): 809-815.
  • Das B, Roy AP, Bhattacharjee S, Chakraborty S, Bhattacharjee C, 2015. Lactose hydrolysis by β-galactosidase enzyme: optimization using response surface methodology. Ecotoxicology and Environmental Safety, 121: 244–252.
  • Finocchiaro T, Olson NF, Richardson T, 1980. Use of immobilized lactase in milk systems. Advanced in Biochemical Engineering, 15: 71-88.
  • Furlan SA, Schneider ALS, Merkle R, Carvalho-Jonas MF, Jonas R, 2000. Formulation of a lactose-free, low-cost culture medium for the production of β-D-galactosidase by Kluyveromyces marxianus. Biotechnology Letters, 22(7): 589-593.
  • Geiger B, Nguyena HM, Weniga S, Nguyena HA, Lorenza C, Kittl R, Mathiesend G, Eijsink VGH, Haltricha D, Nguyena TH, 2016. From by-product to valuable components: Efficient enzymatic conversion of lactose in whey using β-galactosidase from Streptococcus thermophilus, Biochemical Engineering Journal, 116: 45-53
  • Holker U, Lenz J, 2005. Solid-state fermentation-are there any biotechnological advantages? Current Opinion Microbiology, 8(3): 301-306.
  • Hsu CA, Yu RC, Chou CC, 2005. Production of β-galactosidase by Bifidobacteria as influenced by various culture conditions. Graduate International Journal of Food Microbiology, 104(2): 197-206.
  • Kashyap P, Sabu A, Pandey A, Szakas G, Soccol CR, 2002. Extracellular L-glutaminase production by Zygosaccharomyces rouxii under solid state fermentation. Process Biochemistry, 38(3): 307-312.
  • Konsoula Z, Liakopoulou-Kyriakides M, 2007. Co-production of α-amylase and β-galactosidase by Bacillus subtilis in complex organic substrates. Bioresource Technology, 98(1): 150-157.
  • Kumar CG, Takaki H, 1999. Microbial alkaline proteases: from a bio-industrial point of view. Biotechnology Advances, 17(7): 561-594.
  • Kunamneni A, Permaul K, Singh S, 2005. Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus. Journal of Bioscience Bioengineering, 100(2): 168-171.
  • Latifian M, Hamidi-Esfahani Z, Barzegar M, 2007. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresource Technology, 98(18): 3634-3637.
  • Lazim H, Mankai H, Slama N, Barkallah I, Limam F, 2009. Production and optimization of thermophilic alkaline protease in solid-state fermentation by Streptomyces sp. CN902. Journal of Industrial Microbiology and Biotechnology, 36(4): 531-537.
  • Liua Y, Chenb Z, Jianga Z, Yanb Q, Yang S, 2017. Biochemical characterization of a novel β-galactosidase from Paenibacillus barengoltzii suitable for lactose hydrolysis and galactooligosaccharides synthesis. International Journal of Biological Macromolecules 104:1055-1063.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ, 1951. Protein measurement with the folin-phenol reagents. Journal of Biological Chemistry, 48: 17-25.
  • Manera OP, Ores JC, Ribeiro VA, Burkert CAV, Kalil SJ, 2008. Optimization of the culture medium for the production of β-galactosidase from Kluyveromyces marxianus CCT 7082. Food Technology and Biotechnology, 46(1): 66-72.
  • Mahoney RR, 1998. Galactosyl-oligosaccharide formation during lactose hydrolysis: a review. Food Chemistry, 63(2): 147-154.
  • Mukesh Kumar DJ, Sudha M, Devika S, Balakumaran MD, Ravi Kumar M, Kalaichelvan PT, 2012. Production and Optimization of β-galactosidase by Bacillus Sp. MPTK 121, Isolated from Dairy Plant Soil. Annals of Biological Research, 3(4): 1712-1718.
  • Murthy PS, Naidu MM, Srinivas P, 2009. Production of α-amylase under solid-state fermentation utilizing coffee waste. Journal of Chemical Technology and Biotechnology, 84(8): 1246-1249.
  • Ng IS, Li CW, Chan SP, Chir JL, Chen PT, Tong CG, Yu SM, David Ho TH, 2010. High-level production of a thermoacidophilic β-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Bioresource Technology, 101(4): 1310-1317.
  • Nizamuddin S, Sridevi A, Narasimha G, 2008. Production of β-galactosidase by Aspergillus oryzae in solid-state fermentation. African Journal of Biotechnology, 7(8): 1096-1100.
  • Nor ZM, Tamer MI, Mehrvar M, Scharer JM, Moo-Young M, Jervis EJ, 2001. Improvement of intracellular β-galactosidase production on fed-batch culture of Kluyveromyces fragilis. Biotechnolgy Letters, 23(11): 845-849.
  • Pandey A, 2003. Solid-state fermentation. Biochemical Engineering Journal, 13 (2-3): 81-84.
  • Panesar PS, Panesar R, Singh RS, Kennedy JF, Kumar H, 2006. Review Microbial production, immobilization and applications of β-D-galactosidase. Journal of Chemical Technololgy Biotechnology, 81(4): 530-543.
  • Ramírez Matheus AO, Rivas N, 2003. Production and partial characterization of β-galactosidase from Kluyveromyces lactis grown in deproteinized whey. Archivos Latinoamericanos de Nutrición, 53(2): 194-201.
  • Rycroft CE, Jones MR, Gibson GR, Rastall RA, 2001. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. Journal of Appied Microbiology, 91(5): 878-887.
  • Rhimi M, Boisson A, Dejob M, Boudebouze S, Maguin E, Haser R, Aghajari N, 2010. Efficient bioconversion of lactose in milk and whey: immobilization and biochemical characterization of a β-galactosidase from the dairy Streptococcus thermophilus LMD9 strain. Research in Microbiology, 161(7): 515-525.
  • Singhania RR, Patel AK, Soccol CR, Pandey A, 2009. A. Recent advances in solid state fermentation. Biochemical Engineering Journal, 44(1): 13-18
  • Vasiljevic T, Jelen P, 2001. Production of β-galactosidase for lactose hydrolysis in milk and dairy products using thermophilic lactic acid bacteria. Innovative Food Science and Emerging Technologies, 2(2): 75-85.
  • Vetere A, Paoletti S, 1998. Separation and characterization of three β-galactosidases from Bacillus circulans. Biochimica et Biophysica Acta, 2: 223-231.

Solid State Fermentation for Production of Extracellular β-Galactosidase from Bacillus circulans ATCC 4516

Yıl 2019, , 480 - 486, 30.06.2019
https://doi.org/10.18016/ksutarimdoga.vi.503414

Öz

Although most microbial enzymes are produced by
submerged fermentation, the use of agricultural wastes as substrates in solid
state fermentation (SSF) makes the production of enzymes more economical. The
use of economic substrates is of great interest for making the enzyme
production process significantly cheaper for SFF. The aim of this study was to
investigate the effect of some parameters on the production of β-galactosidase
from Bacillus circulans ATCC 4516
using rice bran as substrate in solid state fermentation (SFF) method. Certain fermentation parameters involving incubation
time, incubation temperature,  inoculum
level and initial pH were studied separately. Maximal amount of β-galactosidase production was obtained at 35%
inoculum level, at initial pH of 7.5, at 37ºC
over 48 h.
In addition, various carbon and nitrogen sources were
added to fermentation medium and the effect on β-galactosidase production was
investigated. According to the results, carbon and nitrogen sources which added
to the environment suppressed the enzyme production.

Kaynakça

  • Ahmed SA, 2008. Optimization of production and extraction parameters of Bacillus megaterium levansucrase using solid-state fermentation. Journal of Applied Sciences Research, 4(10): 1199-1204.
  • Amissah JGN, Ellis WO, Oduro I, Manful JT, 2003. Nutrient composition of bran from new rice varieties under study in Ghana. Food Control. 14(1): 21-24.
  • Baysal Z, Uyar F, Aytekin Ç, 2003. Solid state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-springwater. Process Biochemistry. 38(12): 1665-1668.
  • Chapla D, Divecha J, Madamwar D, Shah D, 2010. Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochemical Engineering Journal, 49(3): 361-369.
  • Coulier L, Timmermans J, Bas R, Van Den Dool R, Haaksman I, Klarenbeek B, Slaghek T, Van Dongen W, 2009. In-depth characterization of prebiotic galacto-oligosaccharides by a combination of analytical techniques. Journal of Agriculture Food Chemistry, 57(18): 8488-8495.
  • Domingues L, Oliveira C, Castro I, Lima N, Teixeira JA, 2004. Production of β-galactosidase from recombinant Saccharomyces cerevisiae grown on lactose. Journal of Chemical Technology Biotechnology, 79(8): 809-815.
  • Das B, Roy AP, Bhattacharjee S, Chakraborty S, Bhattacharjee C, 2015. Lactose hydrolysis by β-galactosidase enzyme: optimization using response surface methodology. Ecotoxicology and Environmental Safety, 121: 244–252.
  • Finocchiaro T, Olson NF, Richardson T, 1980. Use of immobilized lactase in milk systems. Advanced in Biochemical Engineering, 15: 71-88.
  • Furlan SA, Schneider ALS, Merkle R, Carvalho-Jonas MF, Jonas R, 2000. Formulation of a lactose-free, low-cost culture medium for the production of β-D-galactosidase by Kluyveromyces marxianus. Biotechnology Letters, 22(7): 589-593.
  • Geiger B, Nguyena HM, Weniga S, Nguyena HA, Lorenza C, Kittl R, Mathiesend G, Eijsink VGH, Haltricha D, Nguyena TH, 2016. From by-product to valuable components: Efficient enzymatic conversion of lactose in whey using β-galactosidase from Streptococcus thermophilus, Biochemical Engineering Journal, 116: 45-53
  • Holker U, Lenz J, 2005. Solid-state fermentation-are there any biotechnological advantages? Current Opinion Microbiology, 8(3): 301-306.
  • Hsu CA, Yu RC, Chou CC, 2005. Production of β-galactosidase by Bifidobacteria as influenced by various culture conditions. Graduate International Journal of Food Microbiology, 104(2): 197-206.
  • Kashyap P, Sabu A, Pandey A, Szakas G, Soccol CR, 2002. Extracellular L-glutaminase production by Zygosaccharomyces rouxii under solid state fermentation. Process Biochemistry, 38(3): 307-312.
  • Konsoula Z, Liakopoulou-Kyriakides M, 2007. Co-production of α-amylase and β-galactosidase by Bacillus subtilis in complex organic substrates. Bioresource Technology, 98(1): 150-157.
  • Kumar CG, Takaki H, 1999. Microbial alkaline proteases: from a bio-industrial point of view. Biotechnology Advances, 17(7): 561-594.
  • Kunamneni A, Permaul K, Singh S, 2005. Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus. Journal of Bioscience Bioengineering, 100(2): 168-171.
  • Latifian M, Hamidi-Esfahani Z, Barzegar M, 2007. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresource Technology, 98(18): 3634-3637.
  • Lazim H, Mankai H, Slama N, Barkallah I, Limam F, 2009. Production and optimization of thermophilic alkaline protease in solid-state fermentation by Streptomyces sp. CN902. Journal of Industrial Microbiology and Biotechnology, 36(4): 531-537.
  • Liua Y, Chenb Z, Jianga Z, Yanb Q, Yang S, 2017. Biochemical characterization of a novel β-galactosidase from Paenibacillus barengoltzii suitable for lactose hydrolysis and galactooligosaccharides synthesis. International Journal of Biological Macromolecules 104:1055-1063.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ, 1951. Protein measurement with the folin-phenol reagents. Journal of Biological Chemistry, 48: 17-25.
  • Manera OP, Ores JC, Ribeiro VA, Burkert CAV, Kalil SJ, 2008. Optimization of the culture medium for the production of β-galactosidase from Kluyveromyces marxianus CCT 7082. Food Technology and Biotechnology, 46(1): 66-72.
  • Mahoney RR, 1998. Galactosyl-oligosaccharide formation during lactose hydrolysis: a review. Food Chemistry, 63(2): 147-154.
  • Mukesh Kumar DJ, Sudha M, Devika S, Balakumaran MD, Ravi Kumar M, Kalaichelvan PT, 2012. Production and Optimization of β-galactosidase by Bacillus Sp. MPTK 121, Isolated from Dairy Plant Soil. Annals of Biological Research, 3(4): 1712-1718.
  • Murthy PS, Naidu MM, Srinivas P, 2009. Production of α-amylase under solid-state fermentation utilizing coffee waste. Journal of Chemical Technology and Biotechnology, 84(8): 1246-1249.
  • Ng IS, Li CW, Chan SP, Chir JL, Chen PT, Tong CG, Yu SM, David Ho TH, 2010. High-level production of a thermoacidophilic β-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Bioresource Technology, 101(4): 1310-1317.
  • Nizamuddin S, Sridevi A, Narasimha G, 2008. Production of β-galactosidase by Aspergillus oryzae in solid-state fermentation. African Journal of Biotechnology, 7(8): 1096-1100.
  • Nor ZM, Tamer MI, Mehrvar M, Scharer JM, Moo-Young M, Jervis EJ, 2001. Improvement of intracellular β-galactosidase production on fed-batch culture of Kluyveromyces fragilis. Biotechnolgy Letters, 23(11): 845-849.
  • Pandey A, 2003. Solid-state fermentation. Biochemical Engineering Journal, 13 (2-3): 81-84.
  • Panesar PS, Panesar R, Singh RS, Kennedy JF, Kumar H, 2006. Review Microbial production, immobilization and applications of β-D-galactosidase. Journal of Chemical Technololgy Biotechnology, 81(4): 530-543.
  • Ramírez Matheus AO, Rivas N, 2003. Production and partial characterization of β-galactosidase from Kluyveromyces lactis grown in deproteinized whey. Archivos Latinoamericanos de Nutrición, 53(2): 194-201.
  • Rycroft CE, Jones MR, Gibson GR, Rastall RA, 2001. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. Journal of Appied Microbiology, 91(5): 878-887.
  • Rhimi M, Boisson A, Dejob M, Boudebouze S, Maguin E, Haser R, Aghajari N, 2010. Efficient bioconversion of lactose in milk and whey: immobilization and biochemical characterization of a β-galactosidase from the dairy Streptococcus thermophilus LMD9 strain. Research in Microbiology, 161(7): 515-525.
  • Singhania RR, Patel AK, Soccol CR, Pandey A, 2009. A. Recent advances in solid state fermentation. Biochemical Engineering Journal, 44(1): 13-18
  • Vasiljevic T, Jelen P, 2001. Production of β-galactosidase for lactose hydrolysis in milk and dairy products using thermophilic lactic acid bacteria. Innovative Food Science and Emerging Technologies, 2(2): 75-85.
  • Vetere A, Paoletti S, 1998. Separation and characterization of three β-galactosidases from Bacillus circulans. Biochimica et Biophysica Acta, 2: 223-231.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Besi Serin 0000-0002-7659-3813

Nurullah Akcan 0000-0003-3960-9553

Yayımlanma Tarihi 30 Haziran 2019
Gönderilme Tarihi 27 Aralık 2018
Kabul Tarihi 22 Şubat 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Serin, B., & Akcan, N. (2019). Katı Faz Fermantasyon Tekniği ile Bacillus circulans ATCC 4516’dan Ekstrasellüler β-Galaktosidaz Üretimi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 22(3), 480-486. https://doi.org/10.18016/ksutarimdoga.vi.503414

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149